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COMMUNICATIONS

COMPUTABLE BI-EMBEDDABLE CATEGORICITY
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We study the algorithmic complexity of isomorphic embeddings between computable structures.
Suppose that L is a language. We say that L-structures A and B are bi-embeddable (denoted A ≈ B)
if there are isomorphic embeddings f : A ↪→ B and g : B ↪→ A. The systematic investigation of
the bi-embeddability relation in computable structure theory was initiated by Montalbán [1, 2]:
he proved that any hyperarithmetical linear order is bi-embeddable with a computable one. In [3],
similar results were obtained for Abelian p-groups, Boolean algebras, and compact metric spaces.
The paper [4] studies degree spectra with respect to bi-embeddability.

Definition 1. Let d be a Turing degree. We say that a computable structure S is d-computably
bi-embeddably categorical if, for any computable structure A ≈ S, there are d-computable
isomorphic embeddings f : A ↪→ S and g : S ↪→ A. The bi-embeddable categoricity spectrum of
S is the set

CatSpec≈(S) = {d : S is d-computably bi-embeddably categorical}.
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A degree c is the degree of bi-embeddable categoricity of S if c is the least degree in the spectrum
CatSpec≈(S).

Definition 1 is similar to the notions of categoricity spectrum and degree of categoricity which
were introduced in [5]. The categoricity spectrum of a computable structure S is the set of all Turing
degrees which are capable of computing isomorphisms among arbitrary computable copies of S.
The degree of categoricity of S is the least degree from the categoricity spectrum of S.

Our first result gives examples of degrees of bi-embeddable categoricity. It shows that every
degree of categoricity known in the literature [5, 6] can be realized as a degree of bi-embeddable
categoricity. We make use of the following notion. A structure A is said to be bi-embeddably trivial
(or b.e. trivial for short) if B and A are isomorphic for any B bi-embeddable with A.

THEOREM 1. Let α be a computable nonlimit ordinal. Suppose that d is a Turing degree
such that d is d.c.e. in 0(α) and d ≥ 0(α). There is a computable, bi-embeddably trivial structure
S with degree of bi-embeddable categoricity d.

Proof sketch. We build two b.e. trivial computable structures A and B such that A ∼= B, A

is d-computably categorical, and any embedding from A into B must compute d. Here we give a
construction for the case where d is d.c.e. over 0(2β+1), where β is an infinite ordinal.

Ash’s characterization of the back-and-forth relations for linear orders and his theorem on
pairs of structures [7, Chaps. 11, 16] show that for any Σ0

2β+1 set S, there is a computable sequence
(Ce)e∈ω of linear orders such that

Ce
∼=

⎧
⎨

⎩

ωβ · 2 if e ∈ S,

ωβ if e 	∈ S.
(∗)

A relativized version of the argument from [5, Thm. 3.1] allows one to choose a set D ∈ d

which is d.c.e. in 0(2β+1), and for any oracle X, we have

(D is c.e. in X) ⇒ D ≤T X ⊕ 0(2β+1).

The language of our structures A and B contains an equivalence relation ∼, a partial order
≤, a unary predicate T , and unary predicates Pe, where e ∈ ω. Note that D = U \ V for U and
V c.e. in 0(2β+1), where V ⊂ U . We first describe the construction of A. For every e, we choose
elements ae and be in A, and for every Pe, Pe(A) is infinite and includes ae, be.

For a fixed e, we give a construction for the substructure on Pe(A). We let Pe(A) consist of two
infinite equivalence classes (with respect to ∼) such that ae 	∼ be. The two classes [ae] and [be] will
both contain pairs of linear orders, i.e., structures of the form (L1, L2) where L1 and L2 are linear
orders (with respect to ≤), any x ∈ L1 and y ∈ L2 are incomparable, and T ([ae]) = L1.

If e = 2m, then we encode the information whether or not m is an element of D in Pe(A).
There are three cases:

(1) if m 	∈ U , we build T ([ae]),¬T ([ae]), T ([be]) ∼= ωβ and ¬T ([be]) ∼= ωβ · 2;
(2) if m ∈ U \ V , we build T ([be]) ∼= ωβ and T ([ae]),¬T ([ae]),¬T ([be]) ∼= ωβ · 2;
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(3) if m ∈ V , we build T ([ae]), T ([be]),¬T ([ae]),¬T ([be]) ∼= ωβ · 2.
Analyzing this construction, we see that

[ae] ∼=

⎧
⎨

⎩

(ωβ · 2, ωβ · 2) if m ∈ U,

(ωβ, ωβ) if m 	∈ U ;
and [be] ∼=

⎧
⎨

⎩

(ωβ · 2, ωβ · 2) if m ∈ V,

(ωβ, ωβ · 2) if m 	∈ V.

If e = 2m + 1, then we let [be] ∼= (ωβ, ωβ · 2), and [ae] is defined by setting

[ae] ∼=

⎧
⎨

⎩

(ωβ · 2, ωβ · 2) if m ∈ ∅
(2β+1),

(ωβ , ωβ) if m 	∈ ∅
(2β+1).

The existence of the uniformly computable sequence of structures (Ce)e∈ω from (∗) implies that
we can do the construction computably.

For B, we again choose elements âe and b̂e for every e, and we build B like A with the difference
that the roles of âe and b̂e are switched. Clearly, B and A are isomorphic and computable. It is
not hard to show that they are b.e. trivial. Indeed, every embedding of A into a bi-embeddable
copy Â must map elements in Pe(A) to elements in Pe(Â), for every e ∈ ω. Every Pe(Â) must have
exactly two equivalence classes; otherwise Pe(Â) 	≈ Pe(A). Moreover, the pairs of structures that
we use are pairs of well-orders, hence these pairs are b.e. trivial.

Following the line of the proof in [8, Thm. 4], it is not hard to state that A is d-computably
categorical. It remains to show that f ≥T D for every f : A ↪→ B. We have f ≥T 0(2β+1) because

m ∈ ∅
(2β+1) ⇔ f(a2m+1) ∼ b̂2m+1 and m 	∈ ∅

(2β+1) ⇔ f(a2m+1) ∼ â2m+1.

Similarly, we obtain
m 	∈ U \ V ⇔ (f(a2m) ∼ â2m) or (m ∈ V ).

Hence D is c.e. in f ⊕ 0(2β+1), so D ≤T (f ⊕ 0(2β+1)) ≡T f .
The construction for the case α = 2β +2 is nearly the same. The only difference is that in place

of (∗), we use the following fact. For any Σ0
2β+2 set S, there is a computable sequence (Ce)e∈ω of

linear orders such that

Ce
∼=

⎧
⎨

⎩

ωβ+1 + ωβ if e ∈ S,

ωβ+1 if e 	∈ S.

The proof for finite α can be obtained by minor modifications. �

The rest of the paper is devoted to bi-embeddable categoricity for structures from familiar
algebraic classes. Recall that A = (A,E2) is an equivalence structure if E is an equivalence relation
on the domain of A.

THEOREM 2 [9]. Any computable equivalence structure has degree of bi-embeddable
categoricity d ∈ {0,0′,0′′}.

Note that a similar result for degrees of categoricity was proved by Csima and Ng (unpublished).
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THEOREM 3. (a) A computable Boolean algebra is computably bi-embeddably categorical
if and only if it is finite.

(b) A computable linear order is computably bi-embeddably categorical if and only if it is finite.
Note that Theorem 3 contrasts with the characterizations of computably categorical Boolean

algebras [10, 11] and computably categorical linear orders [10, 12]—in particular, a computable
Boolean algebra is computably categorical iff its set of atoms is finite.

An undirected graph is strongly locally finite if each of its components is finite. It is easy to
show that every computable, strongly locally finite graph is 0′-computably categorical.

THEOREM 4. (a) There exists a computable, strongly locally finite graph which is not
hyperarithmetically bi-embeddably categorical.

(b) The index set of 0′-computably bi-embeddably categorical, strongly locally finite graphs is
Π1

1-complete.
Proof. (a) Let H ⊆ ω<ω be a computable tree without hyperarithmetic paths. We build

a strongly locally finite graph GH such that the partial ordering under embeddability of its
components is computably isomorphic to H.

For any σ ∈ H, GH contains the component Cσ: a ray of length |σ| + 1 where the first vertex
has a loop connected to it and the (i+2)th vertex for i < |σ| has a cycle of length σ(i)+2 attached.
Clearly, the partial ordering of the components is computably isomorphic to H by Cσ �→ σ. The
graph GH has a bi-embeddable copy G̃ that skips a fixed Cσ if σ lies on a path in H. Now consider
embeddings μ : GH → G and ν : G → GH . Then Cσ ⊂ μ(Cσ) ⊂ ν(μ(Cσ)) ⊂ . . . , and so there is
f ∈ [H] hyperarithmetic in μ ⊕ ν. Hence, μ ⊕ ν itself cannot be hyperarithmetic.

(b) Let (Ti)i∈ω be a uniformly computable sequence of trees such that Ti is well-founded iff
i ∈ O. For two strings σ and τ of the same length, we define σ � τ = σ0τ0σ1τ1 . . . σ|σ|−1τ|τ |−1 and
consider a sequence of trees (Si)i∈ω, where

Si = {ξ : ξ ⊆ σ � τ, |σ| = |τ |, σ ∈ Ti, τ ∈ H}.

Clearly, the sequence is uniformly computable, and Si is well-founded iff i ∈ O. Furthermore, no
path in [Si] is hyperarithmetical. Using the same coding as above, we see that if i ∈ O, then
GSi is b.e. trivial and thus 0′-computably bi-embeddably categorical. If i 	∈ O, then GSi is not
0(α)-computably bi-embeddably categorical for α < ωCK

1 . �

Note that the index set of computably categorical structures is Π1
1-complete [13]. We leave open

whether a similar result can be obtained for computably bi-embeddably categorical structures.
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