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The Genetic Algorithm (GA) and Simulated Annealing (SA), two techniques for global optimization, were ap- 
plied to a reduced (simplified) form of the phase problem (RPP) in compulational c~ystallography. Results were 
compared with those of "enhanced pair flipping" (EPF), a more elaborate problem..specific algorithm incorpo- 
rating local and global searches. Not surprisingly, EPF did better than the GA or SA approaches. but the exis- 
tence of GA and SA techniques more advanced than those used in this study suggest that these techniques still 
hold promise for phase problem applications. The RPP is, funhermore, an excellent test problem for such global 
optimization methods. 

INDEX TERMS: Phase problem, computational crystallography, global optimization. Genetic Algorithm, 
simulated annealing 

1. CRYSTALLOGRAPHIC BACKGROUND 

I .  I .  The Phase Problem 

The central mathematical problem in crystallography, known as the "phase problem," arises 
from attempts to determine the 3-dimensional structure of molecules from the measured 
intensities, IF(h,k,l)12, of scattered x-rays [Ladd and Palmer, 19781. The structure of a mol- 
ecule is the set of spatial coordinates of its constituent atoms. The number of atoms, their 
chemical types, and their bond distances and angles are known; their relative locations are 
not. Structure solution by X-ray crystallography yields a 3-dimensional electron density 
function, f, which at high resolution has gaussian-shaped maxima a1 the atomic locations. 
f is the Fourier Transform of the amplitudes and phases of the scattered X-rays. 

Only amplitudes, IF(h,k,l)l, are measured; the phases, $(h,k,l), are not observable; hence 
the "phase problem." 

Mathematical methods are available which make use of (a) the measured amplitudes and 
(b) known relationships between the amplitudes and the phases (derived from a prior; 
knowledge about the properties off)  to deduce the phases for small molecules, e.g., of up 
to one or two hundred atoms. No such algorithms exist for large molecules (proteins, nu- 
cleic acids) with thousands of atoms. Such structures are solved crystallographically with 
greater difficulty by procedures requiring additional experimental data (multiple isomor- 
phous replacement, anomalous scattering). While small molecules can be solved with high 
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probability in weeks or months of research, the solution of large molecules is highly un- 
certain, and may require years of work. 

1.2. Tl~e "Reclirced" Phase Prohlern 

We now define a "reduced" (simplified) phase problem (RPP) as follows. Atoms are rep- 
resented as delta functions of constant height (i.e., of only one chemical type) located on 
grid points in onedimension. Thus, a structure is simply a binary string, e.g., s = (01 101001 ] 
of known length, n, and with known number of 1's (atoms), m. f(k) is the value of the kth 
bit of the string. - 

The measured amplitudes can be used to generate, by a phaseless Fourier Transform, the 
self-convolution, called the Patterson function, of the string, 

Pfi) is the number of inter-atomic distances of length j; distances are calculated modulo n 
(treating the string as periodic in n), so P(n) = P(0) = m. Each pair of atoms contributes two 
distances to P, one measured in each direction around the loop, that sum to n. The Patterson 
of the above example is [ 12303214). 

The Reduced Phase Problem is the "inverse problem," i.e., the problem of finding a string 
that produces the given Patterson. The Patterson is invariant to rotation andor reflection of - 
the string, so, for example, the strings [abcd),  [bcda], (dcba),  (cbad) are all equivalent. 
With n rotations and n reflected rotations, there can be as many as 2n equivalent (and thus 
correct) strings. An algorithm which always finds one of these strings would constitute a 
solution to the RPP. 

For example, tests of the genetic algorithm utilize a 32-point string having I I atoms. The 
space of 32-point strings contains 2" = 4.3 x lo9 points; an I I-atom subset, C(32,ll) = 1.3 
x IOX distinct points. The 32 rotations of an I I-atom string are distinct, and the reflections 
of these rotations may add up to 32 additional distinct strings, all of which have the same 
Patterson. We are searching, then, for any one of at most 64 equivalent strings in a sub- 
space of 1.3 x loX strings. 

For simple cases, the Patterson may not actually define a unique string, even aside from 
rotntions and reflections, i.e., there may exist non-equivalent strings with identical 
Pattersons; these are called "homometric" solutions and are here regarded as acceptable so- 
lutions. The possibility of such solutions in three dimensions with complex structures and 
real data is dismissed by crystallographers as exceedingly unlikely. 

1.3. A Problem of Global Optirnizotion 

The function to be minimized is the mean square Patterson error, 

where P,, is the "observed" Patterson, derived from measured amplitudes and correspond- 
ing to the "true" f (call it t") and P is the calculated Patterson derived from some proposed 
f. E may equivalently be defined as the mean square difference in x-ray intensities. 
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The "objective error" for any string is 

The phase problem arises because E and E, are only partially correlated, i.e., because de- 
creases in E do not invariably correspond to decreases in E,. This non-colinearity makes 
the phase problem a problem of nonlinear global optimization, to which no general solu- 
tion exists. This fact is sometimes insufficiently stressed in the crystallographic literature, 
which abounds in local solution methods, which occasionally are offered as possible solu- 
tions to the phase problem despite their strictly local optimizing capability. 

The goal of the present study was to find an algorithm which always (or often) yields the 
global optimum, i.e., the string which gives exactly the known Patterson and thus E = 0. In 
real crystallographic applications, an algorithm which reliably obtained a solution near the 
global optimum would be valuable, since local methods (using a yriori knowledge about f 
not exploited by the algorithm) might allow successful refinement of a nearly correct so- 
lution. However, near correctness cannot here be accepted since the Reduced Phase Problem 
is already an extreme idealization of the actual mathematical (and practical) problem. There 
is no way to define, for the RPP, what a "good-enough" solution might be, and no addi- 
tional constraints to exploit. 

The reduced phase problem is of interest for two reasons: (I)  it offers a model system 
for testing phasing methods which might then be applied to macroniolecular crystallogra- 
phy; (2) i t  is a simply defined yet difficult to solve problem on which optimization algo- 
rithms can be evaluated, i.e., it might serve just as well as the traveling salesman problem 
as a "paradigmatic" problem in computational complexity. 

The work described in this paper (and partially reported earlier in [Lovell and Zwick, 
1992)) was done approximately ten years ago-as is evident later in the citation of the hard- 
ware and software used, but it remains relevant today. A general solution of the phase prob- 
lem is not significantly nearer now than it was then, and the RPP is not yet in use as a simple 
test system either for phase problem explorations or global optimization studies. This in- 
vestigation was originally motivated by a desire to find new approaches to the phase prob- 
lem. Although the results obtained did not suggest that the phase problem would be solvable 
by these means, still, as applications of the Genetic Algorithm and oi'Simulated Annealing 
the efforts reported here are only preliminary. Better results may be achievable by more so- 
phisticated GA and SA techniques. At the very least, the phase problem provides a prob- 
lem context in which the properties of the Genetic Algorithm and Simulated Annealing can 
be explored. 

2. THE GENETIC ALGORITHM 

2.1. Basics 

The genetic algorithm (GA) [Holland, 1975; Goldberg, 19891 is a global optimization tech- 
nique which simulates certain features of evolutionary adaptation as described by popula- 
tion genetics. It has been claimed [Holland, 1975; DeJong, 1980; Brindle, 1981; DeJong, 
1975; Bethke, 19801 that the GA offers unusual powers of optimization in many problems 
where little a prIori information about the search space is available, and where traditional 
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methods of optimization are unsuccessful, e.g., due to problems of discontinuity, high di- 
mensionality, or multimodality. 

The CA generates, typically randomly, an initial population (generation) of "individu- 
als," and evaluates each individual for "fitness." An individual here is a point in the domain 
of the function to be optimized, and fitness is the value of the function at that point. The 
CA then derives the next generation first by selecting individuals to serve as "parents" ac- 
cording to their relative fitness, and then by modifying them with one or more "genetic op- 
erators" in the hope that some of the "offspring" will be more fit than the parents. Further 
generations are produced similarly until the process is terminated. 

An individual, I, is represented as string of genes [g ,  . . . g,], each of which assumes one 
value from a set of possible values known as alleles, I a,,a,, . . .,a,]. The alleles are numbers, 
in the present case 0 or I. A fitness function, u(I), is defined over the space of possible in- 
divicluals, with each individual having a number of offspring proportional to u(l). The GA 
forms the next generation by selecting a parent from the previous generation for reproduc- 
tion, and by applying genetic operators, such as mutation andlor recombination (crossover). 

Mutation changes a gene from its current value randomly to any other possible value; 
here, from 0 to I or from I to 0. When recombination is applied to a parent, a "mate" is 
randomly selected, and an inter-gene crossover point, x, is randomly chosen from the n-1 
possible locations. (Actually, a smaller feasible region for crossover is defined which ex- 
cludes any end segments for which both parents have identical alleles.) Genes g, - g, of 
the omspring are copied from the first parent; genes g,,, - g, from the second. For exam- 
ple, if the first parent is represented as I01 0, and the mate as I I0 I, choosing crossover point 
x = 2 yields offspring 1001. Mutation and recombination rates in the ranges 1120n - Iln 
(mut;~tion) and .60 - .80 (recombination) have been found to be fairly effective [Holland, 
1975; Brindle, 1981; DeJong, 19751. 

If each offspring were an exact copy of its parent, eventually the population would con- 
sist entirely of copies of the most fit individual from the first generation. The function of 
the recon~bination operator is to introduce into the population combinations of the geno- 
types of two individuals which may be more fit than either parent genotype. As crossover 
rearranges existing alleles but never creates new gene values, it is dependent upon the ex- 
istence of variety in the set of alleles in the current population. The function of mutation is 
to maintain this variety, and ensure that each allele is available to the algorithm. If the re- 
productive advantage accorded the fitter individuals is too high, then variety is lost too 
quickly; if it is too low, then information gained from previous generations, embodied in 
the distribution of the current generation, is underutilized. If the mutation rate is too low, 
potentially adaptive alleles will be missing from the gene pool; if the mutation rate is too 
high, again information previously gathered about the search space is underutilized, and 
the optimization can become merely a random search. 

2.2. Al~pliccition to tlre Reduced Pl~use Problem 

The GA program used for these studies was obtained in 1983 from Kenneth De Jong of the 
A.I. Laboratory of the Naval Research Laboratory. (Obviously, this was a very "primitive" 
version of a GA program, compared to GA software available today.) The program is about 
750 lines of Pascal code, and was run under the Berkeley UNIX operating system (version 
4.1) on a VAX 1 1-780. 
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We worked with 32-point strings with 4 to 17 atoms, but mainly with an I I-atom string. 
Difficulty of solution increases with the number or atoms up to maximum difficulty at half- 
occupancy. We arbitrarily selected an I I-atom "true" string as our target to exemplify a 
moderately difficult problem. 

Fitness was defined as -E as given by Eqn-(3). Each run began with a random formation 
of 100 strings. The individuals in this initial generation were evaluated; expected offspring 
numbers were assigned to each individual based on relative fitness. Parents were randomly 
selected one at a time and subjected probabilistically to the genetic operators. When 100 
offspring had been created, each was labeled with its fitness value. If the best member of 
the first generation was more fit than any member of the second, il was added to the sec- 
ond generation as the 101" member. The first generation was then replaced by the second. 

As some of the parents selected for reproduction may not have been changed by the ge- 
netic operators, the number of new genotypes represented in the second generation depends 
on the mutation rate (M) and recombination rate (R). The probability of an offspring being 
identical to its parent = (1 - R)*(l - M)"; the expected number of new genotypes per gen- 
eration = 100*(1 - ( I  - R)*(l - M)"), or 81 when M = ,001, R = .SO. 

As the GA program runs, it reports the best fitness value yet attained, the number of gen- 
erations formed, the number of individuals evaluated, and a convergence measure. A four-part 
convergence measure gives the number of genes at which 80,85,90, and 95% of the individ- 
uals in the current generation have the same allele. If, for example, 95% of the individuals 
contain identical alleles at 30 of 32 gene locations, then the populatitrn has converged to the 
extent that further recombination of such similar individuals is unlikely to be of benefit. 

To minimize premature convergence, an optional procedure, "radiation," was added to the 
algorithm to inject variability into the population when convergence exceeded a threshold. 
This was accomplished by changing the rate of mutation to .3 (or .2) for one generation when- 
ever the number of genes (gridpoints) on which there was 90% agreement within a popula- 
tion exceeded some threshold fraction, typically .50 or .75. This high rate of mutation gave 
each parent a probability of I -(I - .3)12 = ,999989 of alteration during reproduction. As most 
of the parents resemble the fittest individual, this amounted to selecting 100 new individuals 
randomly from the region near the current fittest individual. (As noted earlier, this individual 
is always retained in the population unless one of the new individuals is fitter.) 

Two other refinements, procedures "align" and "optimized cutpoint", modified the re- 
combination mechanism. Since the Patterson is indifferent to rotation andlor reflection of 
the string, some good crossovers may be missed due to the parent strings being non-opti- 
mally rotated or reflected relative to each other. (A similar diffficulty arising from circu- 
larity in problem representation was encountered in a different context by Belew [1989].) 
Procedure "align" enabled the second parent to be aligned for maximum agreement with 
the first before the crossover point was selected. Another problem arose from the fact that 
crossover may not preserve the number of atoms even when both parents have the same 
number. Procedure "optimized cutpoint" reduced the occurrence of such errors. 

3. SIMULATED ANNEALING 

Simulated Annealing (SA) [Metropolis, Rosenbluth, Teller, and Teller, 1953; Kirkpatrick, 
Gelatt, and Vecchi, 19831 is another global optimization method which has been widely 
used in a variety of problem areas. A closely related method, "Molecular Dynamics" 
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10runger. 19891 has been applied to crystallographic problems, and SA has also been ap- 
plied directly to the refinement of phases [Sheldrick, 19891. SA basically modifies steep- 
est descent by accepting steps which produce higher error, according to a Boltzmann-like 
probability function, which depends upon a pseudo-temperature defined for the problem. 
This temperature is set initially at high values and is then lowered according to some an- 
nealing schedule. At high temperatures, most steps are accepted and the procedure roams 
the state space of the problem; as the temperature is lowered, steps which reduce the error 
are increasingly favored. 

In the present study, the procedure used was the following: A change in the solution 
string, from f to f ,  produces some change in the error function, from E to E'. Change is ac- 
cepted with a probability, 

where T is the temperature. At high T, whether E' - E is positive or negative, the second 
term in the denominator approaches I, and p + 0.5; thus at high temperatures, accepting 
or rejecting a change is equally probable. At low T, if E' > E, the 2nd term in the denomi- 
nator is large, and p -t 0; if E' < E, the 2nd term is small and p + 1. Thus at low temper- 
ature. steps which increase Patterson error are always rejected, while steps which decrease 
this error are always accepted. 

All steps evaluated involved the movement of an atom to some previously unoccupied 
grid point, that is, the procedure preserves the correct number of atoms. 

The temperature, T, was progressively lowered each step by some cooling rate, C: 

In this study, cooling rates were extremely slow, from ,99992 to ,999. Runs were termi- 
nated either at success or at a cutoff temperature. 

4. PROBLEM-SPECIFIC APPROACHES 

4.1. Simple Pair Flipping 

To assess the effectiveness of the genetic algorithm on the phase problem, we compared its 
results with those of a problem-specific approach, which implemented a discrete version 
ofa  descent procedure, modified to constrain the number of atoms to the correct value. The 
algorithm starts with a random string with the correct number of atoms. It then evaluate 
strings generated by all possible "pair-flips," i.e., changing, at different sites, a 1 to a 0 and 
a 0 to a I .  (With l l atoms and 21 spaces, this amounts to 231 evaluations, or about 2 112 
typical genetic algorithm generations.) The first string with a smaller Patterson error is 
adopted; if no such string is encountered, a new random (re)starting point is chosen. The 
pair-flipping program was approximately 115 the length of the GA program. 

Note that while the constraint of the known number of atoms'is incorporated into pair 
flipping, and is also a feature of the SA approach, this constraint is not built into the 
GA representation, although the GA addresses the constraint in the optimized cut-point 
procedure. 
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4.2. Enhonced Pair Flipping 

An improved problem-specific approach was also explored which enhanced simple pair 
flipping by three means: 

( I )  it tried double pair flips after single pair flips have brought about convergence to a 
local minimum, i.e., it changed two 0's to 1's and two 1's to 0's in an attempt to re- 
duce E; 

(2) it allowed the refinement procedure to continue beyond convergence, i.e., to accept 
uphill steps (this generates the possibility of limit cycles and thus necessitates the 
specification of some maximum number of iterations); and 

(3) it employed multiple random starting points. 

These features were explicit attempts to get around the local minimum problem. Using 
double pair flips allowed partial exploration of portions of state space immediately beyond 
the error "barrier" which defined the current local minimum. The acceptance of uphill steps 
is an explicit incorporation of an SA-like modification of steepest descent. The use of mul- 
tiple starting points is a standard approach to the local minimum problem. 

When single pair flips are considered, all possibilities are examined and the best was se- 
lected (this can be done in O(n log,n) as opposed to 0(n2) calculations). This is not possi- 
ble for double pair flips, which instead were generated and prioritized from a limited list 
of the best single pair flips. 

5. RESULTS WITH THE GENETIC ALGORITHM 

Ten models were run, for n = 32, each with eight different random starting populations 
(Table 1). The target was an I I-atom string, { 10001 101 1001 1000 10000100 00100010). 
Because the number of new individuals evaluated in each generation is a function of the 
mutation and recombination rates, and thus varies considerably, the number of function 
evaluations, rather than the number of generations, was used to quantify the run time of the 
algorithm. For the eight starting populations, the minimum, maximum, and median num- 
ber of individuals evaluated before a zero E was found are listed in Table I. The best of the 

Table I GA Runs, I I atoms on 32 grid points; (M = mutation rate; R = recombination rate; ali= align; opt= 
optimized cutpoint: rad= radiation mutation rate; thr= threshold for rad.; tun times given in 1000s of function 

evaluetions; * means tun terminated wlo success) 

Model Parameters Run Times 
Model M R ali Opt rad thr min max median 

1 ,010 .90 Y .30 .50 5.9 134.0* 34.0 
2 ,010 .80 4.8 128.0' 32.1 
3 .O 10 .SO Y 2.7 128.0' 35.6 
4 ,001 .SO Y 3.6 124.0' 102.6 
5 ,001 .SO Y .30 .75 3.6 124.0' 40.5 
6 ,010 .OO Y 5.3 64.1 30.2 
7 .OO 1 .SO Y 4.5 62.3 34.5 
8 ,010 .OO Y .20 .75 5.6 136.0' 66.7 
9 .020 .OO 2.6 133.5* 23.6 

10 . .005 .80 Y 5.5 126.1' 28.3 



nlodels (9) required 23.55 1 function evaluations, taking approxinlately 24 minutes of VAX 
1 1-780 cpu time. 

Table I shows that the performances of the various GA models are fairly similar. Most 
striking is the generally good performance of models without crossover (6.8 & 9), espe- 
cially in light of Holland's assertion [I9751 that crossover is one of the GA's most power- 
ful tools and that mutation plays a relatively minor role. Crossover is advantageous when 
there are genes or sets of genes whose contribution to fitness is more or less independent 
of other genes. The fact that crossover does not help in the RPP suggests that there may not 
be any such independently valuable alleles. 

Perhaps this is so. Each individual is evaluated by the agreement of its Patterson with the 
observed Patterson at all points. Each point in the Patterson depends for its value on all 
points of the string, so it is hard to see how an alleleor a small groupof alleles (a"schemata") 
can have a significant degree of intrinsic fitness. This issue needs to be explored theoreti- 
cally. 

If thc crossover mechanism is ineffective, the GA performs a directed random search 
using litness-weighted reproduction and mutation. The space near the fitter individuals is 
mndomly sampled through mutation; when a new fittest individual is discovered, it comes 
eventually to be a primary locus of search activity. 

There is an alternative explanation for the failure of recombination to enhance perfor- 
mance. Pcrhaps effective recombination requires both that strings be aligned optimally and 
the constraint of the number of atoms be obeyed. I t  was an oversight of this study that pro- 
cedures "align" and "optimized cut-point" were not simultaneously tested in any model; 
this will be done in future work. 

In tests of 64-point strings, the GA performed poorly. 

6. RESULTS WITH SIMULATED ANNEALING 

Rcsults with Simulated Annealing are summarized in Table-2. For 32 grid points and 16 
atoms, a near 100% solutlon rate can be attained if very slow cooling rates are used. Small 
differences in the cooling rate have a dramatic effect on solution success. For 64 grid points 
and 16 atoms, success is very significantly reduced, and with 32 atoms, success is essen- 
tially minimal. This supports the assertion made earlier that half-occupancy maximizes 
problem difficulty for any n value. 

A small anomaly can be noted in the table for n = 32: while % solution increases nearly 
 non no tonically as the cooling rate is lowered, the transition from C = ,9998 to ,9999 reduces 
success rate from 99% to 94%. The reason for this is that the ,9999 run utilized a some- 
what higher cutoff temperature than the value for all other runs. This is a second illustra- 
tion of the sensitivity of SA performance to SA parameters. 

The eleven n = 32 runs took a total of six hours of CPU time on an IBM-438 1. The 
seven (n,m) = (64,16) and the seven (n,m) = (64.32) runs together took a total CPU time 
of about six days. Clearly, on this machine, without a more powerful algorithm, the (64,32) 
case represents about the limiting size of problem which can be addressed. With current 
machines, clearly larger sizes can be tackled, but the computational difficulty of this prob- 
lem is most likely exponential in character, so enormous gains in soluble problem sizes 
are unlikely. 
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Table 2 Simulated Annealing Runs. c =cooling 
rate: n = number of grid points; m = number of 

atoms. 90 solution is listed for 100 cases at 
different cooling rates for 3 different (n,m) 

combinations. 

90 solution 
n: 32 64 64 

7. RESULTS WITH PROBLEM-SPECIFIC APPROACHES 

Runs using the pair flipping algorithm on the same VAX 11-780 used for the GA calcula- 
tions exhibited a median time to solution of about 60 seconds. This: is notably superior to 
the best of the GA runs (model 9) which had a median time to solution of 23.6 minutes. 

Hoivever, in tests of 64-point strings, simple pair flipping, like  he GA, was generally 
unsuccessful. 

In contrast, enhanced pair flipping (EPF) showed improved performance, as summarized 
in Table 3. These runs were done roughly in parallel with the Simulated Annealing study, 
and should thus be compared with Table 2. 

It is apparent that EPF achieved results superior to those obtained in the Simulated 
Annealing study. This is evident in both the % solution figures and in the longer times re- 
quired for SA runs. However, in fairness to the SA efforts, it must be pointed out that the 
use of double pair flips adds power to the problem specific approach which is not available 
in the simple pair flipping used by SA. Cycling beyond convergence also represented a di- 
rect borrowing, by this problem-specific package, of an essential feature and advantage of 
Simulated Annealing. Also, it must be acknowledged that the magni~udes of the two efforts 
were not comparable: the SA calculations were done over several summer months with a 
small program, while the enhanced pair flipping approach was embedded in a much larger 
program system developed over a number of years. Finally it should be noted that enhanced 
pair flipping was notably superior also to an RPP implementation of "density modifica- 
tion,"a widely used phase refinement method in macromolecular crystallography [Podjarny, 
Bhat, and Zwick, 19871. 
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l'uhle 3 Enhanced Pair Flipping Runs. n = number of grid points: m = number of atoms; nc = maximum 
~ iu~ l ihe r  of cyc!cs: ns = nurliber of random starling points. % Soln = number of correct solutions out of 

100 cases: Time = CPU time on a Could-9006 (minutes or hours). 

Run  Parameters 
run # 11 m nc ns % soln Time 

I 32 16 8 I 52 4.0 m 
2 32 16 32 I 80 11.1 m 
3 32 16 32 5 97 22.4 m 
4 64 16 64 I 25 3.3 h 
5 64 16 64 6 52 15.6 h 
6 64 32 64 6 20 20.8 h 

8. DISCUSSION 

Comparing the GA and simple pair flipping on n = 32 cases reveal the superiority of 
the latter. This illustrates the fact that where information about the search space can be 
directly used in problem-specific techniques, such techniques can surpass the GA's per- 
formance. The pair-flipping algorithm (and the SA approach which also utilized it), 
but not the GA, intrinsically guarantees that all strings have the correct number of 
:ltot1lS. 

Both the Genetic Algorithm and simple pair flipping performed poorly on n = 64 
cases. Simulated annealing and enhanced pair flipping did better, but the computational 
requirements for success in such runs already indicate that the limit of these techniques 
is being approached for machines of the class used. The real crystallographic search 
space dwarfs this I -dimensional 64-point space, and commonly requires 3-dimensional 
arrays with at least 2" points and usually more. Indeed one can reasonably wonder 
whether any algorithm exists which can solve the RPP for large n, and the problem may 
be NP-complete. 

The effectiveness of enhanced pair flipping suggests that in this type of problem, both 
local and global optimization capability is required. Global optimization capability is ob- 
viously needed because the error function is not unimodal, and all structure refinement 
methods will converge to some local minimum. Good local optimizing capability is also 
required, since in the RPP, as here defined, an optimization procedure must actually reach 
the global minimum of E = 0, not merely come close to it. 

Pair flipping achieves a stronger local minimization when extended by consideration of 
double flips, and continuing beyond convergence and multiple starting points adds global 
capability. The Genetic Algorithm might have performed better if it was supplemented with 
a local minimization capability (in effect implementing non-Darwinian evolution): why, 
after all, should strings not be at least locally optimal before they are recombined?The de- 
sirability of suppletnenting the GA with a local minimization procedure has also been ar- 
gued by Belew et (11. [I 9891, who used neural nets for this purpose. Similarly, the Simulated 
Annealing approach might have been enhanced with a stronger local capability, e.g., by 
consideration of double flips. 



GLOBAL OPTIMIZATION 57 

Other modifications of the Genetic Algorithm might improve its performance. 
Perhaps most simply, mutations could be defined as pair flips rather than single I to 0 
or 0 to 1 changes. As noted earlier, procedures "optimized cut point" and "align" should 
be simultaneously applied. Other genetic operations might be introduced and other 
modes of selection utilized. Different representations o f f  might be used in place of the 
simple binary string. For example, the array of distances from one atom to the next 
could be taken as the state variables. Or, the RPP could be defined as a permutation 
problem, where one starts with a string with the correct number of atoms all, say, at the 
left-most bit positions, and then permutes 0 and I locations. The use of Walsh functions 
to define f offers yet another representation approach. An optimal representation would 
intrinsically reduce the search space to single members of each rotationlinversion equiv- 
alence class which satisfy the known constraint (number of atoms), yet preserve the 
syntactic validity of the results of all genetic operations. Altogether aside from its pos- 
sible value for crystallography, a study investigating the relative merits of these differ- 
ent representations would no doubt shed interesting light on the Genetic Algorithm 
itself. 

The use of coevolution to facilitate optimization might be attempted by using a weighted 
form of fitness function, 

While the string population would evolve to maximize fitness, the population of weighting 
vectors would evolve to minimize string fitness. Hillis [I9911 has found that such coevo- 
lution of solutions and problems can enhance optimization performance. Weighting the fit- 
ness function so that near-neighbor interactions were more imporlant than far-neighbor 
interactions might make the problem, in the words of Simon [1962]. at least "partially de- 
composable," and the "schema theorem" of Holland 119751 more applicable. As it stands 
now, the RPP is a totally non-decomposable problem, so that perhaps it is not surprising 
that crossover is so ineffective. Indeed, decomposability could be "cuned," and its impact 
of the efficacy of the GA systematically studied. 

There are also a variety of means (other than the "radiation" procedure reported here) 
by which premature convergence might be prevented; e.g., one could segregate the string 
population into subpopulations with limited intergroup breeding. One might even attempt, 
e.g., via the Genetic Programming approach of Koza 119911, to evolve not string solutions 
to a particular Patterson function, but RPP-solvjng algorithms which would then be gen- 
erally applicable. 

Similarly, there are no doubt numerous ways by which more powetiul forms of Simulated 
Annealing might be applied to the RPP. AT the least, the SA procedure could itself utilize 
also double pair flips. It is known that the efficacy of SA depends sensitively on the pre- 
cise annealing schedule, particularly in the neighborhood of "phase transitions," and meth- 
ods exist to identify the critical temperature [Basu and Frazer, 19901. 

The relative merits of GA and SA optimization is under active Investigation and de- 
bate. Ingber and Rosen [I9921 have claimed that "very fast simulated reannealing" 
(VFSR) is orders of magnitude more efficient than the GA. Also, i t  has been argued that 
hybrid GA-SA methods might be more efficient than either method alone [Judson, e ta / . ,  
19911. 
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The Reduced Phase Problem is a hard, yet conceptually simple problem, ideal for ex- 
ploring the capabilities and limitations of GA and SA global optimization techniques. 
Perhaps it should be added to the ensemble of "standard" problems on which these and sim- 
ilar methods are routinely tested. If new insights into the phase problem are gained or im- 
proved solution algorithms are found, these could lead to important contributions to 
niacromolecular crystallography. If new insights are achieved into particular global opti- 
mization methods, these methods might perhaps be further improved and their domain of 
applicability might be better understood. 
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