COMMUNICATIONS

COMPUTABLE BI-EMBEDDABLE CATEGORICITY

N. A. Bazhenov ${ }^{1 *}$, E. B. Fokina, ${ }^{2 * *}$
D. Rossegger, ${ }^{3 * * *}$ and L. San Mauro ${ }^{4 * * * *}$

UDC 510.5

Presented by Associate Editor S. S. Goncharov
We study the algorithmic complexity of isomorphic embeddings between computable structures. Suppose that L is a language. We say that L-structures \mathcal{A} and \mathcal{B} are bi-embeddable (denoted $\mathcal{A} \approx \mathcal{B}$) if there are isomorphic embeddings $f: \mathcal{A} \hookrightarrow \mathcal{B}$ and $g: \mathcal{B} \hookrightarrow \mathcal{A}$. The systematic investigation of the bi-embeddability relation in computable structure theory was initiated by Montalbán [1, 2]: he proved that any hyperarithmetical linear order is bi-embeddable with a computable one. In [3], similar results were obtained for Abelian p-groups, Boolean algebras, and compact metric spaces. The paper [4] studies degree spectra with respect to bi-embeddability.

Definition 1. Let \mathbf{d} be a Turing degree. We say that a computable structure \mathcal{S} is \mathbf{d}-computably bi-embeddably categorical if, for any computable structure $\mathcal{A} \approx \mathcal{S}$, there are \mathbf{d}-computable isomorphic embeddings $f: \mathcal{A} \hookrightarrow \mathcal{S}$ and $g: \mathcal{S} \hookrightarrow \mathcal{A}$. The bi-embeddable categoricity spectrum of \mathcal{S} is the set

$$
\text { Cat }^{2} p e c_{\approx}(\mathcal{S})=\{\mathbf{d}: \mathcal{S} \text { is } \mathbf{d} \text {-computably bi-embeddably categorical }\} .
$$

[^0][^1]A degree \mathbf{c} is the degree of bi-embeddable categoricity of \mathcal{S} if \mathbf{c} is the least degree in the spectrum CatSpec $\approx(S)$.

Definition 1 is similar to the notions of categoricity spectrum and degree of categoricity which were introduced in [5]. The categoricity spectrum of a computable structure S is the set of all Turing degrees which are capable of computing isomorphisms among arbitrary computable copies of \mathcal{S}. The degree of categoricity of \mathcal{S} is the least degree from the categoricity spectrum of \mathcal{S}.

Our first result gives examples of degrees of bi-embeddable categoricity. It shows that every degree of categoricity known in the literature [5,6] can be realized as a degree of bi-embeddable categoricity. We make use of the following notion. A structure \mathcal{A} is said to be bi-embeddably trivial (or b.e. trivial for short) if \mathcal{B} and \mathcal{A} are isomorphic for any \mathcal{B} bi-embeddable with \mathcal{A}.

THEOREM 1. Let α be a computable nonlimit ordinal. Suppose that d is a Turing degree such that \mathbf{d} is d.c.e. in $\mathbf{0}^{(\alpha)}$ and $\mathbf{d} \geq \mathbf{0}^{(\alpha)}$. There is a computable, bi-embeddably trivial structure \mathcal{S} with degree of bi-embeddable categoricity \mathbf{d}.

Proof sketch. We build two b.e. trivial computable structures \mathcal{A} and \mathcal{B} such that $\mathcal{A} \cong \mathcal{B}, \mathcal{A}$ is \mathbf{d}-computably categorical, and any embedding from \mathcal{A} into \mathcal{B} must compute \mathbf{d}. Here we give a construction for the case where \mathbf{d} is d.c.e. over $\mathbf{0}^{(2 \beta+1)}$, where β is an infinite ordinal.

Ash's characterization of the back-and-forth relations for linear orders and his theorem on pairs of structures [7, Chaps. 11, 16] show that for any $\Sigma_{2 \beta+1}^{0}$ set S, there is a computable sequence $\left(C_{e}\right)_{e \in \omega}$ of linear orders such that

$$
C_{e} \cong \begin{cases}\omega^{\beta} \cdot 2 & \text { if } e \in S, \tag{*}\\ \omega^{\beta} & \text { if } e \notin S\end{cases}
$$

A relativized version of the argument from [5, Thm. 3.1] allows one to choose a set $D \in \mathbf{d}$ which is d.c.e. in $\mathbf{0}^{(2 \beta+1)}$, and for any oracle X, we have

$$
(\bar{D} \text { is c.e. in } X) \Rightarrow D \leq_{T} X \oplus \mathbf{0}^{(2 \beta+1)} .
$$

The language of our structures \mathcal{A} and \mathcal{B} contains an equivalence relation \sim, a partial order \leq, a unary predicate T, and unary predicates P_{e}, where $e \in \omega$. Note that $D=U \backslash V$ for U and V c.e. in $\mathbf{0}^{(2 \beta+1)}$, where $V \subset U$. We first describe the construction of \mathcal{A}. For every e, we choose elements a_{e} and b_{e} in \mathcal{A}, and for every $P_{e}, P_{e}(A)$ is infinite and includes a_{e}, b_{e}.

For a fixed e, we give a construction for the substructure on $P_{e}(A)$. We let $P_{e}(A)$ consist of two infinite equivalence classes (with respect to \sim) such that $a_{e} \nsim b_{e}$. The two classes $\left[a_{e}\right]$ and $\left[b_{e}\right]$ will both contain pairs of linear orders, i.e., structures of the form (L_{1}, L_{2}) where L_{1} and L_{2} are linear orders (with respect to \leq), any $x \in L_{1}$ and $y \in L_{2}$ are incomparable, and $T\left(\left[a_{e}\right]\right)=L_{1}$.

If $e=2 m$, then we encode the information whether or not m is an element of D in $P_{e}(A)$. There are three cases:
(1) if $m \notin U$, we build $T\left(\left[a_{e}\right]\right), \neg T\left(\left[a_{e}\right]\right), T\left(\left[b_{e}\right]\right) \cong \omega^{\beta}$ and $\neg T\left(\left[b_{e}\right]\right) \cong \omega^{\beta} \cdot 2$;
(2) if $m \in U \backslash V$, we build $T\left(\left[b_{e}\right]\right) \cong \omega^{\beta}$ and $T\left(\left[a_{e}\right]\right), \neg T\left(\left[a_{e}\right]\right), \neg T\left(\left[b_{e}\right]\right) \cong \omega^{\beta} \cdot 2$;
(3) if $m \in V$, we build $T\left(\left[a_{e}\right]\right), T\left(\left[b_{e}\right]\right), \neg T\left(\left[a_{e}\right]\right), \neg T\left(\left[b_{e}\right]\right) \cong \omega^{\beta} \cdot 2$.

Analyzing this construction, we see that

$$
\left[a_{e}\right] \cong\left\{\begin{array} { l l }
{ (\omega ^ { \beta } \cdot 2 , \omega ^ { \beta } \cdot 2) } & { \text { if } m \in U , } \\
{ (\omega ^ { \beta } , \omega ^ { \beta }) } & { \text { if } m \notin U ; }
\end{array} \quad \text { and } \quad [b _ { e }] \cong \left\{\begin{array}{ll}
\left(\omega^{\beta} \cdot 2, \omega^{\beta} \cdot 2\right) & \text { if } m \in V \\
\left(\omega^{\beta}, \omega^{\beta} \cdot 2\right) & \text { if } m \notin V
\end{array}\right.\right.
$$

If $e=2 m+1$, then we let $\left[b_{e}\right] \cong\left(\omega^{\beta}, \omega^{\beta} \cdot 2\right)$, and $\left[a_{e}\right]$ is defined by setting

$$
\left[a_{e}\right] \cong \begin{cases}\left(\omega^{\beta} \cdot 2, \omega^{\beta} \cdot 2\right) & \text { if } m \in \varnothing^{(2 \beta+1)} \\ \left(\omega^{\beta}, \omega^{\beta}\right) & \text { if } m \notin \varnothing^{(2 \beta+1)} .\end{cases}
$$

The existence of the uniformly computable sequence of structures $\left(C_{e}\right)_{e \in \omega}$ from $(*)$ implies that we can do the construction computably.

For \mathcal{B}, we again choose elements \hat{a}_{e} and \hat{b}_{e} for every e, and we build \mathcal{B} like \mathcal{A} with the difference that the roles of \hat{a}_{e} and \hat{b}_{e} are switched. Clearly, \mathcal{B} and \mathcal{A} are isomorphic and computable. It is not hard to show that they are b.e. trivial. Indeed, every embedding of \mathcal{A} into a bi-embeddable copy $\hat{\mathcal{A}}$ must map elements in $P_{e}(A)$ to elements in $P_{e}(\hat{A})$, for every $e \in \omega$. Every $P_{e}(\hat{A})$ must have exactly two equivalence classes; otherwise $P_{e}(\hat{A}) \not \approx P_{e}(A)$. Moreover, the pairs of structures that we use are pairs of well-orders, hence these pairs are b.e. trivial.

Following the line of the proof in [8, Thm. 4], it is not hard to state that \mathcal{A} is \mathbf{d}-computably categorical. It remains to show that $f \geq_{T} D$ for every $f: \mathcal{A} \hookrightarrow \mathcal{B}$. We have $f \geq_{T} \mathbf{0}^{(2 \beta+1)}$ because

$$
m \in \varnothing^{(2 \beta+1)} \Leftrightarrow f\left(a_{2 m+1}\right) \sim \hat{b}_{2 m+1} \quad \text { and } \quad m \notin \varnothing^{(2 \beta+1)} \Leftrightarrow f\left(a_{2 m+1}\right) \sim \hat{a}_{2 m+1} .
$$

Similarly, we obtain

$$
m \notin U \backslash V \Leftrightarrow\left(f\left(a_{2 m}\right) \sim \hat{a}_{2 m}\right) \text { or }(m \in V) .
$$

Hence \bar{D} is c.e. in $f \oplus \mathbf{0}^{(2 \beta+1)}$, so $D \leq_{T}\left(f \oplus \mathbf{0}^{(2 \beta+1)}\right) \equiv_{T} f$.
The construction for the case $\alpha=2 \beta+2$ is nearly the same. The only difference is that in place of $(*)$, we use the following fact. For any $\Sigma_{2 \beta+2}^{0}$ set S, there is a computable sequence $\left(C_{e}\right)_{e \in \omega}$ of linear orders such that

$$
C_{e} \cong \begin{cases}\omega^{\beta+1}+\omega^{\beta} & \text { if } e \in S \\ \omega^{\beta+1} & \text { if } e \notin S\end{cases}
$$

The proof for finite α can be obtained by minor modifications.
The rest of the paper is devoted to bi-embeddable categoricity for structures from familiar algebraic classes. Recall that $\mathcal{A}=\left(A, E^{2}\right)$ is an equivalence structure if E is an equivalence relation on the domain of \mathcal{A}.

THEOREM 2 [9]. Any computable equivalence structure has degree of bi-embeddable categoricity $\mathbf{d} \in\left\{\mathbf{0}, \mathbf{0}^{\prime}, \mathbf{0}^{\prime \prime}\right\}$.

Note that a similar result for degrees of categoricity was proved by Csima and Ng (unpublished).

THEOREM 3. (a) A computable Boolean algebra is computably bi-embeddably categorical if and only if it is finite.
(b) A computable linear order is computably bi-embeddably categorical if and only if it is finite.

Note that Theorem 3 contrasts with the characterizations of computably categorical Boolean algebras [10, 11] and computably categorical linear orders [10, 12]-in particular, a computable Boolean algebra is computably categorical iff its set of atoms is finite.

An undirected graph is strongly locally finite if each of its components is finite. It is easy to show that every computable, strongly locally finite graph is $\mathbf{0}^{\prime}$-computably categorical.

THEOREM 4. (a) There exists a computable, strongly locally finite graph which is not hyperarithmetically bi-embeddably categorical.
(b) The index set of $\mathbf{0}^{\prime}$-computably bi-embeddably categorical, strongly locally finite graphs is Π_{1}^{1}-complete.

Proof. (a) Let $H \subseteq \omega^{<\omega}$ be a computable tree without hyperarithmetic paths. We build a strongly locally finite graph G_{H} such that the partial ordering under embeddability of its components is computably isomorphic to H.

For any $\sigma \in H, G_{H}$ contains the component C_{σ} : a ray of length $|\sigma|+1$ where the first vertex has a loop connected to it and the $(i+2)$ th vertex for $i<|\sigma|$ has a cycle of length $\sigma(i)+2$ attached. Clearly, the partial ordering of the components is computably isomorphic to H by $C_{\sigma} \mapsto \sigma$. The graph G_{H} has a bi-embeddable copy \tilde{G} that skips a fixed C_{σ} if σ lies on a path in H. Now consider embeddings $\mu: G_{H} \rightarrow G$ and $\nu: G \rightarrow G_{H}$. Then $C_{\sigma} \subset \mu\left(C_{\sigma}\right) \subset \nu\left(\mu\left(C_{\sigma}\right)\right) \subset \ldots$, and so there is $f \in[H]$ hyperarithmetic in $\mu \oplus \nu$. Hence, $\mu \oplus \nu$ itself cannot be hyperarithmetic.
(b) Let $\left(T_{i}\right)_{i \in \omega}$ be a uniformly computable sequence of trees such that T_{i} is well-founded iff $i \in \mathcal{O}$. For two strings σ and τ of the same length, we define $\sigma \star \tau=\sigma_{0} \tau_{0} \sigma_{1} \tau_{1} \ldots \sigma_{|\sigma|-1} \tau_{|\tau|-1}$ and consider a sequence of trees $\left(S_{i}\right)_{i \in \omega}$, where

$$
S_{i}=\left\{\xi: \xi \subseteq \sigma \star \tau,|\sigma|=|\tau|, \sigma \in T_{i}, \tau \in H\right\}
$$

Clearly, the sequence is uniformly computable, and S_{i} is well-founded iff $i \in \mathcal{O}$. Furthermore, no path in $\left[S_{i}\right]$ is hyperarithmetical. Using the same coding as above, we see that if $i \in \mathcal{O}$, then $G_{S_{i}}$ is b.e. trivial and thus $\mathbf{0}^{\prime}$-computably bi-embeddably categorical. If $i \notin \mathcal{O}$, then $G_{S_{i}}$ is not $\mathbf{0}^{(\alpha)}$-computably bi-embeddably categorical for $\alpha<\omega_{1}^{\mathrm{CK}}$.

Note that the index set of computably categorical structures is Π_{1}^{1}-complete [13]. We leave open whether a similar result can be obtained for computably bi-embeddably categorical structures.

REFERENCES

1. A. Montalbán, "Up to equimorphism, hyperarithmetic is recursive," J. Symb. Log., 70, No. 2, 360-378 (2005).
2. A. Montalbán, "On the equimorphism types of linear orderings," Bull. Symb. Log., 13, No. 1, 71-99 (2007).
3. N. Greenberg and A. Montalbán, "Ranked structures and arithmetic transfinite recursion," Trans. Am. Math. Soc., 360, No. 3, 1265-1307 (2008).
4. E. Fokina, D. Rossegger, and L. San Mauro, "Bi-embeddability spectra and bases of spectra," arXiv:1808.05451 [math.LO].
5. E. B. Fokina, I. Kalimullin, and R. Miller, "Degrees of categoricity of computable structures," Arch. Math. Log., 49, No. 1, 51-67 (2010).
6. B. F. Csima, J. N. Franklin, and R. A. Shore, "Degrees of categoricity and the hyperarithmetic hierarchy," Notre Dame J. Formal Log., 54, No. 2, 215-231 (2013).
7. C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Log. Found. Math., Vol. 144, Elsevier, Amsterdam (2000).
8. N. A. Bazhenov, "Effective categoricity for distributive lattices and Heyting algebras," Lobachevskii J. Math., 38, No. 4, 600-614 (2017).
9. N. Bazhenov, E. Fokina, D. Rossegger, and L. San Mauro, "Degrees of biembeddability categoricity of equivalence structures," Arch. Math. Log. (2018); https:// doi.org/10.1007/s00153-018-0650-3.
10. S. S. Goncharov and V. D. Dzgoev, "Autostability of models," Algebra and Logic, 19, No. 1, 28-36 (1980).
11. J. B. Remmel, "Recursive isomorphism types of recursive Boolean algebras," J. Symb. Log., 46, No. 3, 572-594 (1981).
12. J. B. Remmel, "Recursively categorical linear orderings," Proc. Am. Math. Soc., 83, No. 2, 387-391 (1981).
13. R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalbán, and D. D. Turetsky, "The complexity of computable categoricity," Adv. Math., 268, 423-466 (2015).

[^0]: *Supported by RFBR, project no. 16-31-60058 mol_a_dk.
 ${ }^{* *}$ Supported by the Austrian Science Fund FWF, project P 27527.
 ${ }^{* * *}$ Supported by RFBR, project no. 17-31-50026 mol_nr.
 ${ }^{* * * *}$ Supported by the Austrian Science Fund FWF, projects P 27527 and M 2461.

[^1]: ${ }^{1}$ Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia. Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia; bazhenov@math.nsc.ru. ${ }^{2}$ Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 810/104, 1040 Vienna, Austria; ekaterina.fokina@tuwien.ac.at. ${ }^{3}$ Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria; dino.rossegger@tuwien.ac.at. ${ }^{4}$ Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria; luca.san.mauro@tuwien.ac.at. Translated from Algebra i Logika, Vol. 57, No. 5, pp. 601-608, September-October, 2018. Original article submitted May 8, 2018.

