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Abstract 
I argue that the human mind includes an innate domain-specific system for representing precise small numerical 
quantities. This theory contrasts with object-tracking theories and with domain-general theories that only make use 
of mental models. I argue that there is a good amount of evidence for innate representations of small numerical 
quantities and that such a domain-specific system has explanatory advantages when infants’ poor working memory 
is taken into account. I also show that the mental models approach requires previously unnoticed domain-specific 
structure and consequently that there is no domain-general alternative to an innate domain-specific small number 
system. 
 

 

1. Introduction 

Researchers who study numerical cognition commonly hold that there are two representational 

systems that are critical to the origins of numerical concepts—one that is approximate and 

capable of representing large numerical quantities and one that is precise and limited to small 

numbers of entities (e.g., Spelke 2003; Carey 2009; vanMarle et al. 2016). Moreover, it is often 

claimed that the second of these isn’t fundamentally a system for representing number, despite 

the fact that it is often referred to as a “small number system”. While it operates on small 

numbers of entities (up to three or four) and is incapable of dealing with larger numbers, it is 

generally thought to start out as a domain-general system or a least as a system that doesn’t 

require any innate structure that is specific to the domain of number. 

 In this paper, I argue that the small number system should be understood, instead, to have 

innate domain-specific structure. I begin by showing that we need to postulate a richer system of 

representation than one that is confined to object tracking. I then go on to argue that the proposal 

of an innate system for representing a few small numerical quantities stands up well against the 

proposal that the small number system is fundamentally a general-purpose capacity for working 
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with mental models. I also argue that the mental models proposal ends up requiring an innate 

capacity for performing assessments of one-to-one correspondence. As a result, we are left with 

two broadly nativist options—one that relies on an innate system for representing small 

numerical quantities and one that relies on an innate system for comparing small numbers of 

items for numerical equivalence. 

 

2. The Subitizing Module and Some Initial Objections to Its Innate Representations 

Let’s begin with an unabashedly nativist approach to the small number system. This is the 

proposal that there is an innate domain-specific system for representing a few precise numerical 

quantities—for representing precisely one, two, and three (cf. Hurford 1987; Margolis and 

Laurence 2008; Barner 2017). If you were to see a pair of shoes on the floor, it would register the 

twoness of the shoes. Or if you were to hear the tap-tap-tap of someone knocking on the door, it 

would register the threeness of the knocks. By hypothesis, this domain-specific system represents 

numerical quantity as such and is restricted to the small number range. I will refer to this system 

as the subitizing module (or SuM), since the term subitizing evokes a process for representing 

numerical quantity that is distinctive to the small-number range and that doesn’t involve 

counting. In paradigmatic cases of subitizing, it’s as if you can directly perceive certain 

numerical quantities but only in the small number range. 

 In what way does SuM represent its numerical quantities? My proposal, following Margolis 

and Laurence (2008), is that it includes a small stock of discrete representations that are causally 

responsive to particular numerical quantities and that have the function of responding to these 

quantities. Although there are a number of ways this could be implemented, the most 

straightforward is by means of a neural network that takes input from systems that individuate 

entities in different modalities and whose output nodes are selectively responsive to particular 

numerical quantities. To bring this about, the connections mediating the spread of activation 

would have to be weighted in such a way that the activation of any single input node suffices to 

activate the “one” output node, the activation of any two input nodes suffices to activate the 

“two” output node, etc., where each output node’s activation also inhibits the activation of the 

other output nodes. Under this arrangement, n individuated entities would cause the activation of 

a unique symbol corresponding to that precise quantity. 
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 More structure could be built into SuM, but this is the minimal amount that I will consider 

essential to its representation of one, two, and three. Notice that on this minimal account, the 

symbols for small numerical quantities needn’t be inherently ordered, and there needn’t be a 

procedure that ensures that three is represented as more than two, or two as more than one 

(unlike conventional counting terms). Yet this minimal structure is enough to put children in a 

position to learn about some of the basic relations between differing small numerical quantities. 

They could do this by using SuM in the context of observing addition and subtraction events, or 

by creating these changes themselves and attending to the numerical effects that SuM allows 

them to represent. For example, attending to two toys would generate the representation for two, 

and seeing one of these removed would generate the representation for one both for the quantity 

removed and for the quantity that remains. Observing changes like this might allow children to 

infer that the difference between one and two is itself one and hence that two is the larger 

numerical quantity. Another possibility, of course, is that SuM builds in some of this structure 

from the start. The present point is simply that the defining feature of SuM is its small stock of 

discrete symbols that represent numerical quantity as such. 

 Despite the fact that many researchers hold that there is some kind of representational system 

that is responsive to small numbers of items, few accept that it takes the form of SuM—that it is 

a domain-specific system for representing particular numerical quantities. Why is that? One of 

the main reasons is that a system like SuM is thought to be too speculative. According to this 

objection, it is one thing to suppose that there is an innate system like SuM in order to explain 

how children come to be in a position to acquire concepts for precise numerical concepts, but it 

is another matter entirely whether there is empirical evidence for SuM’s innate numerical 

representations. If there aren’t any data to suggest that infants can represent one, two, and three, 

there is no concrete reason to believe that they actually do. 

 Resistance to innate representations for small numerical quantities has also grown in recent 

years in response to what many researchers see as a problem that was endemic to earlier work in 

developmental psychology, namely, the failure to fully take into account the nonnumerical 

properties that correlate with number. Discrete number correlates with a variety of continuous 

properties. A group of three plums differs in number from a group of two plums, but also takes 

up more space, has more total surface area, and so on. While early research on infants’ numerical 
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abilities did take steps to ensure that infants weren’t merely responding to differences in these 

sorts of continuous properties, there have been questions about whether these measures went far 

enough. One landmark study that has fueled these doubts focused on the contour length of small 

numbers of geometrical figures (i.e., the sum of their perimeters) (Clearfield and Mix 1999). 

Infants were first shown different arrangements of either two or three same-size squares until 

they habituated to the stimuli. Notice that because the squares were all the same size, number 

was deliberately confounded with contour, as the three squares were guaranteed to have more 

contour than the two squares. The infants were then shown alternating instances of two and three 

squares where the stimuli with the number they had seen before had a new amount of contour, 

while the stimuli with the new number had the old amount of contour. The key finding was that 

the infants dishabituated to the change in contour but not to the change in number, suggesting 

that perhaps infants who had seemed to respond to numerical quantity in previous work were 

merely responding to continuous properties of the stimuli. 

 Finally, if we turn to language learning, there is a pattern of development that may appear to 

conflict with the proposal that there are innate representations for precise small numerical 

quantities. This is that learning the meanings of the first few natural language counting terms 

isn’t easy for children and that children reliably learn them in order. One might have thought if 

children have innate representations for one, two, and three, then learning the words that pick out 

these quantities would be relatively easy and that there would be no intrinsic constraints on the 

order in which they can be learned. It would just be a matter of mapping three word forms to 

three independent and readily available representations. On the other hand, if representations for 

one, two, and three have to be constructed in the course of language learning, it would make 

sense that learning these words is challenging and that they are acquired in order, since the 

construction of these representations would involve increasing complexity as the numerical 

quantities get larger. 

 

3. Object Tracking 

In this section, I want to look at the first of two alternatives to the SuM theory’s account of the 

small number system. According to this first theory, infants may have a system of representation 

that is confined to small numbers of items, but this isn’t a system for representing numerical 
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quantity. It’s simply a mechanism of attention that the visual system uses to track small numbers 

of objects (Leslie et al. 1998, Scholl and Leslie 1999). 

 Object-based approaches to visual attention differ from approaches in which attention is 

taken to function like a spotlight that directs limited processing resources to a focal region in the 

visual field. On an object-based model, what happens instead is that attention attaches to 

individual objects and temporarily sticks to each object regardless of whether it moves. On 

Leslie et al.’s model, this is implemented by the object-indexing system, which incorporates up 

to four symbols—i.e., four indexes—that act like pointers in that each picks out the object it is 

responsible for without necessarily relying on a representation of its features (color, texture, 

etc.). Rather, these indexes track their objects in the first instance on the basis of their spatial-

temporal properties and can do so even when an object is briefly occluded. 

 Scholl and Leslie note that there is large body of evidence showing that object-based 

attention is an important aspect of mid-level visual processing in adults. For example, in the 

motion-object tracking task, subjects view a computer-generated image of a number of identical 

looking objects, a subset of them are briefly highlighted, and then all of the objects begin to 

move in quasi-random directions (Pylyshyn and Storm 1988). After a while they stop, and 

subjects have to say which are the ones that had been highlighted. This may sound like it is 

difficult to do. After all, the target objects look exactly the same as the distractors (e.g., they 

might all be black squares), and each moves independently of the others along its own erratic 

path. But people are fairly good at identifying the target items so long as they are not asked to 

keep track of more than about four. The object-indexing model can explain these and related 

results on the assumption that it has just a small number of indexes at its disposal and they 

operate in parallel, tracking their objects without having to identify them by their features. 

 For present purposes, what matters is how the object-indexing system promises to explain 

infants’ apparent numerical abilities. The focus of Scholl and Leslie’s model is Wynn’s 

influential claim that infants can do simple arithmetic as it relates to events with small numbers 

of seen objects (Wynn 1992). This research employed a violation of expectation procedure in 

which five-month-olds were shown addition and subtraction events with correct or incorrect 

outcomes. Looking longer at an incorrect outcome is a sign that infants find it to be unexpected 

and, for Wynn, that they appreciate the numerical significance of the events they are witnessing. 
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In one experiment, some infants saw a single doll placed on an empty stage, which was then 

hidden behind a screen, followed by a hand placing a second doll behind the screen—that is, a 

1+1 event. Other infants saw a similar 2-1 event. Then, in the test condition, the screen was 

removed to reveal either one or two dolls. The result was that infants looked longer at one doll 

for the 1+1 event and at two dolls for the 2-1 event, suggesting that they found these incorrect 

outcomes to be unexpected. 

 But does this mean that infants really appreciate that 1+1=2? According to Scholl and Leslie, 

the infants’ looking-time can be explained without postulating any numerical representation per 

se. They propose instead that it results from the effect that these events have on the assignment 

and maintenance of the indexes that track the dolls (1999, 34). Take the 1+1 event. In this case, 

one index is initially activated to track the doll that is visible on the stage. After the screen comes 

up, this first index maintains a link with the now hidden object and a second index is activated to 

accommodate the second doll that is placed behind the screen. As a result, by the time the screen 

is removed and just a single object is revealed, there is an extra index that has lost track of its 

object, and this causes an increase in attention to search for the missing object. In contrast, when 

the screen is removed and two objects are revealed, no extra attention is needed. In short, the 

1+1=1 event leads to longer looking not because infants appreciate the relevant arithmetic facts; 

infants look longer at the incorrect outcome because of the demands that are placed on attention 

given the way the object-indexing system works. 

 Many theorists who talk about the existence and significance of a small-number system seem 

to have something like this deflationary model in mind. To mention just one recent example, in a 

paper with the subtitle “Contributions of the Object-Tracking and Approximate Number 

systems”, vanMarle and colleagues point to the object-indexing system as the main alternative to 

the approximate number system in theories that aim to explain how children learn the meanings 

of natural language counting terms: 

 

More recent work … suggests an alternative account in which the verbal labels 

are mapped onto episodic object representations in another core mechanism—the 

object tracking system (OTS). This system consists of a set of indexes that ‘point’ 
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to objects in the world, keeping track of them as they move through space … 

(vanMarle et al. 2016, 1-2) 

 

As vanMarle et al. see things, the main lesson regarding the limits of the approximate number 

system and the object-indexing system is that neither on its own can explain how children learn 

the significance of counting. Instead, these systems must work together, where the object-

indexing system’s unique contribution is to produce “exact representations, but only for small 

numbers of individuals and without cardinal value” (vanMarle et al. 2016, 2). Unfortunately, it 

has never been clear how the object-indexing system’s representations can combine with the 

representations of the approximate number system to produce the precise numerical 

representations needed to interpret the counting terms (Laurence and Margolis 2005). But even 

putting this puzzling theoretical matter to the side, the object-indexing system falls short in that it 

cannot accommodate the full range of findings associated with the representation of small 

numbers of items. This is because some of these include sensory conditions where visual cues 

are absent or impoverished, or where object tracking isn’t viable or not even relevant to the 

situation at hand. 

 Consider a study that resembles Wynn’s but where infants were given addition events that 

require the interpretation of intermodal cues (Kobayashi et al. 2004). Five-month-olds were 

presented with computer-generated events in which, when an object dropped from the top of the 

display, a tone was heard exactly at the point at which it hit the bottom. The general impression 

of these events is that the tone occurs as a result of the object impacting the ground. Initially the 

infants were familiarized with the sorts of events they would be tested on. They saw a screen 

conceal the bottom half of the display, and either two objects or three objects fell one at a time, 

so that they became hidden behind the screen, with a tone always occurring at the hidden point of 

impact. After the sequence was finished, the screen dropped to reveal the expected number of 

objects, either two or three. Next came the test trials. At the start of the test trials, rather than 

dropping from the top of the display, a single object moved horizontally along the bottom until it 

arrived at the center. Then a tall screen came up, obstructing the infants’ view of the object as 

well as the entire center of the monitor along the vertical axis, and either one or two tones were 

heard. Finally, the screen came down to reveal the correct number of objects (1+1=2) or an 



 8 

incorrect number (1+1+1=2). The crucial finding was that the infants looked significantly longer 

at the incorrect outcome, suggesting they found it to be unexpected. 

 Notice that this looking-time pattern cannot be explained by the different amounts of 

attention that are required by object-indexing. In both the 1+1 and the 1+1+1 events, only one 

item was in a position to trigger a visual index (1 seen object + n tones). Given the experimental 

setup, infants had to deduce that a tone indicates that an object behind the screen dropped to the 

ground; they couldn’t actually see the object. It’s also unlikely that the looking-time pattern can 

be explained either in terms of infants’ response to a nonnumerical continuous property or their 

reliance on the approximate number system’s representation of the events. The multimodal 

experimental design excluded any possibility of successfully responding solely to a continuous 

property like the seen amount of surface area that was placed behind the screen—again, this was 

identical across the two conditions. And while the approximate number system is functional in 

five-month-olds, it doesn’t have the required discriminative capacity to succeed on this task until 

infants are significantly older than five months of age. It isn’t until infants are nine months old 

that it has matured enough to distinguish between numerical quantities in a 2:3 ratio (Xu and 

Spelke 2000; Xu et al. 2005).  

 Work with animals also suggests that object-indexing offers an inadequate account of the 

small number system. Consider a study in which honeybees were successfully trained to select 

between two numbers of geometrical figures in a delayed match-to-sample task (Gross et al. 

2009). Upon entering the training apparatus, a bee would see the sample stimulus with two or 

three elements and have to fly a meter down a tunnel before encountering two further stimuli—

one with two elements, one with three—each of which marked a different exit but where only the 

numerical match was rewarded. Later, in the test trials, the bees were able to generalize 

correctly, selecting the numerical match for novel stimuli using patterns that carefully controlled 

for nonnumerical continuous properties. The bees were even able to select the matching number 

in the face of misdirecting cues, such as a sample that included a color that only appeared in the 

numerical mismatch. What they couldn’t do was generalize correctly outside of the small-

number range—they failed on 4v6, 4v5, and 5v6. To appreciate why object-indexing can’t 

explain these results, it helps to picture things from the bees’ perspective. They fly past the 

sample (e.g., two yellow stars) only to encounter two further stimuli in the choice chamber (e.g., 
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one composed of two blue dots and the other of three). The yellow stars are a full meter in front 

of the blue dots—equivalent to dozens of bee body-lengths—and all of the stimuli are completely 

static. Hence there are absolutely no cues that the elements composing the stimuli in the choice 

chamber are one and the same as those previously encountered. All the bees have to go on are 

the numerical properties of the stimuli, for example, the fact that the correct match is numerically 

equivalent to the sample. 

 In sum, object-indexing can’t be the whole story about the representation of small numbers 

of items. It may provide some of the crucial input to the small number system since it can 

individuate the entities that the small number system responds to, at least when these are 

confined to vision. But the representation of small numbers of items isn’t unique to vision. And 

even within vision, there are responses that are limited to small numbers of items where object 

tracking isn’t called for and that don’t turn on the continuous properties of the stimuli. 

 

4. Mental Models 

We have seen that the object-indexing account of the small number system won’t do. But there is 

another alternative to SuM that isn’t restricted to visual representation or to attentional 

mechanisms for tracking objects. According to this alternative, the small number system is 

fundamentally a domain-general capacity to construct and manipulate mental models. 

 The core idea of this approach is that infants respond to perceived small numbers of objects 

with a mental model that is composed of distinct symbols—one per item—and that this can be 

held in working memory for a brief amount of time and can support a variety of inferences about 

the represented group. One particularly important use of a mental model is to interpret 

quantitative changes as an event unfolds, including changes in numerical quantity. This can be 

done by comparing the model held in working memory to what is perceived at a later time and 

checking for whether these correspond one-to-one. Simon (1997) has proposed an account along 

these lines to explain Wynn’s addition and subtraction results. According to Simon, the reason 

infants look longer at the incorrect arithmetic outcome (e.g., 1+1=1) isn’t because they have 

arithmetic abilities, and it isn’t because extra attention is needed to deal with an index that has 

lost contact with its object. Rather, they look longer because they recognize that the model in 

working memory contains an element for which there is no corresponding doll. There is a 
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mismatch between the model and the aspect of the world it is directed towards when the two are 

compared for one-to-one correspondence.  

 Le Corre and Carey offer a similar account (Le Corre and Carey 2007; Carey 2009). They 

refer to their proposed system as a system for parallel individuation to emphasize that it isn’t 

inherently a visual system (although it often operates on visual input) and to emphasize that it 

represents small numbers of individuals via correspondingly distinct representations making up a 

mental model. For example, if an infant sees three balls, then the model contains three symbols, 

each one corresponding to one of the balls, with no symbol explicitly representing that there are 

three. Likewise, if an infant hears three honks, a similar three-symbol model may be formed, 

with each symbol corresponding to one of the sounds. Parallel individuation is a richer system of 

representation than an object-based attentional system not only because it isn’t confined to any 

single modality, but because its symbols needn’t be involved in online tracking. Carey notes, for 

example, that sometimes a two-symbol model will result from seeing pairs composed of different 

individuals and not from repeated sightings of the same individuals. In such cases, “a working-

memory model of two objects must be abstracted from these … arrays” (2009, 143). At the same 

time, parallel individuation has the same set-size limitation as object-indexing in that it can only 

create models that are formed from a small number of symbols. This limitation on model size is 

supposed to derive from the capacity limit on working memory and is thought to increase in the 

first year of life as the working memory system matures (Carey 2009, 83).  

 An important motivation for proponents of the mental models approach is that it promises to 

explain children’s early numerical abilities without having to postulate innate number-specific 

structure, including innate numerical representations. As Simon puts it, “the earliest form of 

numerical behavior of which infants are capable arises from the deployment of some very 

general information processing characteristics of human cognitive architecture”. He describes the 

foundational competences that underlie infants’ success on numerical tasks as being “non-

numerical” on the assumption that “they did not evolve specifically for the purpose of number 

processing” (1997, 350). 

 Likewise, while Carey holds that the parallel individuation system supports numerical 

quantitative assessments—because mental models are suited to figure in assessments of one-to-

one correspondence—it is still a domain-general system:    
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The purpose of parallel individuation is to create working-memory models of small 

sets of individuals, in order to represent spatial, causal, and intentional relations 

among them. Unlike analog magnitude number representations, the parallel 

individuation system is not a dedicated number representation system. Far from it. 

The symbols in the parallel individuation system explicitly represent individuals. 

(Carey 2009, 151; italics added) 

 

In this passage, Carey makes clear that working-memory models are meant to serve purposes 

that have nothing at all to do with numerical quantity. 

 Also, for Carey, the parallel individuation system supports quantitative comparisons that are 

not numerical. It does this by encoding some of an object’s continuous properties (e.g., its 

amount of surface area) and associating this information with the symbol for the object in a 

working memory model. An operation can add the value for this continuous property to the value 

that is bound to the other model elements to represent the total amount for the represented group. 

Then it can compare this summed value to the summed value for another small group to 

determine whether they have the same amount or whether one has more than the other. This may 

seem somewhat convoluted. Why can’t infants directly evaluate which has more surface area? 

Why do the continuous properties for each item have to be bound to a model element? The 

answer, for Carey, is that this arrangement is required by the data. It makes sense of cases where 

quantitative performance has the set-size signature of working memory—which is confined to a 

small number of items—but where performance is still driven by the continuous properties of the 

stimuli. For example, in one experiment, infants saw a certain number of crackers placed in one 

container, and another number placed in a second container, and the question was which 

container they would approach (Feigenson et al. 2002). Infants went for the larger quantity for 

1v2 and for 2v3, but not when four or more crackers were involved (e.g., 2v4). Further, when the 

smaller number of crackers had the larger total amount of surface area, they chose the smaller 

number; and when different numbers had the same amount of total surface area, they showed no 

preference. So while the parallel individuation system would seem to explain why these infants’ 

performance is capped at three crackers, the comparisons guiding these foraging choices are 
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nonnumerical. The crucial comparison is defined over the continuous properties that are bound to 

the model elements, allowing infants to compare the total amount of cracker in the two 

containers. 

 In contrast, in a related study with monkeys who saw different numbers of apple slices placed 

into two containers, the monkeys succeeded by choosing the larger number and not simply the 

larger total volume of apple (Hauser et al. 2000). Here too the parallel individuation system is 

supposed to be operative, since the monkeys only succeeded with smaller numbers. But because 

they chose the larger number even when this was arranged to produce a smaller total amount of 

apple, Carey and her colleagues suggest that the monkeys must have used number as a heuristic 

to obtain the larger amount. In other words, they constructed two mental models—one for the 

slices in each container—and compared them one-to-one, choosing the container that had slices 

with no corresponding match in the other container. Carey interprets other related work with 

infants to show that, under certain conditions, they use the parallel individuation system to 

perform assessments of numerical equivalence just like monkeys. In one study, which used small 

toys instead of food items, 12.5-month-olds were shown small numbers of toys placed in a box 

and were then given the opportunity to retrieve them (Feigenson and Carey 2003). The crucial 

measure was how much they would continue to search the box after a given number or amount 

had already been retrieved. Suppose infants saw three toys placed in the box. Would they 

subsequently search the box after seeing that only two were removed, or once one larger toy 

(equivalent in surface area to the sum of the three) had been removed? In this case, infants 

disregarded the size of the objects and continued to search when the number retrieved was less 

than the number that had been placed in the box. For Carey, this means that “the match must 

have been subserved by a computation of 1-1 correspondence” (Carey 2009, 142). 

 We have seen that Simon appeals to one-to-one correspondence in explaining how infants 

succeeded on Wynn’s addition and subtraction task. Presumably, proponents of the mental 

models approach would say much the same thing regarding the multimodal addition task 

mentioned in the previous section. The proposal would be that the infants succeeded on this task 

by constructing a mental model of the objects behind the screen, and that they introduced new 

model elements not only for the object that they saw but also for the objects they heard and had 

to infer were behind the screen. Then when the screen was removed, they compared the model in 
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working memory for one-to-one correspondence with the model of the visible outcome. When 

the two didn’t correspond (in the 1+1+1=2 condition), this mismatch was unexpected and caused 

them to look longer. 

 Finally, I will mention one last study that will be relevant when we compare the mental 

models approach to the SuM theory in the next section. This study was, in effect, an attempted 

replication of the Clearfield and Mix experiment mentioned in section 2 and hence a test for 

whether infants can only respond to the continuous properties of stimuli (Cordes and Brannon 

2009). The basic experimental design, as before, was to habituate infants to two or three same-

size squares, and then to show them both the same number with a new contour and the same 

contour with the old number. This time, with a larger number of subjects tested, seven-month-

olds did respond to numerical changes as well as contour changes.1 How would the mental 

models approach explain this result? The explanation would have two parts. The first is that 

infants constructed a mental model during the habituation phase of the experiment, and that each 

habituation trial reinforced the same two- or three-symbol model so that it was held in working 

memory. Second, in the test trials, infants constructed models for the alternating stimuli too, and 

compared these to the one held in memory. In the new contour / old number condition, they 

compared the sum of the continuous properties that were bound to the models’ elements. This 

would have caused them to notice the contour change, hence the longer looking time relative to 

the habituation trials. In the old contour /new number condition, they compared the models for 

one-to-one correspondence. This would have caused them to notice that they don’t match one-to-

one, and would also have led to longer looking time relative to the habituation trials. 

 In this section, we have seen that the mental models approach to the small number system 

has a lot going for it. In contrast with the object-indexing approach, it can deal with cases where 

visual object tracking isn’t possible or isn’t relevant to the situation at hand. And from the point 

of view of its proponents, a further attraction of this approach is that it also doesn’t postulate a 

domain-specific system to explain infants’ numerical abilities. Later, in section 6, I will 

 
1 There was an important difference regarding how the two research teams analyzed their data. Clearfield and Mix 
limited the analyzed looking-time in each trial to ten seconds (in contrast with Cordes and Brannon’s sixty seconds) 
and only included data from the first two test trials (in contrast with Cordes and Brannon using data from all of the 
test trials). As Cordes and Brannon point out, their own method of analysis is standard in the infancy literature and 
consequently preferable for making comparisons with other habituation studies. 
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challenge this assumption; I will argue that the mental models approach actually requires its own 

fair share of domain-specific structure. But first I want to return to the charge that the SuM 

theory is too speculative. 

 

5. SuM Meets the Data 

As noted earlier, many researchers hold that there is no evidence for an innate domain-specific 

system for representing small numerical quantities as such. In this section, I argue that, in fact, 

many findings are consistent with the SuM theory. As we will see, the SuM theory can explain 

most of the data regarding the way that infants and animals respond to small numbers of items, 

and it may even be more promising than the mental models approach in some cases. At the very 

least, it should be viewed as an open empirical question whether the small number system starts 

out as a system that can support assessments of one-to-one correspondence or as a system that 

represents particular numerical quantities.  

 Let’s begin by looking at how the SuM theory explains the sorts of findings that were 

problematic for the object-indexing model. The key point, to begin with, is that the SuM theory 

can explain most of these data. Take the multimodal addition study with five-month-olds 

(Kobayashi et al. 2004). We saw that the mental models explanation of its key finding supposes 

that infants construct an abstract model that takes visual and auditory input, putting infants in a 

position to compare a model of the objects that are behind the screen for one-to-one 

correspondence with the model they form when the screen drops down. But the SuM theory also 

has an explanation of the disparity in looking time—in fact, a perfectly straightforward 

explanation. By hypothesis, SuM isn’t a visual system. It can take auditory input too. When the 

first object is seen to be placed behind the screen, this initiates a spread of activation through 

SuM that triggers its “one” node (i.e., the node that functions to correspond with the presence of 

one item). But given the familiarization trials that help infants to recognize that these types of 

objects make a beep when they hit the ground, the subsequent beeps lead to further input to SuM 

and ultimately to the “two” or “three” node being triggered, depending on whether infants find 

themselves seeing/hearing 1+1 or 1+1+1. Of course, when the screen drops down, infants are in 

a position to see how many objects are actually there, and this would provide new input to SuM 

for the seen numerical quantity. If this quantity is identical to the remembered quantity, that isn’t 
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surprising. But when the two differ—which would happen in the 1+1+1=2 condition—it is 

surprising, and this would cause infants to look longer. 

 Next, consider Cordes and Brannon’s (2009) study in which seven-month-olds discriminated 

between two and three squares. The main finding was that infants dishabituated to the novel 

number even though it had the same contour as the stimuli they had habituated to. The mental 

models approach explains this by claiming that infants compare a remembered model from the 

habituation trials to a model of the squares in each test trial and end up noticing when the two 

don’t correspond one-to-one. But here too the SuM theory has a perfectly straightforward 

explanation of the looking-time pattern, or why the infants dishabituate to the novel number. 

Throughout the habituation trials, SuM is active and registers the presence of the numerical 

quantity two or three. Then when the novel number of squares is seen in the test trials, SuM 

registers a different numerical quantity, and it is the numerical difference that causes them to 

dishabituate. 

 Similar explanations can be given for the other studies, including the one where infants 

recognize that there are remaining toys in the box after some number of them have been 

removed. Recall that Carey says of this experiment that “the match must have been subserved by 

a computation of 1-1 correspondence” (italics added). She is certainly right that infants could be 

approaching this situation by constructing a model of the toys in the box and then comparing this 

model for one-to-one correspondence with a model of the toys that were removed. But again, 

there is a straightforward way for infants to determine that further objects remain in the box on 

the assumption that they can represent particular numerical quantities via SuM. As each toy is 

placed in the box, this provides input to SuM and ultimately leads to a representation of the 

numerical quantity of the concealed toys, say, the numerical quantity three. Later, the child can 

check whether the numerical value in memory is reproduced when SuM is directed to the objects 

as they are removed from the box, with each removed object being taken as input to SuM. If the 

remembered value isn’t reproduced (e.g., if only two are removed, which wouldn’t provide the 

needed input for the “three” node to be triggered), then this would indicate that the box hasn’t 

been emptied, and infants would be motivated to continue to search the box. 

 The pattern we are seeing here is that the SuM theory is able to account for much the same 

data as the mental models theory. For most of the cases where infants or animals respond to 
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changes or differences in numerical quantity and where their response is confined to small 

numbers of items, they might be evaluating the stimuli for numerical equivalence using only 

assessments of one-to-one correspondence. But alternatively, they might be representing the 

specific numerical properties of the stimuli and noting changes or differences among these 

properties. There is one exception to this general rule, however. The SuM theory can’t explain 

the cases where infants or animals respond to nonnumerical quantitative differences among the 

stimuli (e.g., the amount of cracker placed into a box). To the extent that nonnumerical 

quantitative assessments show the set-size signature of working memory, something like the 

parallel individuation approach will be needed to explain why performance is capped in the 

small-number range even when infants or animals aren’t responding to numerical quantity. Still, 

this doesn’t mean that when they do respond to numerical quantity that this can only be a matter 

of their representing matches and mismatches for numerical equivalence. They might represent 

nonnumerical quantity in certain contexts via an operation that sums the continuous properties 

that are bound to object representations, and numerical quantity via an operation that takes the 

activation of these object representations as its input and filters this information through SuM. 

 In short, both approaches that go beyond object-indexing can accommodate much the same 

data. One postulates a domain-general system that supports assessments of numerical 

equivalence; the other postulates a domain-specific system for representing particular small 

numerical quantities. Are there any further considerations that might help to tease them apart? 

One that may prove useful focuses on the source of infants’ performance limitation—why 

success in these different tasks is restricted to small numbers of items. For the domain-specific 

proposal in which infants represent particular small numerical quantities, the performance 

limitation is, by hypothesis, one of SuM’s design features. SuM is built to represent just a few 

numerical quantities. In contrast, the domain-general mental models proposal traces the 

performance limitation back to the capacity limit of working memory. The reason infants can 

only construct or work with models that have a small number of elements is that working 

memory imposes this constraint. Recall that Carey reports that working memory matures in the 

first year of life. One factor we can look at, then, is the developmental trajectory of working 

memory and whether this lines up with infants’ performance on numerical tasks. If children are 

successful at discriminating between small numbers of items in a way that exceeds the immature 



 17 

working memory system’s capacity, this would cast doubt on the idea that their success turns on 

comparing working memory models for one-to-one correspondence. 

 This is an area where we need to proceed cautiously. Not a lot is known about the 

development of working memory in infancy, and there are questions about whether different 

researchers who study its development are studying the same thing—for example, there is a 

controversy about whether and how to distinguish working memory from short-term memory 

(Reznick 2014). Nonetheless, there is evidence of a correspondence across a variety of tasks in 

which infants’ working memory goes through a developmental expansion in the first year of life 

in which, for older infants, it can accommodate three or four items, but at six months, it is limited 

to just one (Oakes and Luck 2014).2 For example, in one study, infants were tested on whether 

they could remember the location of an occluded object by encoding its shape (e.g., whether they 

would recognize that two objects had been switched given that the shape that had been placed on 

the left subsequently appeared on the right, and vice versa). Nine-month-olds were able to do this 

for two objects, but it was found that six-month-olds were only able to do this for one object 

(Káldy and Leslie 2005). 

 Suppose we take at face value this pattern of findings and the provisional estimate that 

infants’ working memory is severely limited half way through the first year of life. This would 

cast doubt on the hypothesis that such young infants are able to perform complex one-to-one 

comparisons between mental models with three elements. Now this isn’t a problem for the 

mental models account of the study in which 12.5-month-olds succeeded in determining that a 

toy remained in the box after a certain number had been removed. These infants presumably 

have a working memory system that is mature enough to accommodate three or four items. But a 

number of the studies mentioned above had far younger subjects. The study in which infants 

dishabituated to changes in number as well as contour for two versus three static squares used 

infant subjects who were just seven months old. And the study in which infants successfully 

combined visual and auditory information for objects behind a screen (looking longer at the 

1+1+1=2 event than the 1+1=2 event) were a mere five months old. The point is that that there 

 
2 In summarizing this research, Oakes and Luck remark that “multiple studies using very different paradigms 
suggest that young infants (e.g., six months) can retain only a single item in STM… Moreover, because the 
information is used to compare images before and after occlusion, find hidden objects, and so on, these results may 
reveal the nature of a WM [working memory] system” (2014, 171). 
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are grounds for supposing that infants at this young age should have difficulty comparing and 

applying models that require this many elements. On the other hand, the SuM theory has no 

difficulty in accounting for why these younger infants respond as they do. As each new object is 

registered to occur behind the screen, this provides further input to SuM, whose network adjusts 

which output node is active. The only thing infants have to remember when the occluder is 

removed is the numerical quantity that SuM has registered for the objects behind the screen. 

Then all they have to do is compare this one value to the current numerical quantity that SuM 

registers for the objects they can see. If the two values differ, this would be unexpected—hence 

the longer looking time. 

 To be clear, my claim isn’t that we currently have decisive evidence against the mental 

models explanation. It’s that this is a critical juncture where the SuM theory and the mental 

models theory make different predictions. The mental models theory ascribes the restriction to 

small numbers of items to the capacity limit on working memory. So if we can independently 

determine working memory’s capacity limit at different ages, we might be able to show that 

infants have numerical abilities that exceed the cap predicted by the mental models approach. At 

present, there are some indications that infants do have numerical abilities of this kind, and this 

in turn is a reason to favor the SuM theory. 

 Of course, there were the objections to the SuM theory mentioned earlier (in section 2). One 

of these we have already dealt with, namely, the concern that SuM is a purely speculative theory 

and that there is no evidence that such a system exists. We have seen that there is actually much 

evidence for the theory. The problem is just that the evidence that supports the SuM theory also 

generally supports the mental models theory, and consequently we need to think hard about the 

types of findings that might favor one over the other. 

 The other objection was based on the observation that learning the meaning of words for 

small numbers takes a long time and that children invariably learn them in order. If SuM 

provides children with innate and perhaps unordered representations for the numerical quantities 

one, two, and three, why the difficulty and why don’t children sometimes learn the meanings of 

these words in some other order? In contrast, the mental models approach explains the facts 

about language learning on the assumption that children have to construct a special stock of 

models that are regularly used for performing assessments of numerical equivalence and that 



 19 

come to be associated with these number words. On this view, what happens when children learn 

the meaning of the word “two”, say, is that they figure out that it should be associated with a 

given model that is to be regularly used for performing one-to-one comparisons and that the 

word “two” applies to just those groups of items to which this special (two-membered) model 

stands in one-to-one correspondence. Given that these long-term memory models have to be 

constructed as children are confronted by the difficulty of having to interpret the meanings of 

number words, it isn’t surprising that this takes time. Also, since the model for “three” is more 

complex than the one for “two”, and the one for “two” is more complex than the one for “one”, it 

stands to reason that they will be learned in order, starting with the simplest model. 

 Do these facts about language learning discredit the SuM theory? Not at all. Even if there are 

innate representations for a few small numerical quantities, it doesn’t follow that learning the 

meanings of the number words for small numbers is a trivial matter. There is still a very 

challenging mapping problem in which children have to determine that number words (and 

certain morphological features in language) pick out numerical quantities to begin with. And 

once they recognize that their interpretation should focus on numerical quantity, there is a further 

question about which numerical quantity is the right one for a given term. This is a daunting 

problem even if children don’t have to construct new long-term memory models. What’s more, 

given that the linguistic data to which children have access vary enormously for these different 

terms—with “one” being far more frequent than “two”, and “two far more frequent than 

“three”—any theory that recognizes the difficulty of the mapping problem that children face 

ought to predict that children are going to learn them in order. 

 To summarize, although it is widely thought that there is no evidence for innate 

representations of the numerical quantities one, two, and three, I have argued that we just have to 

look in the right place. In fact, there is a great deal of evidence that fits with this theory, albeit 

evidence that can be explained by the mental models approach as well. What’s more, the SuM 

theory may be in a better position to explain some of this data, since children’s successful 

performance on some tasks occurs at an age when there is a question about whether their 

working memory system would be mature enough to handle the needed complex models. But 

suppose that we put this last point to the side. Suppose that younger infants’ working memory is 

capable of dealing with these models and that the SuM theory and the mental models theory are 
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on a par regarding the data. Many theorists with empiricist leanings would conclude that we 

should reject the SuM theory in this situation on the grounds that, all things being equal, purely 

domain-general accounts are simpler and hence better developmental theories. I reject this 

principle. I don’t see any reason to suppose that there are general methodological grounds for 

preferring domain-general theories over domain-specific theories in accounting for early 

developing cognitive capacities. But I won’t argue for this claim here. Instead, what I propose to 

do in the next section is to argue that such methodological considerations are beside the point 

because, in the end, the mental models approach has to accept a significant amount of innate 

domain-specific structure too. 

 

6. Where Does One-to-One Correspondence Come From? 

According to the mental models theory, the small number system is fundamentally a domain-

general system that supports assessments of one-to-one correspondence. Let’s assume for the 

sake of argument that younger infants are able to compare the needed mental models for one-to-

one correspondence and that this explains their success on the sorts of tasks reviewed above. 

Still, there is a question about the innate structure of the component systems that underlie this 

ability; it shouldn’t be assumed that the mental models approach invariably vindicates a domain-

general basis for the representation of small numbers of items. One way to see that a fully 

domain-general account is problematic is to ask why children so readily compare mental models 

for one-to-one correspondence and how they mange to reliably perform one-to-one comparisons.  

 Take the why question first. The point is that it is one thing for a certain form of 

representation to be able to support assessments of one-to-one correspondence and quite another 

for an agent to recognize the value of carrying out the assessment and to spontaneously perform 

these comparisons. If the system that underlies these operations is supposed to be a general-

purpose system—one that isn’t geared towards numerical representation in particular—where 

would children even get the idea that they can determine whether two groups of items have the 

same number by settling whether there is exactly one item in the first group for every item in the 

second? It may be obvious to numerate adults that this is a good technique for deciding whether 

two groups are numerically equivalent, but it isn’t a self-evident procedure, one that would 
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necessarily occur to any agent who happens to have a general-purpose capacity for constructing 

mental models. 

 In his discussion of why his mental models approach is a “nonnumerical” theory, Simon 

argues that each of the fundamental competencies that it requires isn’t specific to the domain of 

number and that there is independent evidence that infants have the competence. For example, he 

mentions that infants have mechanisms for remembering what they have seen and for 

generalizing without particular regard to an object’s perceptual details. But throughout his 

discussion, he never asks about the origins of the process that checks for one-to-one 

correspondence, as if it should go without saying that once the other capacities are in place, his 

work is done. But it isn’t done because there is still the matter of what would drive infants to 

compare a model in working memory to what they currently see for whether they match in this 

way. In developmental psychology, it has often been thought that a general understanding of 

one-to-one correspondence must be learned and that it takes years to develop through 

observations and activities where objects are paired with one another (candies paired with 

containers, forks paired with napkins, etc.). Mix et al. trace a developmental trajectory in which 

recognition of numerical equivalence begins when children are around 2.5 years old and expands 

in the preschool years as children first become able to match items that have somewhat different 

features, followed by heterogeneous items in a single modality, followed by crossmodal matches 

between such disparate items as dots and sounds (2002, 39). But if five-month-olds are supposed 

to already have a system in place that compares abstract models for one-to-one correspondence, 

these types of experiences can’t be essential to the capacity to establish numerical equivalence. 

In fact, it’s hard to see what alternative there is to a system that incorporates innate operations for 

determining numerical equivalence. This would be a system that isn’t limited to creating models 

or to using these models to perform nonnumerical quantitative comparisons, but a system that is 

designed, in part, for making judgments about numerical equivalence. 

 The how question leads to the same conclusion. Assuming that younger infants do manage to 

use one-to-one correspondence to make judgments of numerical equivalence, how are they able 

to reliably map each and every item in one model to just one in another? This isn’t an easy 

procedure to execute. Notice that it requires a form of bookkeeping when moving back and forth 

between the two models, so that, among other things, no item is fed into the process multiple 
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times and the process stops just when it should. A similar issue comes up as children learn to 

count, which is a comparatively demanding process. To achieve an accurate count, children need 

a way of keeping track of which counting terms have been used and which items have already 

been tagged—something young children find to be difficult and that is learned with the aid of 

adult training and much cultural support. If infants as young as five months old can reliably 

perform one-to-one comparisons without comparable aid and support, we have reason to believe 

that the system that underlies this capacity includes innate operations for just this purpose. What 

we are looking at is no longer a general-purpose representational system, or even a system that is 

designed for making quantitative comparisons. It is a system that is designed for making 

numerical comparisons.3 

 The animal data only reinforce this way of thinking about the small number system. Recall 

that honeybees can be trained to discriminate between instances of two and three and that their 

performance is limited to the small number range.4 A very natural explanation of how they do 

this is that they detect particular small numerical quantities via SuM—for example, they learn to 

choose the exit with three figures if they see three other figures when they first enter the 

apparatus. Still, another possibility is that they succeed by determining which of the choice 

stimuli matches the remembered sample when they are compared for one-to-one correspondence, 

that is, by choosing the numerically equivalent stimulus rather than the one that also has three 

elements. However, if this is how they succeed on the task, it is tremendously unlikely that 

individual bees have learned to determine whether two stimuli are numerically equivalent by 

drawing on a general-purpose capacity for working with mental models. The only plausible way 

of developing this account is to hold that the system that implements these processes is an innate 

system for making judgements of numerical equivalence.5 

 
3 A reviewer has questioned whether the how question argues for a domain-specific system, noting that a similar 
difficulty arises when infants compare small collections for nonnumerical quantity. For example, when comparing 
two groups of crackers, infants couldn’t reliably choose the one with more surface area if they didn’t have a way of 
keeping track of whether an item’s surface area has already been incorporated into the overall sum. But notice that, 
with nonnumerical quantity comparisons, infants don’t have to map items from one group to the other. They can 
compute each group’s total surface area independently of the other and then simply compare the two values. This 
considerably eases the demands on bookkeeping and suggests that a different type of process underlies 
nonnumerical comparisons. 
4 For related work on the representation of small numerical quantity in newborn chickens, see Rugani et al. (2008, 
2010). 
5 Of course, it is possible that bees and humans employ different types of cognitive mechanisms in their dealings 
with small numbers of items. As a reviewer has noted, bees might “have a domain-specific mechanism, but more 
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 Recall that Carey characterizes the parallel individuation system as a domain-general system 

by emphasizing that it serves multiple functions in which mental models support inferences 

about spatial, causal, and intentional relations, as well as assessments about nonnumerical 

quantity and numerical equivalence. At the same time, the architecture she is proposing is 

flexible enough that the systems that drive any of these inferences can themselves be domain-

general or domain-specific. What I am suggesting is that if one-to-one correspondence accounts 

for the sorts of findings that might otherwise be explained by SuM, the early developing facility 

with one-to-one correspondence argues for an innate numerical comparator that interacts with 

the domain-general capacity for forming mental models. If I am right, then the main choice isn’t 

between one theory that postulates innate domain-specific structure and another that postulates 

only domain-general structure. It is a choice between two theories that postulate different types 

of innate domain-specific structure—one that is committed to an innate system for representing 

particular numerical quantities (SuM) and one that is committed to an innate system for 

performing assessments of numerical equivalence (an innate comparator). To be sure, these are 

different approaches to the fundamental structure of the small number system, but either way, the 

representation of small numerical quantity would be grounded in an innate domain-specific 

system. There is no domain-general alternative. 

 

7. Conclusion 

I have argued that more consideration should be given to the proposal of an innate system for 

representing a few precise small numerical quantities—the SuM theory. I began by showing that 

we need a richer form of representation than a system for visually tracking small numbers of 

objects. I then went on to show that the SuM theory does well when compared to the alternative 

proposal that the small number system starts out as a general-purpose capacity for working with 

mental models. Not only can the SuM theory explain the majority of the data that the mental 

models theory has been claimed to explain, but it also has a potential advantage over the mental 

 
sophisticated creatures like us use a domain-general mechanism”. While this is a possibility, there is a remarkable 
similarity across a broad range of species (including humans) regarding systems for representing core facets of 
space, time, and number (Dehaene and Brannon 2011). This suggests that the representation of small number is also 
likely to be similar in humans and other animals. In any case, my reference to the bee data and how it is best 
interpreted is not meant to settle the matter in favor of SuM. It’s just one part of an overall inference to the best 
explanation regarding the nature of the human capacity for representing and responding to small numbers of items. 



 24 

models approach when the capacity limit on infants’ working memory is fully taken into 

account. Moreover, the mental models theory itself requires innate domain-specific structure that 

its proponents have failed to recognize or acknowledge, namely, an innate capacity for 

performing assessment of one-to-one correspondence. So regardless of whether the SuM theory 

or the mental models theory is accepted in the end, the representation of small numbers of items 

requires a considerable amount of innate domain-specific structure.  
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