## COMMUNICATIONS

## COMPUTABLE BI-EMBEDDABLE CATEGORICITY

N. A. Bazhenov<sup>1\*</sup>, E. B. Fokina,<sup>2\*\*</sup>

D. Rossegger,<sup>3\*\*\*</sup> and L. San Mauro<sup>4\*\*\*\*</sup>

UDC 510.5

Presented by Associate Editor S. S. Goncharov

We study the algorithmic complexity of isomorphic embeddings between computable structures. Suppose that L is a language. We say that L-structures  $\mathcal{A}$  and  $\mathcal{B}$  are *bi-embeddable* (denoted  $\mathcal{A} \approx \mathcal{B}$ ) if there are isomorphic embeddings  $f: \mathcal{A} \hookrightarrow \mathcal{B}$  and  $g: \mathcal{B} \hookrightarrow \mathcal{A}$ . The systematic investigation of the bi-embeddability relation in computable structure theory was initiated by Montalbán [1, 2]: he proved that any hyperarithmetical linear order is bi-embeddable with a computable one. In [3], similar results were obtained for Abelian *p*-groups, Boolean algebras, and compact metric spaces. The paper [4] studies degree spectra with respect to bi-embeddability.

**Definition 1.** Let **d** be a Turing degree. We say that a computable structure S is **d**-computably bi-embeddably categorical if, for any computable structure  $\mathcal{A} \approx S$ , there are **d**-computable isomorphic embeddings  $f: \mathcal{A} \hookrightarrow S$  and  $g: S \hookrightarrow \mathcal{A}$ . The bi-embeddable categoricity spectrum of S is the set

 $CatSpec_{\approx}(S) = \{ \mathbf{d} : S \text{ is } \mathbf{d} \text{-computably bi-embeddably categorical} \}.$ 

\*Supported by RFBR, project no. 16-31-60058 mol\_a\_dk.

 $^{**}\mbox{Supported}$  by the Austrian Science Fund FWF, project P 27527.

\*\*\*Supported by RFBR, project no. 17-31-50026 mol\_nr.

\*\*\*\*Supported by the Austrian Science Fund FWF, projects P 27527 and M 2461.

0002-5232/18/5705-0392 © 2018 Springer Science+Business Media, LLC

<sup>&</sup>lt;sup>1</sup>Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia. Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia; bazhenov@math.nsc.ru. <sup>2</sup>Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria; ekaterina.fokina@tuwien.ac.at. <sup>3</sup>Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria; ekaterina.fokina@tuwien.ac.at. <sup>3</sup>Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria; dino.rossegger@tuwien.ac.at. <sup>4</sup>Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria; luca.san.mauro@tuwien.ac.at. Translated from Algebra i Logika, Vol. 57, No. 5, pp. 601-608, September-October, 2018. Original article submitted May 8, 2018.

A degree **c** is the *degree of bi-embeddable categoricity* of S if **c** is the least degree in the spectrum  $CatSpec_{\approx}(S)$ .

Definition 1 is similar to the notions of categoricity spectrum and degree of categoricity which were introduced in [5]. The *categoricity spectrum* of a computable structure S is the set of all Turing degrees which are capable of computing isomorphisms among arbitrary computable copies of S. The *degree of categoricity* of S is the least degree from the categoricity spectrum of S.

Our first result gives examples of degrees of bi-embeddable categoricity. It shows that every degree of categoricity known in the literature [5, 6] can be realized as a degree of bi-embeddable categoricity. We make use of the following notion. A structure  $\mathcal{A}$  is said to be *bi-embeddably trivial* (or *b.e. trivial* for short) if  $\mathcal{B}$  and  $\mathcal{A}$  are isomorphic for any  $\mathcal{B}$  bi-embeddable with  $\mathcal{A}$ .

**THEOREM 1.** Let  $\alpha$  be a computable nonlimit ordinal. Suppose that **d** is a Turing degree such that **d** is d.c.e. in  $\mathbf{0}^{(\alpha)}$  and  $\mathbf{d} \geq \mathbf{0}^{(\alpha)}$ . There is a computable, bi-embeddably trivial structure S with degree of bi-embeddable categoricity **d**.

**Proof** sketch. We build two b.e. trivial computable structures  $\mathcal{A}$  and  $\mathcal{B}$  such that  $\mathcal{A} \cong \mathcal{B}$ ,  $\mathcal{A}$  is **d**-computably categorical, and any embedding from  $\mathcal{A}$  into  $\mathcal{B}$  must compute **d**. Here we give a construction for the case where **d** is d.c.e. over  $\mathbf{0}^{(2\beta+1)}$ , where  $\beta$  is an infinite ordinal.

Ash's characterization of the back-and-forth relations for linear orders and his theorem on pairs of structures [7, Chaps. 11, 16] show that for any  $\Sigma_{2\beta+1}^0$  set S, there is a computable sequence  $(C_e)_{e \in \omega}$  of linear orders such that

$$C_e \cong \begin{cases} \omega^{\beta} \cdot 2 & \text{if } e \in S, \\ \omega^{\beta} & \text{if } e \notin S. \end{cases}$$
(\*)

A relativized version of the argument from [5, Thm. 3.1] allows one to choose a set  $D \in \mathbf{d}$ which is d.c.e. in  $\mathbf{0}^{(2\beta+1)}$ , and for any oracle X, we have

$$(\overline{D} \text{ is c.e. in } X) \Rightarrow D \leq_T X \oplus \mathbf{0}^{(2\beta+1)}.$$

The language of our structures  $\mathcal{A}$  and  $\mathcal{B}$  contains an equivalence relation  $\sim$ , a partial order  $\leq$ , a unary predicate T, and unary predicates  $P_e$ , where  $e \in \omega$ . Note that  $D = U \setminus V$  for U and V c.e. in  $\mathbf{0}^{(2\beta+1)}$ , where  $V \subset U$ . We first describe the construction of  $\mathcal{A}$ . For every e, we choose elements  $a_e$  and  $b_e$  in  $\mathcal{A}$ , and for every  $P_e$ ,  $P_e(\mathcal{A})$  is infinite and includes  $a_e, b_e$ .

For a fixed e, we give a construction for the substructure on  $P_e(A)$ . We let  $P_e(A)$  consist of two infinite equivalence classes (with respect to  $\sim$ ) such that  $a_e \not\sim b_e$ . The two classes  $[a_e]$  and  $[b_e]$  will both contain pairs of linear orders, i.e., structures of the form  $(L_1, L_2)$  where  $L_1$  and  $L_2$  are linear orders (with respect to  $\leq$ ), any  $x \in L_1$  and  $y \in L_2$  are incomparable, and  $T([a_e]) = L_1$ .

If e = 2m, then we encode the information whether or not m is an element of D in  $P_e(A)$ . There are three cases:

- (1) if  $m \notin U$ , we build  $T([a_e]), \neg T([a_e]), T([b_e]) \cong \omega^\beta$  and  $\neg T([b_e]) \cong \omega^\beta \cdot 2$ ;
- (2) if  $m \in U \setminus V$ , we build  $T([b_e]) \cong \omega^\beta$  and  $T([a_e]), \neg T([a_e]), \neg T([b_e]) \cong \omega^\beta \cdot 2$ ;

393

(3) if  $m \in V$ , we build  $T([a_e]), T([b_e]), \neg T([a_e]), \neg T([b_e]) \cong \omega^{\beta} \cdot 2$ . Analyzing this construction, we see that

$$[a_e] \cong \begin{cases} (\omega^{\beta} \cdot 2, \omega^{\beta} \cdot 2) & \text{if } m \in U, \\ (\omega^{\beta}, \omega^{\beta}) & \text{if } m \notin U; \end{cases} \text{ and } [b_e] \cong \begin{cases} (\omega^{\beta} \cdot 2, \omega^{\beta} \cdot 2) & \text{if } m \in V, \\ (\omega^{\beta}, \omega^{\beta} \cdot 2) & \text{if } m \notin V. \end{cases}$$

If e = 2m + 1, then we let  $[b_e] \cong (\omega^\beta, \omega^\beta \cdot 2)$ , and  $[a_e]$  is defined by setting

$$[a_e] \cong \begin{cases} (\omega^{\beta} \cdot 2, \omega^{\beta} \cdot 2) & \text{if } m \in \emptyset^{(2\beta+1)}, \\ (\omega^{\beta}, \omega^{\beta}) & \text{if } m \notin \emptyset^{(2\beta+1)}. \end{cases}$$

The existence of the uniformly computable sequence of structures  $(C_e)_{e \in \omega}$  from (\*) implies that we can do the construction computably.

For  $\mathcal{B}$ , we again choose elements  $\hat{a}_e$  and  $b_e$  for every e, and we build  $\mathcal{B}$  like  $\mathcal{A}$  with the difference that the roles of  $\hat{a}_e$  and  $\hat{b}_e$  are switched. Clearly,  $\mathcal{B}$  and  $\mathcal{A}$  are isomorphic and computable. It is not hard to show that they are b.e. trivial. Indeed, every embedding of  $\mathcal{A}$  into a bi-embeddable copy  $\hat{\mathcal{A}}$  must map elements in  $P_e(\mathcal{A})$  to elements in  $P_e(\hat{\mathcal{A}})$ , for every  $e \in \omega$ . Every  $P_e(\hat{\mathcal{A}})$  must have exactly two equivalence classes; otherwise  $P_e(\hat{\mathcal{A}}) \not\approx P_e(\mathcal{A})$ . Moreover, the pairs of structures that we use are pairs of well-orders, hence these pairs are b.e. trivial.

Following the line of the proof in [8, Thm. 4], it is not hard to state that  $\mathcal{A}$  is **d**-computably categorical. It remains to show that  $f \geq_T D$  for every  $f: \mathcal{A} \hookrightarrow \mathcal{B}$ . We have  $f \geq_T \mathbf{0}^{(2\beta+1)}$  because

$$m \in \emptyset^{(2\beta+1)} \Leftrightarrow f(a_{2m+1}) \sim \hat{b}_{2m+1}$$
 and  $m \notin \emptyset^{(2\beta+1)} \Leftrightarrow f(a_{2m+1}) \sim \hat{a}_{2m+1}$ .

Similarly, we obtain

$$m \notin U \setminus V \Leftrightarrow (f(a_{2m}) \sim \hat{a}_{2m}) \text{ or } (m \in V).$$

Hence  $\overline{D}$  is c.e. in  $f \oplus \mathbf{0}^{(2\beta+1)}$ , so  $D \leq_T (f \oplus \mathbf{0}^{(2\beta+1)}) \equiv_T f$ .

The construction for the case  $\alpha = 2\beta + 2$  is nearly the same. The only difference is that in place of (\*), we use the following fact. For any  $\Sigma_{2\beta+2}^{0}$  set S, there is a computable sequence  $(C_e)_{e\in\omega}$  of linear orders such that

$$C_e \cong \begin{cases} \omega^{\beta+1} + \omega^{\beta} & \text{if } e \in S, \\ \omega^{\beta+1} & \text{if } e \notin S. \end{cases}$$

The proof for finite  $\alpha$  can be obtained by minor modifications.  $\Box$ 

The rest of the paper is devoted to bi-embeddable categoricity for structures from familiar algebraic classes. Recall that  $\mathcal{A} = (A, E^2)$  is an *equivalence structure* if E is an equivalence relation on the domain of  $\mathcal{A}$ .

**THEOREM 2** [9]. Any computable equivalence structure has degree of bi-embeddable categoricity  $\mathbf{d} \in \{\mathbf{0}, \mathbf{0}', \mathbf{0}''\}$ .

Note that a similar result for degrees of categoricity was proved by Csima and Ng (unpublished).

**THEOREM 3.** (a) A computable Boolean algebra is computably bi-embeddably categorical if and only if it is finite.

(b) A computable linear order is computably bi-embeddably categorical if and only if it is finite.

Note that Theorem 3 contrasts with the characterizations of computably categorical Boolean algebras [10, 11] and computably categorical linear orders [10, 12]—in particular, a computable Boolean algebra is computably categorical iff its set of atoms is finite.

An undirected graph is *strongly locally finite* if each of its components is finite. It is easy to show that every computable, strongly locally finite graph is 0'-computably categorical.

**THEOREM 4.** (a) There exists a computable, strongly locally finite graph which is not hyperarithmetically bi-embeddably categorical.

(b) The index set of **0'**-computably bi-embeddably categorical, strongly locally finite graphs is  $\Pi^1_1$ -complete.

**Proof.** (a) Let  $H \subseteq \omega^{<\omega}$  be a computable tree without hyperarithmetic paths. We build a strongly locally finite graph  $G_H$  such that the partial ordering under embeddability of its components is computably isomorphic to H.

For any  $\sigma \in H$ ,  $G_H$  contains the component  $C_{\sigma}$ : a ray of length  $|\sigma| + 1$  where the first vertex has a loop connected to it and the (i+2)th vertex for  $i < |\sigma|$  has a cycle of length  $\sigma(i) + 2$  attached. Clearly, the partial ordering of the components is computably isomorphic to H by  $C_{\sigma} \mapsto \sigma$ . The graph  $G_H$  has a bi-embeddable copy  $\tilde{G}$  that skips a fixed  $C_{\sigma}$  if  $\sigma$  lies on a path in H. Now consider embeddings  $\mu: G_H \to G$  and  $\nu: G \to G_H$ . Then  $C_{\sigma} \subset \mu(C_{\sigma}) \subset \nu(\mu(C_{\sigma})) \subset \ldots$ , and so there is  $f \in [H]$  hyperarithmetic in  $\mu \oplus \nu$ . Hence,  $\mu \oplus \nu$  itself cannot be hyperarithmetic.

(b) Let  $(T_i)_{i\in\omega}$  be a uniformly computable sequence of trees such that  $T_i$  is well-founded iff  $i \in \mathcal{O}$ . For two strings  $\sigma$  and  $\tau$  of the same length, we define  $\sigma \star \tau = \sigma_0 \tau_0 \sigma_1 \tau_1 \dots \sigma_{|\sigma|-1} \tau_{|\tau|-1}$  and consider a sequence of trees  $(S_i)_{i\in\omega}$ , where

$$S_i = \{ \xi : \xi \subseteq \sigma \star \tau, \ |\sigma| = |\tau|, \ \sigma \in T_i, \ \tau \in H \}.$$

Clearly, the sequence is uniformly computable, and  $S_i$  is well-founded iff  $i \in \mathcal{O}$ . Furthermore, no path in  $[S_i]$  is hyperarithmetical. Using the same coding as above, we see that if  $i \in \mathcal{O}$ , then  $G_{S_i}$  is b.e. trivial and thus **0'**-computably bi-embeddably categorical. If  $i \notin \mathcal{O}$ , then  $G_{S_i}$  is not **0**<sup>( $\alpha$ )</sup>-computably bi-embeddably categorical for  $\alpha < \omega_1^{\text{CK}}$ .  $\Box$ 

Note that the index set of computably categorical structures is  $\Pi_1^1$ -complete [13]. We leave open whether a similar result can be obtained for computably bi-embeddably categorical structures.

## REFERENCES

- A. Montalbán, "Up to equimorphism, hyperarithmetic is recursive," J. Symb. Log., 70, No. 2, 360-378 (2005).
- A. Montalbán, "On the equimorphism types of linear orderings," Bull. Symb. Log., 13, No. 1, 71-99 (2007).

- N. Greenberg and A. Montalbán, "Ranked structures and arithmetic transfinite recursion," Trans. Am. Math. Soc., 360, No. 3, 1265-1307 (2008).
- 4. E. Fokina, D. Rossegger, and L. San Mauro, "Bi-embeddability spectra and bases of spectra," arXiv:1808.05451 [math.LO].
- E. B. Fokina, I. Kalimullin, and R. Miller, "Degrees of categoricity of computable structures," Arch. Math. Log., 49, No. 1, 51-67 (2010).
- B. F. Csima, J. N. Franklin, and R. A. Shore, "Degrees of categoricity and the hyperarithmetic hierarchy," Notre Dame J. Formal Log., 54, No. 2, 215-231 (2013).
- C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Log. Found. Math., Vol. 144, Elsevier, Amsterdam (2000).
- N. A. Bazhenov, "Effective categoricity for distributive lattices and Heyting algebras," Lobachevskii J. Math., 38, No. 4, 600-614 (2017).
- N. Bazhenov, E. Fokina, D. Rossegger, and L. San Mauro, "Degrees of biembeddability categoricity of equivalence structures," *Arch. Math. Log.* (2018); https:// doi.org/10.1007/s00153-018-0650-3.
- S. S. Goncharov and V. D. Dzgoev, "Autostability of models," Algebra and Logic, 19, No. 1, 28-36 (1980).
- J. B. Remmel, "Recursive isomorphism types of recursive Boolean algebras," J. Symb. Log., 46, No. 3, 572-594 (1981).
- J. B. Remmel, "Recursively categorical linear orderings," Proc. Am. Math. Soc., 83, No. 2, 387-391 (1981).
- 13. R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalbán, and D. D. Turetsky, "The complexity of computable categoricity," *Adv. Math.*, **268**, 423-466 (2015).