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Abstract
This paper focuses on order-preserving logics defined from varieties of distributive lattices with negation, and in particular
on the problem of whether these can be axiomatized by means Hilbert-style calculi that are finite (i.e. that contain a finite
number of finitary rule schemata). On the negative side, we provide a syntactic condition on the equational presentation of a
variety that entails failure of finite axiomatizability for the corresponding logic. An application of this result is that the logic
of all distributive lattices with negation is not finitely axiomatizable; we likewise establish that the order-preserving logic of
the variety of all Ockham algebras is also not finitely axiomatizable. On the positive side, we show that an arbitrary subvariety
of semi-De Morgan algebras is axiomatized by a finite number of equations if and only if the corresponding order-preserving
logic is axiomatized by a finite Hilbert-style calculus. This equivalence also holds for every subvariety of a Berman variety
of Ockham algebras. We obtain, as a corollary, a new proof that the implication-free fragment of intuitionistic logic is finitely
axiomatizable, as well as a new corresponding Hilbert-style calculus. Our proofs are constructive in that they allow us to
effectively convert an equational presentation of a variety of algebras into a Hilbert-style calculus for the corresponding
order-preserving logic, and vice versa. We also consider the assertional logics associated to the above-mentioned varieties,
showing in particular that the assertional logics of finitely axiomatizable subvarieties of semi-De Morgan algebras are finitely
axiomatizable as well.

Keywords: Finite axiomatizability, lattices with negation, Ockham algebras, semi-De Morgan algebras, Berman varieties,
pseudo-complemented lattices.

1 Introduction

In the present paper we study logics associated to subvarieties of the class DN of distributive lattices
with negation (Definition 2.2) considered, for instance, in the papers [12, 13]. DN is a variety that
includes many well-known classes of algebras of non-classical logics, such as (semi-)De Morgan
algebras, Stone algebras, pseudo-complemented distributive lattices and Ockham algebras; thus DN
provides a common semantical framework for the study of the corresponding logics.

We will be mostly concerned with the order-preserving logics associated to the above-mentioned
varieties, focusing in particular on the issue of whether they can be axiomatized or not by means of
a Hilbert-style calculus consisting of finitely many rule schemata; if this is the case, the logic will
be called finitely based.
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2 Logics of Distributive Lattices with Negation

On the side of negative results, we are going to show that the order-preserving logic associated to
the variety DN is not finitely based; the same holds for the order-preserving logic of all Ockham
algebras (Definition 2.3). Indeed, we will give a syntactic criterion regarding the equations that
axiomatize (relatively to DN) a variety V ⊆ DN implying that the same holds for the corresponding
logic. On the positive side, we will show how to obtain a finite Hilbert-style calculus that is complete
with respect to the logic of semi-De Morgan algebras, entailing that the latter is finitely based.
The same techniques will allow us to obtain finite calculi for the logics associated to so-called
Berman varieties of Ockham algebras [6]. As a corollary of our results, we will also obtain a finite
axiomatization for the logic of pseudo-complemented distributive lattices (i.e. the implication-free
fragment of intuitionistic logic) alternative to the one introduced in [31].

Our proof strategies are discussed in more detail in Sections 3 and 4, but we give here an
introductory account on the finite axiomatizability problem for order-preserving logics and the
difficulties one faces. First of all, let us clarify the meaning of the terms ‘order-preserving logic’
and ‘finite Hilbert-style calculus’.

Let K be a class (say, a variety) of algebras such that each algebra A ∈ K has a bounded lattice
reduct 〈A; ∧, ∨, ⊥, 	〉. One of the standard ways of associating a (finitary) Tarskian logic �≤

K
to

K is the following. One lets ∅ �≤
K

ϕ if and only if the equation ϕ ≈ 	 is valid in K and, for all
Γ ∪ {ϕ} ⊆ Fm such that Γ �= ∅, one lets Γ �≤

K
ϕ iff there is a natural number n and formulas

γ1, . . . , γn ∈ Γ such that K validates the equation:

γ1 ∧ . . . ∧ γn ∧ ϕ ≈ γ1 ∧ . . . ∧ γn.

Thus �≤
K

is by definition a finitary logic, called the order-preserving logic of the class K. Note that
�≤
K

coincides with the logic defined by the class of matrices

{〈A, F〉 : A ∈ K, F ⊆ A is a non-empty lattice filter of A}.
Other logics may of course be defined from K, for instance, the class of matrices {〈A, {	}〉 : A ∈ K}
also determines a (stronger) logic associated to K. Following [19], we call this the 	-assertional
logic of K (denoted �	

K
) and will be considered in Section 6.

By a Hilbert-style calculus we mean a logical calculus whose every rule schema is a pair Γ
ϕ

where Γ is a (possibly empty) set of formulas and ϕ is a formula; a rule of type ∅
ϕ

is usually called
an axiom (schema). We say that a Hilbert-style calculus is finite when it consists of finitely many
rule schemata (each schema having only finitely many premisses). Following [29, p. 607], we call
a logic that can be axiomatized by a finite Hilbert-style calculus finitely based. In [16, Sec. 2.1]
the authors introduce a finite calculus for the order-preserving logic of the variety SDM of semi-De
Morgan algebras (Definition 2.3). This, however, is not a Hilbert-style calculus stricto sensu, because
it involves meta-rule schemata such as the following: from 〈ϕ, ψ〉 infer 〈∼ ψ , ∼ ϕ〉. The ‘axioms’ of
the calculus introduced in [16], on the other hand, are examples of what are usually called (single-
premiss) Hilbert-style rules. Finite Hilbert-style calculi for the order-preserving logics of De Morgan
algebras (DM) and pseudo-complemented distributive lattices (PL) can be found in the papers [14,
31]. We note in this respect that �	

PL
=�≤

PL
, while �	

DM
is strictly stronger than �≤

DM
, which is the

well-known Belnap–Dunn logic [4, 5]. �	
DM

is the Exactly True Logic introduced and axiomatized
by means of a Hilbert-style calculus in [26]; see also [1, 32] .

A closer look at the order-preserving logic �≤
SDM

associated to semi-De Morgan algebras explains
the choice of a hybrid calculus in [16], as well as the challenge one faces when trying to axiomatize
�≤
K

(for K ⊆ DN) by means of a calculus that is Hilbert-style in the strict sense. In fact, the
consequence relation of each order-preserving logic �≤

K
corresponds to the lattice order on K, in the
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Logics of Distributive Lattices with Negation 3

sense that one has ϕ �≤
K

ψ if and only if the inequality ϕ ≤ ψ (taking the latter as a shorthand for the
equation ϕ∧ψ ≈ ϕ) is valid in K. Such a partial order relation on each A ∈ K enjoys certain (meta-)
properties that need to be mirrored by the logical calculus. Indeed, every order-preserving logic �≤

K

is self-extensional (see Section 3); moreover, observe that, if K � ϕ ≤ ψ , then K � ∼ ψ ≤ ∼ ϕ, but
also K � ϕ ∨ γ ≤ ψ ∨ γ for every γ ∈ Fm, and so on.

In [16], the above meta-properties are imposed by adding suitable meta-rule schemata such as the
one mentioned earlier (from 〈ϕ, ψ〉 infer 〈∼ ψ , ∼ ϕ〉). As is well known, pure Hilbert-style calculi
(stricto sensu) lack the expressive power needed to directly impose such (meta-)properties, which is
one of the reasons of interest in more expressive (e.g. Gentzen-style) calculi. Hilbert-style rules, how-
ever, are a most useful tool in characterizing the sets of formulas that are closed with respect to the
derivability relation of a given logic; thus the first step in the study of algebraic models of a logic is in
most cases a proof of completeness with respect to some Hilbert-style calculus (see e.g. [14, p. 414]).
Indeed, the whole theory of the algebraization of logics pioneered by H. Rasiowa [28] and perfected
by W. Blok and D. Pigozzi [7] relies on the strong formal analogies that exist between the equational
consequence of abstract algebras and deductive systems presented via Hilbert-style calculi.

A first approach to the above-mentioned axiomatizability problem suggests the following strategy.
Take a finite set of Hilbert-style rule schemata R ⊂�≤

K
and recursively close it as follows: whenever

〈ϕ, ψ〉 ∈ R, add to R also 〈∼ ψ , ∼ ϕ〉, 〈ϕ ∨ γ , ψ ∨ γ 〉, etc. As Theorem 3.3 shows, such a process
may indeed allow us to show that the derivability relation �R thus obtained coincides with �≤

K
. The

non-trivial question is whether some finite subset R0 ⊆ R will also suffice or not. The main result
of the present paper consists in providing a sufficient condition for the negative result to hold as well
as a few conditions that are sufficient for ensuring a positive answer. As we shall see, the answer
relies crucially on the possibility to add certain rule schemata (i.e. on whether the corresponding
inequalities hold in K).

We note for the algebraic logician that the logics considered in the present paper are not algebraiz-
able in the sense of Blok and Pigozzi, and indeed they are easily shown to be non-protoalgebraic
either (see e.g. [15] for the relevant definitions). This is one of the challenges of our study, for one
cannot rely on the existence of the translations between equations and formulas that are provided
by the general theory of algebraizable logics. Thus, in this setting, there is no standard recipe for
obtaining a Hilbert-style axiomatization of a given logic from an equational presentation of the corre-
sponding class of algebras. Also, no isomorphism is readily available between (say) the lattice of sub-
quasivarieties of DN and the lattice of finitary extensions of �≤

DN
(but see Theorem 2.7 in Section 2).

The paper is organized as follows. Section 2 collects the fundamental definitions on algebras and
logics, as well as a few useful lemmas. In Section 3 we give a recipe for obtaining a (potentially
infinite) Hilbert-style axiomatization for the logic �≤

K
for each class K ⊆ DN. We investigate

conditions entailing that the above-mentioned axiomatization must be infinite, and in particular we
show that �≤

DN
is not finitely based; the same holds for the logic �≤

O
of the variety of all Ockham

algebras (Definition 2.3). By contrast, we show in Section 4 that, for an arbitrary variety K ⊆ SDM,
where SDM is the class of semi-De Morgan algebras (Definition 2.3), the logic �≤

K
is finitely based

if and only if K is axiomatized by a finite number of equations (in particular, �≤
SDM

is itself finitely
based). In Section 5 we adapt our proof techniques to show that, unlike the whole variety O of
Ockham algebras, every Berman subvariety Om

n ⊆ O determines a logic �≤
Om

n
that is finitely based.

In Section 6 we brief ly consider 	-assertional logics associated to varieties of distributive lattices
with negation, showing in particular that �	

SDM
is finitely based. Lastly, Section 7 contains some

concluding remarks and suggestions for further research.
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4 Logics of Distributive Lattices with Negation

2 Algebraic and Logical Preliminaries

2.1 Algebras

We adopt the standard conventions and notation of modern universal algebra, for which we refer
the reader to [8]. All algebras considered in the present paper are bounded (distributive) lattices
(Definition 2.1) enriched with a unary negation operation ∼ on which different requirements will be
imposed, giving rise to the various classes of algebras of interest. The algebraic (as well as the logical)
language {∧, ∨, ∼, ⊥, 	}, consisting of a conjunction (interpreted as the lattice meet on algebras),
a disjunction (the join), a negation and truth constants (the top and bottom of the lattice) will stay
fixed throughout the paper. We shall denote by Fm the algebra of formulas over this language, freely
generated by a denumerable set of variables Var (denoted x, y, z etc.; we shall instead use p, q, r etc.
for propositional variables appearing further on in the definition and axiomatization of logics), and
by Fm the universe of this algebra. We shall mostly be interested in equational classes of algebras
(since Tarski’s classic characterization [8, Thm. II.9.5], also known as varieties). An equation is a
pair of formulas 〈ϕ, ψ〉 ∈ Fm × Fm, and every set E ⊆ Fm × Fm of equations determines a variety
which will be denoted by VE.

DEFINITION 2.1 ([8]).
A bounded distributive lattice is an algebra A = 〈A; ∧, ∨, ⊥, 	〉 of type 〈2, 2, 0, 0〉 such that the
following equations are satisfied:

(L1) x ∨ y = y ∨ x x ∧ y = y ∧ x.
(L2) x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z.
(L3) x ∨ x = x x ∧ x = x.
(L4) x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x.
(L5) x ∧ ⊥ = ⊥ x ∨ 	 = 	.
(L6) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

DEFINITION 2.2 ([12, 13]).
A distributive lattice with negation is an algebra A = 〈A; ∧, ∨, ∼, ⊥, 	〉 of type 〈2, 2, 1, 0, 0〉 such
that 〈A; ∧, ∨, ⊥, 	〉 is a bounded distributive lattice (Definition 2.1) and the following equations are
satisfied:

(N1) ∼ ⊥ = 	.
(N2) ∼(x ∨ y) = ∼ x ∧ ∼ y.

We shall denote by DN the variety of distributive lattices with negation, and by DN the set of
equations axiomatizing this class according to Definition 2.2.

The choice of the class of distributive lattices with negation as our base variety is due to the
following reasons. On the one hand, DN is sufficiently general to include many algebras of non-
classical logics that interest us, in particular pseudo-complemented distributive lattices and semi-De
Morgan algebras (our original case study). On the other hand, the two items of Definition 2.2 are
some minimal equational requirements ensuring that the connective ∼ indeed behaves like a negation
(in particular, ∼ is order-reversing); also, the theory of DN is sufficiently well developed to allow
us to rely on a few algebraic lemmas. Besides DN, we shall be mainly working with the subvarieties
introduced below.
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Logics of Distributive Lattices with Negation 5

FIGURE 1. Varieties of distributive lattices with negation, ordered by inclusion.

DEFINITION 2.3 ([33]).
A distributive lattice with negation A = 〈A; ∧, ∨, ∼, ⊥, 	〉 is:

• a semi-De Morgan algebra, if A satisfies the following equations:

(SDM1) ∼ 	 = ⊥.
(SDM2) ∼ ∼(x ∧ y) = ∼ ∼ x ∧ ∼ ∼ y.
(SDM3) ∼ x = ∼ ∼ ∼ x.

• a De Morgan algebra, if A is a semi-De Morgan algebra satisfying:

(DM) ∼ ∼ x = x.

• a pseudo-complemented distributive lattice (p-lattice, for short), if A is a semi-De Morgan
algebra satisfying:

(PL) x ∧ ∼(x ∧ y) = x ∧ ∼ y.

• an Ockham algebra, if A satisfies (SDM1) plus the following equation:

(O) ∼(x ∧ y) = ∼ x ∨ ∼ y.

We shall denote by SDM the variety of distributive lattices with negation, and by SDM the set of
equations axiomatizing this class according to Definition 2.3.

We shall also be interested in the so-called Berman varieties of Ockham algebras [6], defined
via the following terms. Let ∼0 x := x and ∼n+1 x := ∼ ∼n x. For m ≥ 1 and n ≥ 0, the variety
Om

n is defined as the subclass of those Ockham algebras that satisfy the equation ∼2m+n x = ∼n x.
The class of Boolean algebras, viewed as a subvariety of DN, will be denoted by B; also recall
from the preceding Section that SDM, DM and PL denote, respectively, the variety of semi-De
Morgan algebras, De Morgan algebras and p-lattices. The following inclusions (all proper) hold
among the above-defined varieties: B ⊆ DM ⊆ SDM ⊆ DN, B ⊆ DM ⊆ Om

n ⊆ O ⊆ DN and
B ⊆ PL ⊆ SDM ⊆ DN.

Since their introduction about three decades ago [33], semi-De Morgan algebras have been studied
especially in the setting of universal algebra [25] and duality theory [12, 13, 18]. On the other hand,
a logic associated to semi-De Morgan algebras (here denoted �≤

SDM
) has been first considered only

in the recent paper [16]. Having been introduced in the late 1970s, Ockham lattices are slightly older
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6 Logics of Distributive Lattices with Negation

than semi-De Morgan algebras; logics associated to (Berman subvarieties of) Ockham lattices are
considered in [21, 22].

De Morgan algebras (i.e. involutive semi-De Morgan algebras) are worth mentioning in the present
context especially because of their logical interpretation. In fact, since the 1970s with the seminal
papers by N. Belnap [4, 5], the variety DM has been associated to and studied as the standard
semantics of the Belnap–Dunn four-valued logic (see e.g. [14]). Indeed, the consequence relation
�≤
DM

is precisely the Belnap–Dunn logic (on the other hand, �	
DM

is strictly stronger than �≤
DM

).
Sub(quasi)varieties of DM have also been studied from a logical standpoint in the more recent papers
[1, 27, 32]. From a technical point of view, we shall also be interested in exploiting the structural
relation between semi-De Morgan and De Morgan algebras stated in Lemma 2.5.

The study of p-lattices can be traced back to the 1920s with V. Glivenko’s classical work on
intuitionistic logic. From a logical point of view, the importance of p-lattices stems from their relation
with intuitionistic logic. In fact, it is well known that p-lattices are precisely the implication-free
subreducts of Heyting algebras: in logical terms, this entails that the logic �≤

PL
, or equivalently �	

PL

(both defined as in Section 1), captures the implication-free fragment of intuitionistic logic.
We end the section with a few algebraic lemmas that will be used to make sure that certain rules

are sound with respect to particular subclasses of DN.

LEMMA 2.4
Let A be a semi-De Morgan algebra and a, b, c ∈ A. Then,

(i) ∼(a ∧ b) = ∼(∼ ∼ a ∧ b) = ∼(a ∧ ∼ ∼ b) = ∼(∼ ∼ a ∧ ∼∼ b).
(ii) ∼(∼(∼ a ∧ b) ∧ c) ≤ ∼(a ∧ c).

PROOF. (i). See [13,Lemma 1.1].
(ii). Let a, b, c ∈ A. Observe that, by the preceding item, ∼(a ∧ b) = ∼(∼ ∼ a ∧ b). Since ∼ is

order-reversing, from ∼ a ∧ b ≤ ∼ a we have ∼ ∼ a ∧ c ≤ ∼(∼ a ∧ b) ∧ c and ∼(∼(∼ a ∧ b) ∧ c) ≤
∼(∼ ∼ a ∧ c) = ∼(a ∧ c). �

Let A = 〈A; ∧, ∨, ∼, 0, 1〉 be a semi-De Morgan algebra. Defining A∗ := {∼ a : a ∈ A} and
a ∨∗ b := ∼ ∼(a ∨ b) for all a, b ∈ A∗, we consider the algebra A∗ = 〈A∗; ∧, ∨∗, ∼, 0, 1〉. It is
easy to show that A∗ is indeed closed under the operations {∧, ∨∗, ∼, 0, 1}. Moreover, we have the
following result, which may be viewed as a generalization of Glivenko’s theorem relating Heyting
and Boolean algebras.

LEMMA 2.5 ([33], Thm. 2.4).
If A is a semi-De Morgan algebra, then A∗ is a De Morgan algebra.

The preceding lemma is interesting for us because of the following logical consequence. Let ϕ be
a formula in the language of semi-De Morgan logic. Define the formula ϕ∗ recursively as follows:

ϕ∗ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∼ ∼ ϕ if ϕ ∈ Var ∪ {	}
∼ ϕ∗

1 if ϕ = ∼ ϕ1

ϕ∗
1 ∧ ϕ∗

2 if ϕ = ϕ1 ∧ ϕ2

∼ ∼(ϕ∗
1 ∨ ϕ∗

2 ) if ϕ = ϕ1 ∨ ϕ2.

LEMMA 2.6
Let 〈ϕ, ψ〉 be a rule that is sound w.r.t. �≤

DM
(i.e. the Belnap–Dunn logic). Then 〈ϕ∗, ψ∗〉 is sound

w.r.t. �≤
SDM

.
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Logics of Distributive Lattices with Negation 7

PROOF. By contraposition, assume 〈ϕ∗, ψ∗〉 is not sound in �≤
SDM

. Then there is a semi-De Morgan
algebra A that witnesses the failure of the inequality ϕ∗ ≤ ψ∗. It is then easy to check that A∗
(which is a De Morgan algebra, by Lemma 2.5) witnesses the failure of ϕ ≤ ψ , contradicting the
assumption that 〈ϕ, ψ〉 is sound w.r.t. the Belnap–Dunn logic. �

2.2 Logics

Here, a logic is a structural (Tarskian) consequence relation on Fm, i.e. a subset of P(Fm) × Fm.
Logics will be denoted by � with suitable subscripts, regardless of the way (syntactical or semantical)
they are defined. A logic can, for instance, be defined through a logical matrix, i.e. a pair M = 〈A, D〉
where A is an algebra and D ⊆ A a set of designated elements. One sets Γ �M ϕ iff for every
homomorphism h : Fm → A, we have h(ϕ) ∈ D whenever h(Γ ) ⊆ D. Similarly, a class of logical
matrices defines a logic by considering the intersection of the logics defined by each member of the
class. Another way is by considering a class of partially ordered algebras K, giving rise to the order-
preserving logic �≤

K
defined in the Introduction. Indeed, for a class K of lattice-ordered algebras, �≤

K

is the logic defined by the class of all matrices 〈A, D〉 such that A ∈ K and D is a lattice filter of A.
We shall also be interested in logics defined through Hilbert-style calculi consisting of a finite or

denumerable set of rule schemata. By a Hilbert-style rule we mean a pair 〈Γ , ψ〉, usually denoted
Γ
ψ

, where Γ ∪ ψ ⊆ Fm. When Γ is a singleton (say, Γ = {ϕ} for some ϕ ∈ Fm), we speak of

a formula-to-formula rule, usually written ϕ
ψ

. We shall write
ϕ

ψ
to denote the ‘bidirectional rule’,

which is really just an abbreviation for the pair of formula-to-formula rules { ϕ
ψ

, ψ
ϕ
}. Every set R of

Hilbert-style rules determines a logic �R in the standard way, and we write Γ �R ϕ whenever there
is a Hilbert-style derivation of ϕ from Γ that uses rules in R.

Below we state formally a result that will be central to our study of the relation between order-
preserving logics and varieties of distributive lattices with negation.

Recall that a logic is said to be non-pseudo-axiomatic if the set of its theorems is the set of formulas
that are derivable from every formula [19, p. 78]. Every order-preserving logic �≤

K
considered in the

present paper is non-pseudo-axiomatic. Moreover, since all algebras in K ⊆ DN have a lattice reduct,
�≤
K

is semilattice-based relative to ∧ and K [19, p.76]. Therefore, we can apply [19, Thm. 3.7] to
obtain the following.

THEOREM 2.7
There is a dual isomorphism between the class of all subvarieties of DN, ordered by inclusion, and
the class of logics �≤

K
for K ⊆ DN, ordered by extension. The isomorphism is given by K �→ �≤

K
.

In the present paper, we will study the problem of obtaining, from a basis E for the equational
theory of K ⊆ DN, a set of rules that are a basis for the logic �≤

K
; in particular, we shall be interested

in conditions ensuring that such a basis may be given by a finite set of rule schemata.

3 The Order-Preserving Logic of DN

In this section we introduce an infinite Hilbert-style calculus for the order-preserving logic of the
variety DN. Our calculus is obtained by translating the set DN of equations that axiomatize DN

into a set RDN of bidirectional rules, which we then suitably enlarge in order to ensure that the
corresponding inter-derivability relation is a congruence of Fm. After showing that the denumerable
set Rω of rules thus obtained axiomatizes �≤

DN
(Corollary 3.4), we will proceed to show that Rω

cannot be replaced by any finite set. This is the main result of this section: the order-preserving
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8 Logics of Distributive Lattices with Negation

logic of DN is not finitely based (Theorem 3.8). We note that most of the results that we proceed
to prove below also hold for classes of algebras more general than DN, and thus for logics weaker
than �≤

DN
(for instance, Lemma 3.1 only relies on having the set of commutativity rules RC defined

below, etc.). In view of future research, this suggests the project of applying our techniques to more
general logics/classes of algebras.

Given a set of equations E := {ϕi = ψi : i ∈ I} ⊆ Fm × Fm, we define the following set of
bidirectional rules:

RE :=
{

ϕi

ψi
: i ∈ I

}
.

Note that every rule in RE is formula-to-formula.
Following standard notation, we shall use the letters p, q, r etc. to denote logical variables, rather

than x, y, z etc. which we have reserved for algebraic terms and equations. Thus, for instance, the
equations (L1) in Definition 2.1 give us the rules

p∨q
q∨p and

p∧q
q∧p , and so on.

Given a set of rules R, we say that Q ⊆ Var is fresh for R if none of the variables in Q occurs
in R. If the cardinality of Var \ Q is greater or equal to the one of the set of variables occurring
in R, we can rename the variables in R and obtain an equivalent set of rules for which Q is fresh.
Hence, if Var \ Q is infinite, we can always assume Q is fresh for R. Since Var ∪ Q and Var are both
denumerable, we can fix a bijection b : Var → Var \ Q and the set {rσ : r ∈ R} with σ(p) = b(p).
Clearly, Rσ axiomatizes the same logic as R. The key point here is that we make Q fresh without
collapsing any two distinct variables occurring in R.

Given a set R ⊆ Fm × Fm of formula-to-formula rules, let {qi : i < ω} be a set of fresh variables
and define

R0 := R

Rn+1 :=
{ ϕ ∨ qn

ψ ∨ qn
:

ϕ

ψ
∈ Rn

}
∪

{ ϕ ∧ qn

ψ ∧ qn
:

ϕ

ψ
∈ Rn

}
∪

{∼ ψ

∼ ϕ
:

ϕ

ψ
∈ Rn

}

Rω :=
⋃
n<ω

Rn.

Let us also fix the set RC = { p∧q
q∧p , p∨q

q∨p } and RF = {	 , p , q
p∧q , p

p∨q }. As the notation suggests, the set
RC ensures that the conjunction and disjunction are commutative, while the rules in RF say that the
designated elements are (non-empty) lattice filters of the algebraic models of the logic.1

Recall that a logic � is said to be self-extensional if the inter-derivability relation �� is
a congruence of the formula algebra Fm. Every order-preserving logic �≤

K
is obviously self-

extensional: thus one needs to ensure that the syntactic counterpart of �≤
K

also enjoys this property.

LEMMA 3.1
Let R ⊆ Fm×Fm be a set of formula-to-formula rules such that RC ⊆ R. Then the inter-derivability
relation ��Rω

is a congruence of Fm.

PROOF. A Rω-derivation of ϕ �Rω
ψ consists in the application of rules γi

δi
∈ Rω and substitutions

σi : P → Fm for 0 ≤ i ≤ n, such that γ
σ1
1 = ϕ, γ

σj+1
j+1 = δ

σi
j for 1 ≤ j ≤ n − 1, and δσn

n = ψ . Since

for every 0 ≤ i ≤ n, γi∨qi
δi∨qi

∈ Rω with qi not occurring in γi nor δi, we obtain that by applying rules

1Observe that RC ⊆ RDN, so we will not need to worry about adding RC when dealing with �≤
DN

and stronger logics.
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Logics of Distributive Lattices with Negation 9

γi∨qi
δi∨qi

and substitution σ ′
i with σ ′

i (qi) = γ and σ ′
i (p) = σi(p) for p �= qi, we obtain a derivation of

ϕ ∨ γ �Rω
ψ ∨ γ . Similarly, from the fact that γi∧qi

δi∧qi
, ∼δi∼γi

∈ Rω we obtain that ϕ ∧ γ �Rω
ψ ∧ γ

and ∼ ψ �Rω
∼ ϕ.

Hence, if ϕi ��Rω
ψi we have ϕ1∨ϕ2 ��Rω

ψ1∨ψ2, ϕ1∧ϕ2 ��Rω
ψ1∧ψ2 and ∼ ψi ��Rω

∼ ϕi
for i = 1, 2. From ϕ1 ��Rω

ψ1 we obtain ϕ1 ∨ ϕ2 ��Rω
ψ1 ∨ ϕ2. And from ϕ2 ��Rω

ψ2 and
p∨q
q∨p ∈ RC, we obtain ψ1 ∨ ϕ2 ��Rω

ψ1 ∨ ψ2. Thus by transitivity we conclude that ϕ1 ∨ ϕ2 ��Rω

ψ1 ∨ ψ2. The remaining cases are analogous. �
The following lemma is an immediate consequence of the definition of RE.

LEMMA 3.2
Let � be a logic over Fm, and let E ⊆ Fm×Fm a set of equations. If RE ⊆ � and �� is a congruence
of Fm, then the quotient Fm/�� satisfies all the equations in E. In particular, if DN ⊆ E, then
Fm/�� is a distributive lattice with negation (Definition 2.2) with the order given by �, that is
[ϕ] ≤ [ψ] whenever ϕ � ψ .

Given a set of equations E ⊆ Fm × Fm, we denote by VE the variety axiomatized by E.

THEOREM 3.3
Let E ⊆ Fm × Fm be a set of equations such that DN ⊆ E. Then RE

ω ∪ RF axiomatizes �≤
VE

.

PROOF. Let �:=�RE
ω∪RF

. It is clear that �⊆�≤
VE

. To prove completeness, assume Γ �� ϕ for some

Γ ∪{ϕ} ⊆ Fm. By Lemma 3.1 and the fact that RC ⊆ RDN ⊆ RE, the relation ��RE
ω

is a congruence

of Fm, which in this proof we denote by ≡. Let Γ � = {ϕ : Γ � ϕ} and F := Γ �/≡. Consider the
matrix 〈Fm/≡, F〉. Observe that �RE

ω
⊆� implies that Γ � is compatible with ≡ (i.e. ψ ∈ Γ � and

ψ ≡ ψ ′ entail ψ ′ ∈ Γ �). It follows from RE ⊆� and Lemma 3.2 that Fm/≡ is in VE. In particular,
Fm/≡ is a lattice. Thus, to show that F is a non-empty lattice filter, it suffices to use the rules in RF.
To conclude the proof, observe that the canonical homomorphism π : Fm → Fm/≡ is a valuation
that satisfies all formulas in Γ but not ϕ. �

COROLLARY 3.4
�RDN

ω ∪RF
=�≤

DN
.

With regards to the problem of axiomatization, a crucial difference between �≤
DN

and the logic
�≤
SDM

of semi-De Morgan algebras considered in the next section is the fact that �≤
SDM

validates
certain rules such as

∼ ∼(p ∧ q)

∼ ∼ p ∧ ∼ ∼ q

that allow us to ‘push’ negations inside formulas, thus being able to work with formulas having a
certain shape (a normal form as it were). Since in the axiomatization for �≤

DN
we cannot make use of

a similar rule, it is important to have at our disposal a way of measuring the depth of nested negations
in each formula. To this end we introduce the following notions.

DEFINITION 3.5
Recall that an atomic formula is a propositional variable or a constant belonging to our language
(⊥ or 	). The ∼-depth of an occurrence of an atomic formula ϕ in ψ is the number of ∼-headed
subformulas of ψ with that occurrence of ϕ. In other words, we consider the tree representation
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10 Logics of Distributive Lattices with Negation

of ψ and a leaf labelled ϕ (i.e. a selected occurrence) and count the number of ∼-labelled nodes
that are ancestors of that leaf. The ∼-depth of a formula ψ is the maximum ∼-depth of the atomic
subformulas of ψ . The ∼-depth of a set of rules R is the maximum ∼-depth among the formulas in
R. We say that a rule r is ∼-balanced if all occurrences of all variables in r have the same ∼-depth.
We say that a set of rules R is ∼-balanced if every rule r ∈ R is ∼-balanced.

We shall now focus on invariants of logics axiomatized by ∼-balanced rules having ∼-depth
k < ω. This will allow us to single out certain non-finitely based logics extending �≤

DN
. To this

end, we shall also need the following functions.
Given that the set of propositional variables Var and the language Fm are both denumerable we

can fix a bijection b : Fm → Var. We let, for all k < ω and for all ϕ, ψ ∈ Fm, fk : Fm → Fm be
given by:

fk(	) := 	
fk(⊥) := ⊥
fk(p) := b(p)

fk(ϕ ∧ ψ) := fk(ϕ) ∧ fk(ψ)

fk(ϕ ∨ ψ) := fk(ϕ) ∨ fk(ψ)

fk(∼ ϕ) :=
{

b(∼ ϕ) if k = 0

∼ fk−1(ϕ) if k > 0

Essentially, fk replaces in ϕ every subformula ψ occurring at ∼-depth k whose main connective is
∼ by the variable b(ψ). It also renames the variables p by b(p) in order to avoid conflicts.2 We
extend fk to sets of formulas, rules and sets of rules in the expected way: fk(Γ ) = {fk(ϕ) : ϕ ∈ Γ },
fk(Γ

ϕ
) = fk(Γ )

fk(ϕ)
and fk(R) = {fk(r) : r ∈ R}.

LEMMA 3.6
Let R be a set of rules that is ∼-balanced and has ∼-depth k. Then Γ �R ϕ implies fn(Γ ) �R fn(ϕ)

for every n > k.

PROOF. Since n > k, for each rule Δ
ψ

∈ R, we have fn(Δ) = Δ and fn(ψ) = ψ . Further, for

every substitution σ we have fn(Δσ ) = fn(Δ)σ
′ = Δσ ′

and fn(ψσ ) = fn(ψ)σ
′ = ψσ ′

, where
σ ′(p) = fn−j(σ (p)) and j is the ∼-depth of p in Δ

ψ
(note that σ ′ is well defined exactly because R is

∼-balanced). As in Lemma 3.1, we can transform every R-derivation of ϕ from Γ into a derivation
of fn(ϕ) from fn(Γ ) with the same number of steps. Simply, in each step, i, where the rule Δi

ψi
and

substitution σi were used, the rule fn(Δi)
fn(ψi)

and substitution σ ′
i are now used. �

LEMMA 3.7
Let R ⊆ Fm × Fm be ∼-balanced and having ∼-depth k. If fn+k(Rn) �⊆ �Rω∪RF for every n < ω,
then the logic �Rω∪RF is not finitely based.

PROOF. Let �n=�Rn∪RF and �ω=�Rω∪RF . Clearly, Rω = ⋃
n<ω Rn. Note that every axiomatiza-

tion of a finitely axiomatizable finitary logic must contain a finite subset that already axiomatizes

2Note that the proof only requires that b injects Var together with negated formulas into Var.
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Logics of Distributive Lattices with Negation 11

the logic. Thus, it is enough to show that �n��n+1. It is clear that Rn ∪ RF is ∼-balanced and with
∼-depth n+k. Hence, by Lemma 3.6, Γ �n ϕ iff fn+k(Γ ) �n fn+k(ϕ). Thus, from fn+k(Rn+1) �⊆ �ω

and �n⊆�ω we conclude that Rn+1 ⊆�n+1 but Rn+1 �⊆ �n, as was required to prove. �

THEOREM 3.8
The logic �≤

DN
of distributive lattices with negation is not finitely based.

PROOF. Recall that �RDN
ω ∪RF

=�≤
DN

by Corollary 3.4. Then, the result follows directly from Lemma

3.7. Indeed, RDN is ∼-balanced and has ∼-depth 1. Moreover, for every n < ω, we have r =
∼n+1(p∧p))

∼n+1 p
∈ RDN

n and

fn(r) = fn(∼n+1(p ∧ p))

fn(∼n+1 p)
) = ∼n (b(∼ (p ∧ p)))

∼n (b(∼ p))
= ∼n (q∼(p∧p))

∼n (q∼p)
/∈ �≤

DN
.

�
Note that the result of Theorem 3.8 holds for every strengthening of �≤

DN
to which Lemma 3.7

applies. In particular, let E be a set of equations such that RE is ∼-balanced and has finite ∼-depth.
Then, for Lemma 3.7 to apply, it suffices to have B ⊆ VE ⊆ DN. For instance, denoting by �≤

O
the

order-preserving logic of the variety of Ockham algebras (Definition 2.3), it suffices to check that

the rule
∼(p ∧ q)

∼ p∨∼ q is ∼-balanced to conclude that �≤
O

is not finitely based. A similar argument shows
that, letting K ⊆ DN be the variety of distributive lattices with negation axiomatized (relatively to
DN) by equations (SDM1) and (SDM2) from Definition 2.3, we have that �≤

K
is not finitely based.

4 The Logics of Semi-De Morgan Algebras and of p-Lattices

In this section we show that, unlike �≤
DN

and �≤
O

, the order-preserving logic of semi-De Morgan

algebras �≤
SDM

is finitely based. In fact, we are going to establish a more general result, namely that
every order-preserving logic extending semi-De Morgan logic is going to be finitely based as long
as the corresponding variety is (Theorem 4.5).

Let us fix throughout this section a set of equations E ⊇ SDM. By Theorem 3.3, we know that �≤
E

is axiomatized by RE
ω ∪ RF. The task is now to try and single out a finite set of rule schemata that

allows us to generate the same inferences; but before we come to this, let us consider an interesting
(infinite) subset of RE

ω, (RE)ω,g.
Let R ⊆ Fm × Fm be a set of rules, and let ({q} ∪ {qi : i < ω}) be a fresh set of variables. Given

a formula γ , let g0(γ ) = γ ∧ q0 and gn+1(γ ) =∼ gn(γ ) ∧ qn. Given a rule ϕ
ψ

and n < ω, let

rϕ,ψ
n =

⎧⎨
⎩

gn(ϕ)∨q
gn(ψ)∨q if n = 2k

gn(ψ)∨q
gn(ϕ)∨q if n = 2k + 1

For n < ω, let Rn,g = {rϕ,ψ
n : ϕ

ψ
∈ R}, R≤n,g = R ∪ ⋃

k≤n Rk,g and Rω,g = ⋃
n<ω R≤n,g.
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12 Logics of Distributive Lattices with Negation

EXAMPLE 4.1
Given a rule ϕ

ψ
, we have

(ϕ ∧ q0) ∨ q

(ψ ∧ q0) ∨ q
rϕ,ψ
0

(∼ (ψ ∧ q0) ∧ q1) ∨ q

(∼ (ϕ ∧ q0) ∧ q1) ∨ q
rϕ,ψ
1

(∼ (∼ (ϕ ∧ q0) ∧ q1) ∧ q2) ∨ q

(∼ (∼ (ψ ∧ q0) ∧ q1) ∧ q2) ∨ q
rϕ,ψ
2

The general pattern is

(∼ . . . (∼ (γ upn ∧ q0) ∧ q1) . . . ∧ qn) ∨ q

(∼ . . . (∼ (γ dnn ∧ q0) ∧ q1) . . . ∧ qn) ∨ q
rϕ,ψ
n

with

γ upn =
{

ϕ for even n

ψ for odd n
and γ dnn =

{
ψ for even n

ϕ for odd n.

Clearly, Rω,g ⊆ Rω. Let us fix the set R• consisting of the following rules:
p

p∨⊥ r∨⊥
p∨r

(p∧	)∨r
r∧	

∼(p∧	)∨r
∼p∨r r∼	

(p∨q)∧r
(p∧r)∨(q∧r)

r∨∧
dist

((p1∧p2)∧p3)∨q
(p1∧(p2∧p3))∨q

rass∨∧
∼(p∨q)

∼p∧∼q rdm∼∨

The next lemma entails that, if the set of rules R• is sound with respect to �Rω
, then we only need

to join it with the above-defined set Rω,g to obtain a complete (albeit still infinite) axiomatization
of �Rω

.

LEMMA 4.1
If R• ⊆�Rω

then �Rω,g∪R• = �Rω
.

PROOF. Let � = �Rω,g . Since R ⊆ Rω,g ⊆�Rω
, it is enough to show that if ϕ � ψ , given a fresh

variable q, we have:
(i) ϕ ∨ q � ψ ∨ q (ii) ϕ ∧ q � ψ ∧ q (iii) ∼ ψ � ∼ ϕ.
The proof is by induction on the length of the derivation showing that ϕ � ψ . In the base case

we have simply ϕ = ψ , in which cases (i), (ii) and (iii) follow immediately. For the inductive step,
assume ϕ, γ1, . . . , γk , ψ is an Rω,g-derivation and by induction hypothesis we have that ϕ∨q � γk∨q,
ϕ ∧ q � γk ∧ q and ∼ γk �∼ ϕ. To conclude the proof, we consider in each of the cases how to
complete the derivations depending on the last rule that was used. By structurality, it is enough to
show that for each rule ϕ

ψ
∈ Rω,g we have that (i)–(iii) hold.

Concerning the rules ϕ
ψ

∈ R, we have

(i) ϕ ∨ q �r∧	 (ϕ ∧ 	) ∨ q �rϕ,ψ
0

(ψ ∧ 	) ∨ q �r∧	 ψ ∨ q

(ii) ϕ ∧ q �r∨⊥ (ϕ ∧ q) ∨ ⊥ �rϕ,ψ
0

(ψ ∧ q) ∨ ⊥ �r∨⊥ ψ ∧ q

(iii) ∼ ψ �r∼	∼ (ψ ∧ 	) ∨ ⊥ �rϕ,ψ
1

∼ (ϕ ∧ 	) ∨ ⊥ �r∼	∼ ϕ ∨ ⊥ �r∨⊥∼ ϕ.
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Logics of Distributive Lattices with Negation 13

Now, for each ϕ
ψ

∈ R and j < ω, consider rϕ,ψ
j = gj(ϕ)∨q′

gj(ψ)∨q′ . We have

(i) (gj(ϕ) ∨ q′) ∨ q �r∨ass
gj(ϕ) ∨ (q′ ∨ q) �rϕ,ψ

j
gj(ψ) ∨ (q′ ∨ q) �r∨ass

(gj(ψ) ∨ q′) ∨ q

(ii) For j > 0 (the case j = 0 is analogous)

(gj(ϕ) ∨ q′) ∧ q = ((∼ gj−1(ϕ) ∧ qj) ∨ q′) ∧ q

�r∨∧
dist

((∼ gj−1(ϕ) ∧ qj) ∧ q) ∨ (q′ ∧ q)

�rass∨∧
((∼ gj−1(ϕ) ∧ (qj ∧ q)) ∨ (q′ ∧ q)

�rϕ,ψ
j

((∼ gj−1(ψ) ∧ (qj ∧ q)) ∨ (q′ ∧ q)

�rass∨∧
((∼ gj−1(ψ) ∧ qj) ∧ q) ∨ (q′ ∧ q)

�r∨∧
dist

(gj(ψ) ∨ q′) ∧ q

(iii) ∼ (gj(ψ) ∨ q) �rdm∼∨
∼ gj(ψ)∧ ∼ q

�r∨⊥ (∼ gj(ψ)∧ ∼ q) ∨ ⊥
�rϕ,ψ

j+1
(∼ gj(ϕ)∧ ∼ q) ∨ ⊥

�r∨⊥∼ (gj(ϕ) ∨ q)

�rdm∼∨
∼ (gj(ϕ) ∨ q)

�
Since R• ⊆�≤

DN
, by Lemma 4.1, we have that RDN

ω,g ∪ R• ∪ RF provides an alternative (but still

infinite) Hilbert-style calculus for �≤
DN

.
In order to obtain a finite axiomatization of �≤

SDM
, let us fix the set S• consisting of the following

rules ( notice that they are not ∼-balanced):

The next proposition shows that if the rules in S• are �Rω
-sound, then we can replace the infinite

set of rules Rω,g by the following finite one: R+ := R≤2,g ∪ S•.

PROPOSITION 4.2
If S• ⊆�Rω,g , then �R+ = �Rω,g .

PROOF. We just need to show that rϕ,ψ
n ∈�R+ for n > 2. Since rϕ,ψ

1 , rϕ,ψ
2 ∈ R+, it suffices to show

that we can derive Rϕ,ψ
2n+3,Rϕ,ψ

2n+4 using the rules in Rn+ := R+ ∪ {rϕ,ψ
2n+1, rϕ,ψ

2n+2}.
That is, we need to show that, for every ϕ

ψ
∈ R and n < ω,
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14 Logics of Distributive Lattices with Negation

(i) g2n+3(ψ) ∨ r �R+n g2n+3(ϕ) ∨ r.
We have

γ0 = g2n+3(ψ) ∨ r

= ∼ (g2n+2(ψ) ∧ q2n+3) ∨ r

= ∼ (∼ (g2n+1(ψ) ∧ q2n+2) ∧ q2n+3) ∨ r

= ∼ (∼ (∼ (g2n(ψ) ∧ q2n+1) ∧ q2n+2) ∧ q2n+3) ∨ r

�r∧∼ (∼∼ (g2n(A) ∧ q2n+1) ∧ q2n+3) ∨ r

�r∼∼ (g2n(ψ) ∧ (q2n+1 ∧ q2n+3)) ∨ r

�rϕ,ψ
2n+1

∼ (g2n(ϕ) ∧ (q2n+1 ∧ q2n+3)) ∨ r

�r∼ ∼ (∼∼ (g2n(ϕ) ∧ q2n+1) ∧ q2n+3) = γ1

Further,

γ0, γ1 �r∼∧ ∼ (∼ (∼ (g2n(ϕ) ∧ q2n+1) ∧ q2n+2) ∧ q2n+3) ∨ r = g2n+3(ϕ) ∨ r.

Hence, g2n+3(ψ) ∨ r �Rn+ g2n+3(ϕ) ∨ r.
(ii) g2n+4(ϕ) ∨ r �R+n g2n+4(ψ) ∨ r.

We have

γ0 = g2n+4(ϕ) ∨ r

= ∼ (g2n+3(ϕ) ∧ q2n+4) ∨ r

= ∼ (∼ (g2n+2(ϕ) ∧ q2n+3) ∧ q2n+4) ∨ r

= ∼ (∼ (∼ (g2n+1(ϕ) ∧ q2n+2) ∧ q2n+3) ∧ q2n+4) ∨ r

�r∧∼ (∼∼ (g2n+1(ϕ) ∧ q2n+2) ∧ q2n+4) ∨ r

�r∼∼ (g2n+1(ψ) ∧ (q2n+2 ∧ q2n+4)) ∨ r = ϕ2

�rϕ,ψ
2n+2

∼ (g2n+1(ψ) ∧ (q2n+2 ∧ q2n+4)) ∨ r

�r∼∼ (∼∼ (g2n+1(ψ) ∧ q2n+2) ∧ q2n+4) = γ1

Further,

γ0, γ1 �r∼∧ ∼ (∼ (∼ (g2n+1(ψ) ∧ q2n+2) ∧ q2n+3) ∧ q2n+4) ∨ r = g2n+4(ψ) ∨ r.

Hence, g2n+4(ϕ) ∨ r �Rn+ g2n+4(ψ) ∨ r.

�
Since we are assuming E ⊇ SDM, it is clear that the rules r∧ and r∨ are sound for �≤

E . In the next
lemma we show that the same is true for r∼∧ .

LEMMA 4.3
The rule r∼∧ is sound in �≤

SDM
(hence also in �≤

E ).

PROOF. Using the semi-De Morgan equations (SDM1)–(SDM3), it is easy to show that the rule
∼(∼ p1 ∧ p2) ∧ ∼(∼(p3 ∧ p4) ∧ p2) � ∼(∼(p1 ∧ p4) ∧ p2) is sound in �≤

SDM
if and only if
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Logics of Distributive Lattices with Negation 15

(∼ ∼ p1 ∨∗ ∼ p2)∧ ((∼ ∼ p3 ∧∼∼ p4)∨∗ ∼ p2) � (∼ ∼ p1 ∧∼∼ p4)∨∗ ∼ ∼ p2 is sound in �≤
SDM

.
Letting ϕ := (p1 ∨ ∼ p2) ∧ ((p3 ∧ p4) ∨ ∼ p2) and ψ := (p1 ∧ p4) ∨ p2, the rule ϕ � ψ is easily
seen to be sound in �≤

DM
. Moreover, ϕ∗ = (∼ ∼ p1 ∨∗ ∼ p2) ∧ ((∼ ∼ p3 ∧ ∼ ∼ p4) ∨∗ ∼ p2) and

ψ∗ = (∼ ∼ p1 ∧ ∼ ∼ p4) ∨∗ ∼∼ p2. The soundness of ϕ∗ � ψ∗ w.r.t. �≤
SDM

then follows from
Lemma 2.6. �

We thus arrive at our main result regarding logics stronger than �≤
SDM

, which gives us an effective
way to convert an equational presentation E ⊇ SDM of a subvariety of semi-De Morgan algebras
into a Hilbert-style axiomatization of �≤

E . Recall that RE+ := RE≤2,g ∪ S•.

THEOREM 4.4
If E ⊇ SDM then RE+ ∪ R• ∪ RF axiomatizes �≤

VE
.

PROOF. Since DN ⊆ SDM ⊆ E, we know by Theorem 3.3 that RE
ω ∪ RF axiomatizes �≤

VE
.

From R• ⊆�≤
SDM

⊆�≤
VE

we obtain by Lemma 4.1 that RE
ω,g ∪ R• axiomatizes �≤

VE
. Moreover,

S• ⊆�≤
SDM

⊆�≤
VE

(Lemma 4.3 deals with the less obvious case). Hence, by Proposition 4.2 we

conclude that RE+ ∪ R• ∪ RF axiomatizes �≤
VE

. �

EXAMPLE 4.6
By Theorem 4.4, the set RSDM+ ∪ R• ∪ RF = RSDM

≤2,g ∪ R• ∪ S• ∪ RF axiomatizes �≤
SDM

. Since

RSDM
≤2,g = RSDM∪RSDM

0,g ∪RSDM
1,g ∪RSDM

2,g , the axiomatization thus obtained consists of 4×|SDM|+
|R•∪S•∪RF| = (4×16)+11 = 75 rules, many of which are bidirectional. However, it is not hard to
see that R ⊆�RSDM

0,g ∪R• , which allows one to reduce the number of rules to (3×|SDM|)+11 = 59.

Further simplifications are of course possible, and in particular cases one may obtain a much more
compact axiomatization. A certain amount of redundancy in the set of rules obtained is the price we
have to pay for the generality and modularity of our approach. Regarding the latter aspect, observe for
instance that the variety of pseudo-complemented distributive lattices PL is axiomatized, relatively

to SDM, by adding the equation x∧∼(x∧y) = x∧∼ y. Adding the rule
p∧∼(p∧q)

p∧∼ q rP is not sufficient,
for we also need to ensure that the resulting logic is self-extensional. To achieve this, by Theorem
4.4, it is enough to add the three rules in {rP}≤2,g = {rϕ,ψ

i : 0 ≤ i ≤ 2}, where ϕ = p ∧ ∼(p ∧ q) and

ψ = p ∧ ∼ q. We then have that �≤
PL

is axiomatized over �≤
SDM

by {rϕ,ψ
0 , rϕ,ψ

1 , rϕ,ψ
2 }.

Theorem 4.4 also provides a means to obtain (alternative) finite axiomatizations of other order-
preserving logics above �≤

SDM
. In particular, we can obtain a finite axiomatization of the logic of

p-lattices (Definition 2.3), i.e. the implication-free fragment of intuitionistic logic, that is alternative
to the one introduced in [31]. We provide a general formulation of this observation below in
Theorem 4.5.

THEOREM 4.5
Let V ⊆ SDM be a variety. The following are equivalent:

(i) V is axiomatized by a finite set of equations.
(ii) �≤

V
is axiomatized by a finite set of finitary rule schemata.

PROOF. That (i) implies (ii) follows directly from Theorem 4.4.
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16 Logics of Distributive Lattices with Negation

For the other direction, assume (ii) holds, so �≤
V

is axiomatized by a finite set R of finitary rule
schemata. Given a rule r = Γ

ϕ
, let E(r) be the equation

∧
Γ ∧ ϕ = ∧

Γ . Let ER := SDM ∪ {E(r) :
r ∈ R}. Observe that the set ER is finite, and let V′ be the variety defined by the equations ER. We
claim that V′ = V. Indeed, it is clear that V ⊆ V′ ⊆ SDM and therefore �≤

SDM
⊆�≤

V′ ⊆�≤
V

. For the

other direction, we start by observing that for each ϕ
ψ

∈ R we have
∧

Γ ∧ϕ∧
Γ

∈ RER . This, together

with the fact that p , q
p∧q , p∧q

q ∈�≤
SDM

⊆�≤
V′ , implies that R⊆�≤

V′ . Hence, �≤
V

⊆�≤
V′ . From, �≤

V′=�≤
V

and Theorem 2.7 we conclude that V = V′. �

5 Order-Preserving Logics of Berman Varieties

We have shown in Section 4 how to obtain a finite axiomatization of the order-preserving logic �≤
K

with K ⊆ SDM. Now, suppose K ⊆ O is a variety of Ockham algebras. As observed earlier, �≤
O

is
not finitely based. However, if we restrict our attention to a Berman variety Om

n of Ockham algebras,
then we can adapt the technique employed in the preceding section to obtain a finite Hilbert-style
axiomatization for �≤

Om
n

(an infinite one being directly given by Theorem 3.3).
From now on, let us fix a variety Om

n , with m, n < ω, and let Em
n be the equations axiomatizing

Om
n . Let k < ω and let t be a fresh variable. Given a rule ϕ

ψ
, define sϕ,ψ

2k := ∼2k(ϕ)∨t
∼2k(ψ)∨t

and sϕ,ψ
2k+1 :=

∼2k+1(ψ)∨t
∼2k+1(ϕ)∨t

. Letting

p ∧ q

p
r1∧

p ∧ q

q
r2∧

p , q

p ∧ q
rin∧

define Rmn∧ := REm
n ∪ {r1∧, r2∧}, and Om

n := Rmn∧ ∪ {si(r) : i ≤ 2m + n, r ∈ Rmn∧ } ∪ {rin∧ }.
LEMMA 5.1
The relation ��Om

n
is a congruence of Fm.

PROOF. The key difference with the cases considered in the previous Sections is that ∼(p∧q)
∼p∨∼q r∧∨

dm ∈
Rmn∧ , but recall that the following rules are also in Rmn∧ :

(p∧q)∧r
p∧(q∧r)

r∧ass
(p∨q)∨r
p∨(q∨r)

r∨ass
∼2m+np

∼np rm
n

p∨(q∧r)
(p∨q)∧(p∨r)

r∨∧
dist

In the presence of r∧∨
dm, we can show directly that, if Γ � ϕ, then

(i) Γ ∨ u � ϕ ∨ u (ii) Γ ∧ u � ϕ ∧ u (iii) ∼ ϕ �
∨
γ∈Γ

∼ γ

where u is a fresh variable, Γ ∨ u := {γ ∨ u : γ ∈ Γ } and Γ ∧ u := {γ ∧ u : γ ∈ Γ }. Once more it
is enough to show that (i)–(iii) are satisfied when r = Γ

ϕ
∈ Om

n .
For r = p , q

p∧q , we have

(i) p ∨ u, q ∨ u �r (p ∨ u) ∧ (q ∨ u) �r∨∧
dist

(p ∧ q) ∨ u
(ii) p ∧ u, q ∧ u �r (p ∧ u) ∧ (q ∧ u) �r∧ass

(p ∧ q) ∧ u
(iii) ∼ (p ∧ q) �r∧∨

dm
∼ p∨ ∼ q.
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Logics of Distributive Lattices with Negation 17

For r = ϕ
ψ

∈ Rmn∧ , we have

(i) ϕ ∨ u �sϕ,ψ
0

ψ ∨ u

(ii) ϕ ∧ u �rj
∧

ϕ, u �r ψ , u �rin∧ ψ ∧ u
(iii) ∼ ψ �r∨⊥∼ ψ ∨ ⊥ �sϕ,ψ

1
∼ ϕ ∨ ⊥ �r∨⊥∼ ϕ.

For sϕ,ψ
k ∈ {si(r) : i ≤ 2m + n, r ∈ Rmn∧ }, we let γ

up
k = ϕ and γ dn

k = ψ if k is odd, and γ
up
k = ϕ

and γ dn
k = ψ if k is even. We can write sϕ,ψ

k = ∼k(γ
up
k )∨q

∼k(γ dn
k )∨q

, as in Example 4.1.

(i) (∼k (γ
up
k ) ∨ q) ∨ r �r∨ass

∼k (γ
up
k ) ∨ (q ∨ r) �sϕ,ψ

k
∼k (γ dn

k ) ∨ (q ∨ r) � (∼k (γ dn
k ) ∨ q) ∨ r

(ii) (∼k (γ
up
k ) ∨ q) ∧ r �rj

∧
(∼k (γ

up
k ) ∨ q), r �sϕ,ψ

k
(∼k (γ dn

k ) ∨ q), r � (∼k (γ dn
k ) ∨ q) ∧ r

(iii) To show that ∼ (∼k (γ dn
k ) ∨ q) �∼ (∼k (γ

up
n ) ∨ q) we must consider two cases.

If k + 1 ≤ 2m + n, then

∼ (∼k (γ dn
k ) ∨ q) �r∧∨

dm
∼k+1 (γ dn

k )∨ ∼ q �sϕ,ψ
k+1

∼k+1 (γ
up
k )∨ ∼ q �r∧∨

dm
∼ (∼k (γ dn

k ) ∨ q).

Otherwise, let k + 1 = n + (i2m + j) for i > 0 and 0 ≤ j < 2m (and thus n + j < 2m + n).
We have

∼ (∼k (γ dn
k ) ∨ q) �r∧∨

dm
∼k+1 (γ dn

k )∧ ∼ q

�rm
n
∼n+j (γ dn

k )∧ ∼ q

�sϕ,ψ
k+1

∼n+j (γ
up
k )∧ ∼ q

�rm
n
∼k+1 (γ

up
k )∧ ∼ q

�r∧∨
dm

∼ (∼k (γ dn
k ) ∨ q)

�

THEOREM 5.2
The set of rules Om

n ∪ {	} axiomatizes �≤
Om

n

PROOF. It is clear that Om
n ∪{	} ⊆�≤

Om
n

. Completeness follows by a similar reasoning, as in Theorem
3.3 from Lemma 5.1. �

We note that, given E such that VE ⊆ Om
n , it is easy to see that �≤

VE is axiomatized, relatively to

�≤
Om

n
, by the set RE ∪ {si(r) : i ≤ 2m + n, r ∈ RE}. Hence, if E is finite then �≤

VE is finitely based. In
fact, one can easily adapt the argument of Theorem 4.5 to obtain the following:

COROLLARY 5.3
Let V ⊆ Om

n be a variety. The following are equivalent:

(i) V is axiomatized by a finite set of equations.
(ii) �≤

V
is axiomatized by a finite set of finitary rule schemata.
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18 Logics of Distributive Lattices with Negation

6 On 	-Assertional Logics

As mentioned earlier, another logic (alternative to �≤
K

) canonically associated to a given class K

of algebras having a constant 	 is the so-called 	-assertional logic �	
K

determined by the class of
all matrices {〈A, {	}〉 : A ∈ K}. By definition, �	

K
is stronger than �≤

K
, but it is well known that

�	
K
=�≤

K
for K = B or K = PL. On the other hand, it is easy to check that �	

DN
�= �≤

DN
. For this, it

suffices to observe that the rule

p∧ ∼ p

∼ q
rwxc

is sound w.r.t. �	
DN

but not w.r.t. �≤
DN

. The same example witnesses �	
SDM

�= �≤
SDM

and �	
O
�= �≤

O
.

In this section we take a closer look at the assertional logic �	
SDM

from an algebraic logic point
of view. This perspective will allow us to obtain further information on the poset of finitary self-
extensional extensions of �≤

SDM
, as well as to provide a Hilbert-style calculus for �	

SDM
. For all

unexplained terminology used in this section, we refer the reader to [15].
As mentioned in the Introduction, all logics considered in this paper are non-protoalgebraic. We

state this formally below.

THEOREM 6.1
Let K ⊆ DN. If PL ⊆ K or DM ⊆ K, then �	

K
(and, a fortiori, �≤

K
) is not protoalgebraic.

PROOF. Observe that both �	
PL

and �	
DM

are non-protoalgebraic. The former was remarked in [30,
p. 320], while the latter is proved in [1, Thm. 5.1]. The result then follows from the observation that
the property of being protoalgebraic is preserved by extensions. (Indeed, we notice that [1, Thm. 5.1]
even entails that �	

K
is not protoalgebraic for every K with B � K ⊆ DM.) �

We next provide a better description of reduced matrix models of �≤
SDM

. Recall that a matrix M is
a model of a logic � when �⊆�M. The Leibniz congruence ΩA(D) of a matrix M = 〈A, D〉 is the
largest congruence of A that is compatible with D in the following sense: for all a, b ∈ A, if a ∈ D
and 〈a, b〉 ∈ ΩA(D), then b ∈ D. A matrix M = 〈A, D〉 is reduced when ΩA(D) is the identity
relation.

PROPOSITION 6.2
Let M = 〈A, D〉 be a model of �≤

SDM
with A ∈ SDM, and let a, b ∈ A. Then 〈a, b〉 ∈ ΩA(D) if and

only if, for all c1, c2, c3 ∈ A, the following conditions hold:

(i) a ∨ c1 ∈ D iff b ∨ c1 ∈ D,
(ii) ∼(a ∧ c2) ∨ c1 ∈ D iff ∼(b ∧ c2) ∨ c1 ∈ D,

(iii) ∼(∼(a ∧ c3) ∧ c2) ∨ c1 ∈ D iff ∼(∼(b ∧ c3) ∧ c2) ∨ c1 ∈ D.

PROOF. Let θ be the relation defined by items (i)–(iii). Let us check that θ is compatible with the
algebraic operations of A.

(∼). Assume 〈a, b〉 ∈ θ . That ∼ a ∨ c1 ∈ D iff ∼ b ∨ c1 ∈ D follows from (ii): observe that,
taking c2 = 	, we have ∼ a ∨ c1 = ∼(a ∧ 	) ∨ c1 and ∼ b ∨ c1 = ∼(b ∧ 	) ∨ c1. A similar
reasoning, taking c3 = 	 in (iii), shows that ∼(∼ a ∧ c2) ∨ c1 ∈ D iff ∼(∼ b ∧ c2) ∨ c1 ∈ D. Now,
assume ∼(∼(∼ a ∧ c3) ∧ c2) ∨ c1 ∈ D. By Lemma 2.4.ii, we have ∼(∼(∼ a ∧ c3) ∧ c2) ∨ c1 ≤
∼(∼ ∼ a ∧ c2) ∨ c1 = ∼(a ∧ c2) ∨ c1. Hence, ∼(a ∧ c2) ∨ c1 ∈ D, and we can apply (ii) to obtain
∼(b ∧ c2) ∨ c1 = ∼(∼ ∼ b ∧ c2) ∨ c1 ∈ D. Thus we have (∼(∼ ∼ b ∧ c2) ∨ c1) ∧ (∼(∼(∼ a ∧ c3) ∧
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Logics of Distributive Lattices with Negation 19

c2) ∨ c1) ∈ D, because D is closed under ∧. Then, taking p1 = ∼ b, p2 = c2, q = c1, p3 = ∼ a,
p4 = c3 in r∼∧ , we have ∼(∼(∼ b ∧ c3) ∧ c2) ∨ c1 ∈ D.

To check that θ is compatible with the binary operations, assume 〈a1, b1〉, 〈a2, b2〉 ∈ θ . Relying on
completeness (Theorem 4.4), we can use any logical rule ϕ

ψ
such that ϕ ≤ ψ is an inequality valid

in SDM. In particular, in the proof below, by (e.g.) ‘commutativity’ for ∧ we shall refer not only to
the rule p∧q

q∧p , but also ∼(p∧q)
∼(q∧p)

, ∼(p∧q)∨r
∼(q∧p)∨r , etc. In the computations that follow, we shall skip the steps

that follow trivially (by symmetry) from the preceding ones; the dots ( . . . ) will be used to indicate
the passages that have been omitted.

(∧). We have:

(i) (a1 ∧ a2) ∨ c1 ∈ D

iff (a1 ∨ c1) ∧ (a2 ∨ c1) ∈ D by distributivity

iff a1 ∨ c1, a2 ∨ c1 ∈ D by
p ∧ q

p

iff b1 ∨ c1, b2 ∨ c1 ∈ D by (i)

(. . .) iff (b1 ∧ b2) ∨ c1 ∈ D.

(ii) ∼((a1 ∧ a2) ∧ c2) ∨ c1 ∈ D

iff ∼(a1 ∧ (a2 ∧ c2)) ∨ c1 ∈ D by ∧ -associativity

iff ∼(b1 ∧ (a2 ∧ c2)) ∨ c1 ∈ D by (ii)

iff ∼((b1 ∧ a2) ∧ c2) ∨ c1 ∈ D by ∧ -associativity

iff ∼((a2 ∧ b1) ∧ c2) ∨ c1 ∈ D by ∧ -commutativity

iff ∼(a2 ∧ (b1 ∧ c2)) ∨ c1 ∈ D by ∧ -associativity

iff ∼(b2 ∧ (b1 ∧ c2)) ∨ c1 ∈ D by (ii)

(. . .) iff ∼((b1 ∧ b2) ∧ c2) ∨ c1 ∈ D.

(iii) ∼(∼((a1 ∧ a2) ∧ c3) ∧ c2) ∨ c1 ∈ D

iff ∼(∼((a1 ∧ (a2 ∧ c3)) ∧ c2) ∨ c1 ∈ D by ∧ -associativity

iff ∼(∼((b1 ∧ (a2 ∧ c3)) ∧ c2) ∨ c1 ∈ D by (iii)

(. . .) iff ∼(∼((a2 ∧ (b1 ∧ c3)) ∧ c2) ∨ c1 ∈ D

iff ∼(∼((b2 ∧ (b1 ∧ c3)) ∧ c2) ∨ c1 ∈ D by (iii)

(. . .) iff ∼(∼((b1 ∧ b2) ∧ c3) ∧ c2) ∨ c1 ∈ D.

(∨). We have
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20 Logics of Distributive Lattices with Negation

(i) (a1 ∨ a2) ∨ c1 ∈ D

iff a1 ∨ (a2 ∨ c1) ∈ D by ∨ -associativity

iff b1 ∨ (a2 ∨ c1) ∈ D by (i)

iff (b1 ∨ a2) ∨ c1 ∈ D by ∨ -associativity

iff (a2 ∨ b1) ∨ c1 ∈ D by ∨ -commutativity

iff a2 ∨ (b1 ∨ c1) ∈ D by ∨ -associativity

iff b2 ∨ (b1 ∨ c1) ∈ D by (i)

iff (b1 ∨ b2) ∨ c1 ∈ D by ∨ -associativity.

(ii) ∼((a1 ∨ a2) ∧ c2) ∨ c1 ∈ D

iff ∼((a1 ∧ c2) ∨ (a2 ∧ c2)) ∨ c1 ∈ D by distributivity

iff (∼(a1 ∧ c2) ∧ ∼(a2 ∧ c2)) ∨ c1 ∈ D by (SDM1)

iff (∼(a1 ∧ c2) ∨ c1) ∧ (∼(a2 ∧ c2) ∨ c1) ∈ D by distributivity

iff ∼(a1 ∧ c2) ∨ c1, ∼(a2 ∧ c2) ∨ c1 ∈ D by
p ∧ q

p

iff ∼(b1 ∧ c2) ∨ c1, ∼(b2 ∧ c2) ∨ c1 ∈ D by (ii)

(. . .) iff ∼((b1 ∨ b2) ∧ c2) ∨ c1 ∈ D.

(iii) ∼(∼((a1 ∨ a2) ∧ c3) ∧ c2) ∨ c1 ∈ D

iff ∼(∼((a1 ∧ c3) ∨ (a2 ∧ c3)) ∧ c2) ∨ c1 ∈ D by distributivity

iff ∼((∼(a1 ∧ c3) ∧ ∼(a2 ∧ c3)) ∧ c2) ∨ c1 ∈ D by (SDM1)

iff ∼(∼(a1 ∧ c3) ∧ (∼(a2 ∧ c3) ∧ c2)) ∨ c1 ∈ D by ∧ -associativity

iff ∼(∼(b1 ∧ c3) ∧ (∼(a2 ∧ c3) ∧ c2)) ∨ c1 ∈ D by (iii)

iff ∼((∼(b1 ∧ c3) ∧ (∼(a2 ∧ c3)) ∧ c2) ∨ c1 ∈ D by ∧ -associativity

iff ∼(((∼(a2 ∧ c3) ∧ ∼(b1 ∧ c3)) ∧ c2) ∨ c1 ∈ D by ∧ -commutativity

iff ∼(((∼(b2 ∧ c3) ∧ ∼(b1 ∧ c3)) ∧ c2) ∨ c1 ∈ D by (iii)

iff ∼(((∼(b1 ∧ c3) ∧ ∼(b2 ∧ c3)) ∧ c2) ∨ c1 ∈ D by ∧ -commutativity

(. . .) iff ∼(∼((b1 ∨ b2) ∧ c3) ∧ c2) ∨ c1 ∈ D.

Hence, θ is a congruence of A. Also, θ is obviously compatible with D. Indeed, if a ∈ D and
〈a, b〉 ∈ θ , then we can use p

p∨q to conclude a ∨ b ∈ D. Then we have b ∨ b ∈ D by (i), which
gives us b ∈ D using the rule of ∨-idempotency. Lastly, if θ ′ is a congruence of A that is compatible
with D, then it is easy to show that θ ′ ⊆ θ . Indeed, if 〈a, b〉 ∈ θ ′, then we also have, for instance,
〈a ∧ c2, b ∧ c2〉, 〈∼(a ∧ c2), ∼(b ∧ c2)〉, 〈∼(a ∧ c2) ∨ c1, ∼(b ∧ c2) ∨ c1〉 ∈ θ ′ and so on. Thus,
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Logics of Distributive Lattices with Negation 21

assuming ∼(a ∧ c2) ∨ c1 ∈ D, we have ∼(b ∧ c2) ∨ c1 ∈ D because θ ′ is compatible with D. Hence,
〈a, b〉 ∈ θ . Thus, θ is the largest congruence compatible with D, as required. �

The following auxiliary result is well known to hold for semilattice-based logics (see e.g. [1, Thm.
2.13.iii]; for a definition of the classes Alg∗(�) and Alg(�), see [15]).

PROPOSITION 6.3
Alg(�≤

SDM
) = SDM.

Table 1 introduces the two extra rules that will permit us to axiomatize �	
SDM

. Observe that rWP
is a weaker form of the pseudo-complement rule rP introduced in Example 4.6. Note also that none
of the rules in R	 corresponds to an (in)equality: their role is to ensure that reduced models satisfy
F = {	}, rather than to restrict the underlying class of algebras.

TABLE 1. The set of rules R	.

LEMMA 6.4
Let 〈A, F〉 be a reduced matrix for the strengthening of �≤

SDM
with R	. Then F = {	}.

PROOF. By Proposition 6.3 (and the well-known fact that Alg∗(�) ⊆ Alg(�) holds for any logic �
[15, Thm. 2.23]), we have that every reduced matrix for �≤

SDM
is of the form 〈A, F〉 with A ∈ SDM

and F a lattice filter [19, Lemma 3.8].
Suppose, by way of contradiction, that there is a ∈ F such that a �= 	. Then 〈a, 	〉 /∈ ΩA(F). This

means that there are c1, c2, c3 ∈ A such that at least one of the three items of Proposition 6.2 fails.
Clearly, item (i) cannot fail, because a, 	 ∈ F. Thus, suppose item (ii) fails. Then there are c1, c2 ∈ A
such that ∼(a ∧ c2) ∨ c1 ∈ F and ∼(	 ∧ c2) ∨ c1 = ∼ c2 ∨ c1 /∈ F. But, since a ∈ F, the latter
cannot happen because of the rule rWP. Now, assume item (iii) fails. Then there are c1, c2, c3 ∈ A
such that ∼(∼(	 ∧ c3) ∧ c2) ∨ c1 = ∼(∼ c3 ∧ c2) ∨ c1 ∈ F but ∼(∼(a ∧ c3) ∧ c2) ∨ c1 /∈ F. But
since a ∈ F, this cannot happen because of rule rQ. �

THEOREM 6.5
For every K ⊆ SDM, the logic �	

K
is axiomatized, relatively to �≤

K
, by R	.

PROOF. Soundness is clear. For completeness, assume Γ �� ϕ where � is the strengthening of �≤
K

with rWP and rQ. Then there is a reduced matrix model 〈A, F〉 of � witnessing this. Moreover,
A ∈ Alg(�≤

K
) = V(K) ⊆ SDM (cf. Proposition 6.3). So we can invoke Lemma 6.4 to obtain

F = {	}. Hence, Γ ��	
K

ϕ, as required. �
Taking into account Theorem 4.4, the preceding Theorem immediately gives us the following.

COROLLARY 6.6
For every K ⊆ SDM, if �≤

K
is finitely based, then so is �	

K
.
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22 Logics of Distributive Lattices with Negation

7 Concluding Remarks

The present paper has been a contribution to improving our current understanding of the expressivity
of Hilbert-style calculi. As observed earlier, Gentzen calculi allow one to impose directly the meta-
properties needed to ensure that the inter-derivability relation is a congruence of the formula algebra.
By contrast, we have shown that under certain conditions this is beyond what Hilbert-style calculi
can capture finitely. Our main results are displayed in Table 2 below.

TABLE 2. Finite axiomatizability results.

toprule Conditions on E �≤
VE

�	
VE

Examples

∼-balanced, VE ⊆ DN and ∼k p ��≤
VE

∼k q N ? DN, O
finite and VE ⊆ SDM Y Y SDM, PL
finite and VE ⊆ Om

n Y ? Om
n , DM

On the front of positive results, we have identified certain subvarieties of DN for which Hilbert-
style calculi are indeed able to ref lect finitely the effect of imposing extra equations on the algebras.
The well-known result that finitely-generated varieties of lattices are finitely based [8, Cor. V.4.18]
implies that our methods may be successfully applied to every finite-valued order-preserving logic
that extends �≤

SDM
. We believe it would be interesting to take a closer look at the conditions that

characterize this divide.
Yet another approach to the axiomatization of logics is provided by multiple-conclusion calculi,

which are still less expressive than Gentzen-style calculi. These are an extension of traditional
(single-conclusion) Hilbert-style calculi where rules may have non-singleton sets of conclusions
(which are read disjunctively). With multiple-conclusion calculi one gains a considerably greater
expressive power without expanding the signature with metalinguistic symbols as happens with
Gentzen-style systems. For instance, it is known that every finite-valued logic is finitely axiom-
atizable by multiple-conclusion calculi, and desirable proof-theoretical properties (e.g. analiticity,
effective proof search) are more easily established for the latter than for the their single-conclusion
counterparts (see e.g. [23, 24, 34]). We speculate whether the logics we have shown to be non-finitely
based (by means of single-conclusion Hilbert-style calculi) might be axiomatizable by means of a
finite multiple-conclusion calculus (as happens, for instance, with the logic defined by Wroński’s
three-element matrix: see [24, 35]).

A related question is whether logics of distributive lattices with negation that are not given by any
finite set of finite matrices may admit some finite non-deterministic partial matrix semantics (see
[2, 3, 9–11]).

A last research direction worth mentioning is the study of logics defined from classes of
distributive lattices with negation through different choices of the designated elements. As we have
seen earlier, one such choice yields 	-assertional logics associated to subvarieties of DN. In this
respect, we speculate whether the finite axiomatizability result obtained in Section 6 for �	

SDM
might

be extended to other logics (e.g. �	
DN

, �	
O

, �	
Om

n
).
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