
LOGIC IN THE TRACTATUS

MAX WEISS

Abstract. I present a reconstruction of the logical system of the Tractatus,
which differs from classical logic in two ways. It includes an account of

Wittgenstein’s “form-series” device, which suffices to express some effectively
generated countably infinite disjunctions. And its attendant notion of structure
is relativized to the fixed underlying universe of what is named.

There follow three results. First, the class of concepts definable in the
system is closed under finitary induction. Second, if the universe of objects

is countably infinite, then the property of being a tautology is Π1
1-complete.

But third, it is only granted the assumption of countability that the class of
tautologies is Σ1-definable in set theory.

Wittgenstein famously urges that logical relationships must show themselves
in the structure of signs. He also urges that the size of the universe cannot be
prejudged. The results of this paper indicate that there is no single way in

which logical relationships could be held to make themselves manifest in signs,
which does not prejudge the number of objects.

We have by now a quite systematic and rigorous grasp of the logical work of two
of Wittgenstein’s teachers, Frege and Russell. This is thanks in part to decades of
flourishing scholarship, and thanks also to Frege and Russell themselves. In contrast,
despite comparably voluminous commentary there is still no received understanding
of anything describable as the logical system of the Tractatus (Wittgenstein, 1921).
It is hard to resist the conclusion that the Tractatus did not, despite its professed
program and its large reputation, offer any systematic alternative conception of the
nature of logic.

But the conclusion is mistaken. To the contrary, there is a system, or a class of
similar systems, which can be understood to explicate the development of logic in the
Tractatus. They differ rather sharply from those of Frege or Russell, as well as from
classical first- or second-order logic. Nonetheless they can be exactly described and
investigated metamathematically, for epistemological and metaphysical evaluation.
In this paper, I will present one such system, and investigate some of its properties.
These turn out to be of surprising and indeed independent interest.

In seeking to understand what logic is supposed to be according to the early
Wittgenstein, we may distinguish two kinds of evidence. First, there are the contours
of his own construction, famously, for example, in the truth-functionality thesis
and its enactment through iterated joint denial. Second, there are in the Tractatus
apparent declarations of epistemological constraints on the nature of logic: some of
these, for example, have been taken to suggest that according to Wittgenstein, logic
must be decidable.

I wish to separate these two strands. In the early decades of the 20th century,
it was entirely possible for a proficient researcher to develop a computationally
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intractable system under the misapprehension of its decidability. Of course, it
might be worthwhile to investigate systems which now can be seen to resonate
with purported epistemological declarations of the Tractatus. The question still
remains: what system, if any, did Wittgenstein in fact describe? The undecidability
of logic being so deeply rooted in our own understanding, it is hard to take up in
imagination the computational intuitions of researchers in the era which preceded its
discovery. But in seeking to understand how someone tried to climb a mountain, we
should study the climber’s movements and the mountain’s contours, not transpose
the climber to a molehill.

A large body of literature exhibits accelerating progress in our understanding
of the development of logic in the Tractatus. Thanks especially to Geach (1981)
and Soames (1983) and more recently Wehmeier (2004), (2008), (2009), and Rogers
and Wehmeier (2012), it has become nearly received wisdom that Wittgenstein
both intended and managed, if only haphazardly, to accommodate the expressive
resources of first-order logic with equality.

However, when the Tractatus was in preparation, first-order logic had not at-
tracted much attention as an autonomous logical system. So it would be surprising
to say the least to find that something like first-order logic, as it might be now
understood, is the logic of the Tractatus. I want to explore two respects in which
Wittgenstein’s logic differs. They can each be understood to characterize a con-
ception of logic which is a kind of intermediate between the logicisms of Frege and
Russell on the one hand, and what became classical logic on the other.

First, Wittgenstein’s conception of logic differs from what became classical logic
in regard to what is now understood as interpretation. Although the exact height
of metalogical perspective reached by Frege or Russell has been a matter of some
scholarly controversy, it seems nonetheless safe to deny that anything like the
modern notion of first-order satisfiability or logical consequence plays a central role
in their logical writings. Rather, for Frege and Russell, the notion of axiomatic
derivability sets for logic a basic standard of rational organization, and thence
also of logical correctness. But Wittgenstein denied such a role for proof. So it
remains to be said just how the signs of a formalism could be subject to some
standard of logical correctness by the lights of the Tractatus. Here, Wittgenstein
propounds truth-conditional analyses of the notions of logical validity and of logical
consequence. These analyses resemble the now classical reduction of consequence to
the notions of truth-in-a-structure and class-of-all-structures. But while classically, a
structure for a language may have as its domain any nonempty set, for Wittgenstein
all structures relevant to the determination of validity have an underlying domain
in common, the universal collection of all objects. It has been both claimed and
denied, in commentary on Tarski (1936)—see Mancosu (2010) for a review—that this
feature disrupts certain rudiments of model theory. But as we’ll see, Wittgenstein’s
conception is yet further from the classical one, since like Russell he holds that each
object has its own proper representative in a proposition.

Second, Frege and Russell understood logic to include what we recognize as
non-first-order resources. Frege’s 1879 Begriffsschrift culminates with what, by
Frege’s lights, would be a purely logical analysis of the concept of the ancestral.
Likewise, Russell’s introduction of the axiom of reducibility was motivated in part
by the desire to reduce to logic the principle of mathematical induction. First-order
logic not having been isolated as an autonomous logical system, it is natural to
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suppose that Wittgenstein inherited the expectation, regarding such non-first-order
notions, that they were nonetheless logical. As Geach (1981), Potter (2009), and
Ricketts (2012) among others have observed, he introduced a notion of “form-series”
variable, which permits the expression, in finite space, of some countably infinite
disjunctions. However, the literature contains no attempt at an exact reconstruction
of the device. For example, although it’s agreed that the disjuncts must be generated
in some vaguely “effective” manner, it’s not at all clear what this is supposed to
mean. Moreover, the logical significance of the form-series device depends on the
intelligibility of quantifying into the contexts it creates, but this in turn involves
subtleties hitherto unaddressed in the secondary literature.

I will construct a notion of formal series exactly. As an approximation from
below, my assumption will be that it lies well within the system of constructions
Wittgenstein did intend to admit. But then I will show that adding to first-order
logic this approximation of the form-series device yields an expression of every
concept definable by finitary induction. I’ll also give some interpretive evidence to
suggest that this was the point.

So for present purposes, Wittgenstein’s two main divergences from classical
logic are these. The domain of every structure is one and the same collection of
uniquely named objects. And, basic logical resources include the notion of iterated
formal procedure. By making these divergences explicit, it becomes possible to
give a mathematically definite characterization of the complexity of Wittgenstein’s
logical system. Let me quickly summarize the results to be established here; the
technical notions are standard but will be defined in later sections. It has been
widely recognized that Wittgenstein could respect a commitment to decidability
of logic by presupposing that the domain of quantification is finite. This already
implies that the complexity of logic depends on the cardinality of the domain; in §4
I’ll evaluate the dependence precisely. I will show that if the domain is countably
infinite, then the property of being a tautology in the logical system of the Tractatus
is Π1

1-complete in a suitable analogue of the analytical hierarchy. But moreover, it
is only granted the assumption of countability that the concept of tautology is Σ1

in the Levy hierarchy of formulas of set theory. Since, in any case, the notions of
countable- and of arbitrary-domain tautology are Π1

1 and ΠZF
1 a priori, these results

are just about as strong as possible. When the form-series device is dropped from
the system, then the notion of tautology returns to its familiar Σ1 position in the
arithmetical hierarchy; however, the underlying notion of consequence remains just
as intractable.

There are several further respects in which logic as elaborated in the Tractatus may
seem to differ from classical first-order logic. First, Wittgenstein takes as primitive
not ordinary connectives like negation, disjunction or existential generalization, but
rather a truth-functional operator N together with a variety of means of specifying
the multiplicities of formulas to which it may be applied. Second, through a
nonstandard interpretation of the objectual variables, Wittgenstein tries to eliminate
the equality predicate. Third, the role of higher logical types in the Tractatus is a
matter of some controversy. The first two of these features do not essentially alter
the complexity-theoretic situation, but it considerably expedites the mathematics to
abstract from them. On the other hand, the introduction of higher-order variables
can only raise the complexity of the system. My primary aim is to establish lower
bounds, so I could simply duck the controversy by introducing no higher types.
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Nonetheless, the complexity of, for example, the class of valid second-order formulas
is far above the lower bounds established here (Väänänen, 2001). So, I argue on
textual and systematic grounds that higher-order quantification does not figure
centrally in Wittgenstein’s account of the expressive resources of logic, and that
impredicative quantification cannot figure at all. Thus, my contention will not just
be that such-and-such are lower bounds, but moreover that significant strengthenings
do not warrant comparable credence.

A project to understand the purported nature of logic in the Tractatus encounters
two kinds of difficulty. First, there are the well-known exegetical difficulties raised by
the text itself. It is highly compressed, with its use of logical notation somehow both
telegraphic and inconsistent. But a little reflection reveals technical subleties too,
even within relatively uncontroversial features of the program. Of particular concern
here will be the problem of implementing within quantificational logic Wittgenstein’s
proposal to compress some infinitary disjunctions into finite expressions. So in this
paper, I will confine exegetical discussion to §1, with the aim there to justify inter-
pretive hypotheses which underwrite the subsequent complexity-theoretic analysis.
The point of the remainder of the paper is to give a mathematical explication of the
hypotheses and then to investigate their consequences. I freely use notation and
techniques which did not mature until after Wittgenstein’s death.

In outline, the rest of the paper runs as follows. §1 lays out some interpretive
background. After briefly sketching the outlines of the Tractatus system, I introduce
the two departures from classical logic under investigation, summarizing relevant
literature and briefly sketching the importance of these eccentricities for the philo-
sophical project of the Tractatus. §2 opens the mathematical developments. I begin
by explicating Wittgenstein’s notion of a structure as truth-possibility for elementary
propositions, and show that it yields an embedding of the concept of truth in the
concept of consequence. I then introduce an approximation of the form-series device,
and propose an analysis of quantification into form-series contexts. Thanks to
this analysis, it becomes possible to establish a foundational result, that the result
of adding the form-series device to first-order logic does enjoy a decent form of
extensionality. In §3, I turn to a question of the power of the form-series device,
and show that as explicated here, it yields the effect of adding to first-order logic an
operator for expressing finitary inductive definitions. At this point, the stage is set
for the investigation of complexity. In §4 I present a detailed characterization of
the complexity-theoretic effects of Wittgenstein’s conception of structure and of his
introduction of the form-series device, both separately and jointly: §4.1, §4.2, and
§4.3 respectively treat the cases in which the underlying domain is supposed to be
finite, or some fixed infinite cardinality, or considered in advance of any cardinality
constraints at all. After sketching in §5 what I conjecture to be some philosophical
significance for these results, the paper concludes in §6 with suggestions for future
work.

1. Interpretive background

In broad outline, Wittgenstein’s conception of logical structure in the Tractatus
is straightforward. The upshot is a collection of sentences, together with a relation
on the collection which might be called “direct denial”. The direct denial relation
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distinguishes some sentences as atomic, namely those which directly deny no sen-
tences. A nonatomic sentence is to be true if and only if each of the sentences it
directly denies is not true.

The relation of direct denial is supposed to secure that the truth or falsehood
of each sentence be determined by the truth or falsehood of the sentences which
are atomic. To this end, Wittgenstein prescribes that the collection of sentences
and the relation of direct denial must together satisfy a certain structural condition,
a so-called “general propositional form”. Accordingly, atomic sentences may be
regarded as having been given initially, and any other sentence must be presented as
a joint denial of some sentences presented before it. As Geach (1981, 170) pointed
out, the structural condition cannot be understood to require that anybody actually
construct all sentences which precede a given sentence in the ordering, because in
general, a sentence will have infinitely many antecedents. Rather, the condition
purports to indicate when some finite manipulation of signs could secure for them a
sense. The crux of the condition is that the relation of direct denial on the class of
sentences be wellfounded.

It is clear that if the relation of direct denial exhibited circularities, then it
might not be intelligible as realizing a logical relationship of denial at all. For
example, a sentence which appears to deny itself could be so understood only by
taking it both to be both true and to be not true, which for early Wittgenstein
would not be an understanding. But although Russell claimed to locate the origin
of paradoxes in circularity, the mere exclusion of circularity does not suffice to
secure the coherent interpretability of direct denial as denial: for example, it would
still admit the construction of a sequence of sentences A0, A1, . . . each of whose
terms is the direct denial of all its successors (see Yablo (1993)). In practice,
Russell enforced the acyclicity of logical dependence by a metaphor of bottom-up
construction in the ramified hierarchy of types; in imposing the stronger condition
of wellfoundedness, this hierarchy is a clear conceptual antecedent of Wittgenstein’s
general propositional form. In neither Principia nor the Tractatus does the notion
of wellfoundedness occur explicitly; so far as I know the concept is first explicitly
formulated in Mirimanoff (1917).

The existence of a wellfounded direct denial relation is supposed to give a condition
on the construction of signs, according to which signs would be capable of expressing
a sense. This means that wellfoundedness of direct denial should characterize the
signs themselves, so that the relation can be determined from the mere signs without
reference to their sense (cf. 3.33-3.331). To this end Wittgenstein prescribes that
each nonatomic sentence have two parts. One part, which at 5.501 Wittgenstein
calls a “bracket-expression”, serves to present some possibly infinite multiplicity of
other sentences. The other part is the famous operator N , which, attached to the
bracket-expression, yields a sentence which directly denies precisely those sentences
which the bracket-expression presents. Thus, to determine for any two sentences
whether one directly denies the other, it should suffice to check whether the second
is among the sentences presented by the bracket-expression of the first.

It is clear that the complexity of logical dependence exhibited by the system will
depend on the methods available for constructing bracket-expressions. Wittgenstein
describes three methods at T5.501. The first method is simply to make a list of
sentences outright; the resulting expression presents the sentences listed. Using joint
denial on the lists, this obviously yields an analysis of negation and disjunction: the
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negation of a sentence is a sentence which directly denies just it, and the disjunction
of two sentences is the negation of a direct denial of just those two. The second
method is intended to yield an analysis of generalization over objects, and ultimately
together with the first method to recover the expressive power of first-order logic
with equality, at least under a certain “Russellian” construal. The third method
goes rather farther, and was billed by Wittgenstein to yield at least a means of
expressing the ancestral, or transitive closure, of expressible relations. In the rest
of this section I will briefly sketch a somewhat anachronistic and oversimplified
account of these two further methods which will suffice for the main purpose of this
paper, which, again, is primarily analytical.

1.1. Objectual generality. Wittgenstein’s account of quantification is rather
sparse, mentioning only the N -operator, its application to finite lists, and its
application to the collections of terms of bracket expressions constructed by a second
method. According to T5.501, this second method consists in “giving a function fx ,
whose values for all values of x are the propositions to be described.” Suppose, then,
that some bracket expression presents the values of fx . Then, the result of attaching
the sign of joint-denial to the bracket expression amounts, in some sense, to the same
as the ostensibly Principian formula ∼ Ex .fx . Wittgenstein seems to intend this
mysterious “function” fx to be something like a propositional function in the sense
of Principia. However, it would appear to be only in the 3.31s that there appears
anything approaching an explanation: “if we turn a constituent of a proposition
into a variable, there is a class of propositions which are values of the resulting
variable proposition” (3.315). Very roughly speaking, the second method might now
be summarized as follows. The result of turning a constituent of a proposition into
a variable is supposed to determine a propositional function; then an existential
generalization is to be analyzed as the negation of the direct denial of the totality
of the function’s values.

1.1.1. The grammar of quantification. The abstractness of this account has abetted
some controversy. In particular, Fogelin (1976) argued that since Wittgenstein does
not mention any device for indicating the scope of the generalization, therefore
he cannot distinguish between, say, the negation of the joint denial of the values
of a function, and the joint denial of their negations. However, Soames (1983,
583ff) responded that Wittgenstein does not in his brief remarks purport to analyze
quantification by supplying a notational system with definite syntax. Rather, the
proposal purports merely to schematize the construction of one truth-condition
from others. Thus, Fogelin’s argument can be taken to show, unsurprisingly, that
any particular instance of Wittgenstein’s constructional schema must include a
device for the identification of those subformulas whose semantic role is to present
the totality of values of a propositional function. Geach and Soames conclude the
debate by observing that the schema for construction of truth-conditions is satisfied
by a notation tricked out with Principia-like scope indicators. Such a notation
can be understood as an “intended model” of the schematic description. Thus, for
example, within the model one might distinguish elements NNxfx and NxNfx as
respectively truth-conditionally equivalent to the disjunction and conjunction of
the collection of values of fx . Henceforth, I will simply work in such an intended
model. In fact, I will assume that the model includes an image of a classical syntax
of quantificational logic, in a signature which contains at least a few individual
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constants and at least a few monadic and dyadic predicate letters. This assumption
can actually be weakened in some philosophically interesting respects, but I will not
explore the possibility here.

We can now similarly explicate the notion of propositional function. Recall that
a procedure of turning a constituent of a proposition into a variable is supposed to
determine a function, which given some argument, returns a proposition. Without
reference to any particular model of syntax, it is not at all clear just what could
be meant by “constituent” (Bestandteil), let alone by turning one into a variable.
But having assumed a classical syntax, then propositions may be identified with
closed formulas. The notion of constituent may then be taken to include at least
the individual constants which occur in the formula.

Wittgenstein’s construction by way of propositional variables and the N -operator
establishes an interesting asymmetry between disjunctive and conjunctive truth-
operations. The signs ∨ or ∃ of a disjunctive truth-operation can be disabbreviated
trivially as NN . In contrast, conjunctive expressions can be disabbreviated only in
the context of their occurrence with propositional variables. Fogelin has therefore
correctly noted that in Wittgenstein’s framework, the admissibility of conjunctive
truth-operations entails nontrivial constraints on the class of propositional variables.
Suppose, for example, that we simply added to first-order logic a one-off propositional
variable whose range were the totality of elementary propositions. Given only the
system’s other resources, the disjunction but not the conjunction of its values could
be expressed. Now about the system developed in §2, it does hold that conjunctions
can be taken wherever disjunctions can, but must be proven (see Proposition 7 of
§3.1).

1.1.2. Higher-order logic? One might wonder if the notion of constituent might not
best be understood to include other syntactically related items as well, for example
complex expressions constructible from a proposition by abstraction. Michael Potter,
for example, writes:

Take some sign expressing a proposition and single out part of the
sign. Now keep this part fixed and let the rest of the sign vary. All
the propositions that can be obtained by varying the sign in this
way form a class. The variable used to pick out this class is called
a propositional function, but Wittgenstein invariably refers to it
simply as a function. (Potter, 2009, 269)

Although Potter cites only 5.501 in the vicinity of this proposal, its strongest support
may come from 3.315. According to the proposal, it is not a singled-out “part”
which is initially allowed to vary, but rather “the rest” of a proposition. Potter does
not actually say that the rest is a part at all, nor does he explicitly link his use of
the term “part” directly to any usage in the text. But, since Wittgenstein only says
that parts can be varied (or really: “turned into variables”), therefore Potter’s gloss
appears to presume that for any part of a proposition, the “rest” of the proposition
besides it is also a part. However, in general, it is not the case that for any part of
a given proposition, the rest of the proposition is a simple or elemental part. Thus,
Potter would appear to understand the usage of Bestandteil to include parts or
aspects of propositions which are other than simple parts.

Both Ogden-Ramsey (Wittgenstein, 1922) and Pears-McGuiness (Wittgenstein,
1961) translate Bestandteil not as “part” but as “constituent”. As with Bestandteil,
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one might say that a thing which has constituents is somehow formed by them in
a naturally privileged way. For example, molecules are constituted by atoms. In
contrast, a mere “part” of something can be understood as a result of projection or
abstraction, as with the northern hemisphere of the earth. So, one might say that
something which has constituents is already “articulated” in terms of them, for they
are simple or elemental in contrast to it; on the other hand a decomposition into
mere parts or segments in general requires choosing one path rather than another.
Moreover, one might say that something depends on its constituents, but its mere
parts—like the top half of the earth—conversely depend on it (Fine, 2010, 586).

The heuristic metaphysics of Russell’s ramified hierarchy of propositions provides
an historically apposite example. Russell motivates the construction of the ramified
hierarchy along an ordering of metaphysical dependence, if only as a convenient
fiction. The ordering begins with the constitution of the universe by various objects
and relations (Whitehead and Russell, 1913, 45); these objects and relations are the
constituents of the earliest propositions (57ff). In contrast, a proposition can be seen
to fall in the range of various propositional functions, these functions being obtained
from the proposition by the abstraction, or “turning into variables” of constituents.
Since propositional functions follow their values in the order of dependence, therefore
propositional functions are not constituents of their values. This motivates the
requirement in Russell that a propositional function cannot take itself as argument:
the function depends on its values, the argument of the function which yields a
value is a constituent of that value, and the value depends on its constituents.

There are a couple of reasons to suppose that at 3.315 and elsewhere, by Be-
standteil Wittgenstein doesn’t just mean part, but part which is simple or elemental.
The first is circumstantial. Wittgenstein himself accepted the rendering by Ogden-
Ramsey of Bestandteil as “constituent”. As I’ve just sketched, a usage of the latter
term was already established by Russell in the exposition of the ramified theory of
types. And in claiming at 3.333 that “the sign for a function already contains the
prototype of its argument”, Wittgenstein borrows a plank of that theory.

The second reason is internal. Wittgenstein identifies what he refers to as
Bestandteile with those expressions whose meaning is chosen, or determined by
arbitrary convention. Thus, at 3.315 he says what might be turned into a variable
are “those signs whose meaning is arbitrarily determined” (jene Zeichen, deren
Bedeutung willkürlich bestimmt wurde), and indeed so determined “by arbitrary

convention” (willkürlich Übereinkunft). In contrast, the meaning of expressions
which are not Bestandteile is determined not by arbitrary convention but by their
structure, given the choice of meanings for the Bestandteile. Thus, at 4.024 he
says that to understand a sentence it suffices to understand its Bestandteile. And
at 4.025 he remarks, heuristically, that in translation only the propositional—or
perhaps here sentential—constituents (Satzbestandteile) are translated; presumably
Satzbestandteil is supposed to pick out the sort of thing that is listed in a dictionary,
and so is intended, without modification by any adjective like “simple”, to evoke a
contrast with expressions composed of several words. Now, at 4.025 Wittgenstein
does mention Bindewörter—translated “conjunctions”—among the Satzbestandteile
which are translated. But, this is because 4.025 really presents an heuristic analogy of
the dependence on convention of propositions with the dependence on convention of
unanalyzed sentences of English or German. Ultimately, there is only one essential
respect in which the identity of a proposition must depend on a conventional
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choice of meanings, and this is the assignment of meanings to names. Thus, at
4.5, Wittgenstein proposes to give a general description of symbols, such that
everything satisfying the description can express a sense given only a suitable choice
of meanings of names. And this matters philosophically, because it’s by boiling
down the choice of meaning to the choice of meanings of names that Wittgenstein
works out what’s announced as his “fundamental thought”, that logical constants
are not representatives (4.023).

So, Bestandteile are the parts of a proposition whose meaning is chosen, or
immediately fixed by convention. And the parts of a proposition whose meaning is
chosen are precisely the names, i.e., the simple propositional constituents. But, at
3.315 Wittgenstein describes propositional functions as the results of turning into
variables not mere parts, i.e., Teile, but Bestandteile, or constituents. Hence, the
sort of thing which yields a propositional function upon being turned into a variable
is a name.

Now, it’s true that some kind of higher-type quantification appears to be men-
tioned twice in the Tractatus (3.333 and 5.5261). The two mentions can both be
glossed with multi-sorted first-order quantification, which entails no increase in
logical complexity (Henkin, 1950). Still, Wittgenstein does leave room for some kind
of higher-order generality. For, at 5.501, Wittgenstein introduces his three ways of
presenting propositional multiplicities without clearly suggesting that the ways are
exhaustive. In particular, predicative higher-order generality might be introduced
through some fourth or fifth method of presentation of propositional multiplicities.

However, the range of any such higher-order generality would be constrained by
the requirement of wellfoundedness of logical evaluation. To see this, consider, for
example, “Napoleon has all the properties of a great general.” This sentence can be
seen as predicating something, say B, of Napoleon; let’s call the sentence B[n]. Now,
further suppose that B[n] generalizes over everything predicable of Napoleon. Then,
the truth-value of B[n] would be determined as the joint denial of each negation of
a sentence C[X]→ X[n], for X anything predicable of Napoleon. So B itself falls in
the range of X, and the determination of the truth-value of B[n] would depend on
that very determination. In other words: the conception of generality as depending
for its truth-value on those of its instances rules out higher-order quantification
which is impredicative.

So, while Wittgenstein’s remarks do leave room for some kind of “higher-order”
quantification, this would have to be interpreted predicatively. Precisely what
expressive power Wittgenstein might’ve sought from such supplementations of the
three stated methods of construction remains, to my knowledge, an open question
in the literature.

In sum, a cursory examination of the text suggests that the notion of turning
a constituent into a variable is reasonably interpreted on the syntactical model of
propositions as replacing a constant term a with a variable term x. Just as propo-
sitions become closed formulas, propositional functions are canonically explicated
here as formulas containing at least one free variable.

1.1.3. Identity. This syntactical model of propositional functions suggests a natural
account of their courses of values. We might identify the application of a proposi-
tional function with the instantiation of a formula. So the totality of values of a
propositional function would become the class of closed instances of a formula, and
an existential generalization becomes the disjunction of the elements of such a class.
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However, the reality is not quite so simple. As Hintikka (1956) and Wehmeier (op.
cit.) have shown, Wittgenstein introduced a reinterpretation of the bound variable,
which helps to sustain a contention that the equality predicate is dispensable. This
reinterpretation, which I’ll call the “sharp” as opposed to the “natural” reading,
amounts to requiring that a bound variable omit from its range those objects which
are mentioned in its scope. Thus, the result of replacing a free variable with an
appropriately sorted constant in a formula is a value of the function if and only if
the constant does not already occur in the formula. Or equivalently, a proposition
is a value of a propositional function if and only if that function is the result of
turning some constant into a variable in the proposition.

This amendation yields a sharp divergence from classical first-order semantics.
Hintikka and Wehmeier have shown, in a sense to be made precise, that every
truth-condition of a formula of first-order logic with equality under the natural
interpretation is the truth-condition of a formula of first-order logic without equality
under the sharp interpretation. The translation of a naturally into a sharply read
formula requires just two changes. Each existential quantification is disjoined with
its omitted instances. And, each predication of equality is replaced with either
a tautology or a contradiction containing the same constants and free variables,
according as the two arguments of the predication, as linguistic expressions, are the
same or distinct.

The Hintikka-Wehmeier result certainly helps to justify Wittgenstein’s claim that
the equality predicate is dispensable. But the justification is not obviously complete,
for as Rogers and Wehmeier (2012, 547) point out, the result has a seemingly
important qualification: the sharp reading affords an equality-free rephrasing of
truth-conditions only when the class of all structures is restricted to those in which
no distinct constants codenote. So, the translations eliminate the equality predicate
only if there is no nontrivial distinction to be drawn between structures according
as they do or do not assign the same denotation to a given term. In response
to this apparent difficulty, Rogers and Wehmeier (2012, 546) cite Wittgenstein’s
remark (5.526) that “the world can be completely described by means of completely
generalized propositions”. But this remark could be used to show that there don’t
need to be any simple predications of equality only by being taken to show that there
don’t need to be any elementary propositions. It’s more likely that at 5.526 means
just that there are some completely generalized propositions such that their truth
leaves no further question how the world is. It doesn’t follow that generalities could
be susceptible to truth and falsehood independently of their instances. For example,
waxing psychologistic Wittgenstein says “the understanding of general propositions
depends palpably on that of the elementary propositions” (4.411). It’s unlikely that
5.526 is an offhand remark that the truth-functionality thesis is optional. Rather,
the purported elimination of the equality predicate would appear to require some
independent justification for the claim that simple predications of equality do not
distinguish between structures.

Wittgenstein’s position regarding the equality predicate cannot be just that the
equality predicate is, like disjunction, not primitive, for its purported uses are not all
accommodated. But nor does Wittgenstein hold that the conventions governing the
sign underwrite no symbols at all; one might express by their means a proposition to
the effect that there are at least two authors of Principia Mathematica. The position
is rather that the conventions do not suit the logicosyntactic role of a predicate.
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Specifically, the basic function of an equality predicate would have to be, completed
with some other occurrences of terms, to yield a proposition which is true iff those
terms denote the same object. But, claims Wittgenstein, there is no such function:
what would fulfill such a purported function must be either nonsensical or empty
(5.5303).

I suggest that the situation should be understood like this. Wittgenstein derived
his notion of proposition from early Russell, for whom at the end of analysis each
object has only one representative, which is that very object. Then for anything
at all, there is only one true proposition to the effect that it is the same as a
given object, namely the proposition that the thing is the same as itself. And as
Russell remarked: “when any term is given, the assertion of its identity with itself,
though true, is perfectly futile” (Russell, 1903, 65). Famously, he proceeded in “On
Denoting” (1905) to explain the value of apparent statements of identity on the
ground that they aren’t identities after all. The hypothesis that each object has one
and only one representative reduces the truth or falsehood of simple predications of
equality to their own mere identity as propositions, making it plausible that they
draw no genuine distinctions between structures.

Now, the Russellian conception of propositions also makes it intelligible to
suppose that “the specification of all true elementary propositions describes the
world completely” (4.26), even if there are no elementary predications of equality.
For example, if it is given that there are just two elementary propositions, that
Lisa and Lucy are cats on the mat, then since the propositions themselves contain
cats, the specification that both are true determines that there are two cats on
the mat. If, on the other hand, the propositions instead contained proxies not
in one-one correspondence with the objects, then knowing the truth-values of
elementary propositions would leave open the question of how crowded the mat
is. For Wittgenstein maintains that two objects might have all their properties in
common (5.5302).

But as is well known, Wittgenstein did pull away from the Russellian conception.
On the one hand he maintained that the proposition must by itself determine how
things must stand if it is true. Furthermore, he supposed that this could be the
case only if the way constituents stand to each other in the proposition were the
same as the way that objects are thereby said to stand. Yet if the constituents of
the proposition just are what is mentioned, it follows that every proposition is true.
In the Tractatus, Russellian objectual propositional constituents must therefore give
way to proxies.

Surely there is no initial plausibility to the suggestion that each object has one
and only one representative, though things do not self-represent. But Wittgenstein
fully imbibed the doctrine that the world is completely determined by the truth and
falsehood of elementary propositions. So even as objects do not represent themselves,
propositions retain a role in Wittgenstein’s logical thinking which requires that each
object has one and only one representative. Or as Russell himself put it: “there will
be one word and no more for every simple object” (Russell, 1918, 198).

In summary, then, a simple predication of equality could distinguish between
structures only if it has both possibilities of truth and falsehood. But it can’t
have both possibilities, if denotation essentially puts names and objects in one-one
correspondence. Yet only if names and objects are in one-one correspondence
could a proposition be a truth-function of elementary propositions. On pain of
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breaking the truth-functionality thesis, Wittgenstein must hold in the Tractatus
that there is no room for the equality predicate to distinguish nontrivially between
structures. In this way, the proviso on the Hintikka-Wehmeier result is discharged.
In the context of the Wittgenstein’s other commitments, these authors have indeed
justified Wittgenstein’s claim to have recovered what could count as the genuine
expressive contribution of the equality predicate.

1.1.4. The Russellian constraint and the fixed-domain conception. On the strength
of the arguments of Geach, early Soames, and Wehmeier, we can conclude that
Wittgenstein manages to accommodate the basic notions of first-order logic. But
as we’ve seen, the accommodation induces four eccentricities. First, Wittgenstein
rejects the equality predicate. Second, he recaptures some lost expressiveness by
stipulating that a variable omits from its range what is mentioned in its scope.
Third, he maintains that no further first-order expressiveness remains uncaptured,
by stipulating that no two constants codenote. Finally, the analysis of quantified
propositions as truth-functions requires that every element of the domain is denoted
by a constant.

The point of this paper is to develop a complexity-theoretic analysis of Wittgen-
stein’s logical system. From this point of view, the work of earlier interpreters
licenses abstraction from the first two eccentricities. For the translations of Hintikka
and Wehmeier establish that the consequence relations determined by the sharp and
natural semantics of first-order formulas are mutually Turing-reducible. It is not
straightforward to extend these translations to the outer reaches of Wittgenstein’s
system; but enough will be clear for present purposes. The second pair of eccentrici-
ties reflects Wittgenstein’s conception of the relationship between names and the
universe, which differs in two fundamental respects from the classical model-theoretic
treatment of the relationship between constants and the domain of a structure. The
argument that the equality predicate is dispensable requires that simple statements
of equality draw no nontrivial distinctions in the class of all structures, and hence
that there is no structure in which distinct constants codenote. The proposal to
analyze an existentially generalized proposition as the disjunction of the values of a
propositional function is extensionally adequate only to structures in which each
element of the domain is denoted by a constant.

Together these requirements are equivalent to what I’ll call a “Russellian” con-
straint on structures, that the denotation relation be a one-one correspondence
between the class of names and the domain. The reason for the terminology is simply
that the constraint is canonically satisfied by a structure such that every element
of its domain is the one and only name of itself. Of course, the terminology isn’t
intended to convey any characterization of Russell himself. Rather, it’s intended to
mark Russell’s deep effect on Wittgenstein.

We’ve seen that the Russellian constraint is well-rooted in the Tractatus, namely
in the doctrine that a proposition is a truth-function of elementary propositions. To
say that a proposition is a truth-function of some others is to say that, logically,
its truth-value is a function of theirs, so that any maximal consistent choice of
elementary propositions and their negations entails either the proposition or its
negation. But this claim has counterexamples if distinct constants codenote, and
has counterexamples if not all elements of a domain must be denoted by constants.
Hence the truth-functionality thesis evidently presupposes the Russellian constraint.
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It might be wondered whether the truth-functionality thesis somehow obfuscates
the very notion of a quantifier. Doesn’t it just turn a universal generalization
into a “big conjunction”? However, the truth-functionality thesis follows from the
Russellian constraint. And the Russellian constraint is only a restriction on the class
of all structures. Hence, the truth-functionality thesis cannot by itself entail any
substantive change in the theory of truth-conditions. It modifies only the universe
of relata to which that theory might be applied, namely the universe of structures.
So, the truth-functionality thesis does not affect the meaning of quantifiers, if the
meaning of quantifiers depends only on their role in fixing truth-conditions.

On the other hand, the truth-functionality thesis does modify the notion of
consequence, which Wittgenstein seems to give a proto- model-theoretic analysis
(5.12). Say that an elementary truth-possibility is a maximal consistent set of
elementary propositions and negations thereof, and that the truth-grounds of a
proposition are the elementary truth-possibilities which entail it. Then a proposition
is a consequence of some others iff all their common truth-grounds are truth-grounds
of it. By the Russellian constraint, every truth-ground common to all instances of a
universal generalization is a truth-ground of the generalization. So the generalization
is a logical consequence of the class of its instances. Thus, the truth-functionality
thesis does modify the meaning of quantifiers if their meaning is taken to depend
essentially on their role in constituting the consequence relation. However, a defender
of the Russellian constraint might respond that the role of subsentential expressions
in constituting the consequence relation is exhausted by their contribution to truth-
conditions. Thus, the charge that truth-functionality obfuscates the quantifiers
depends on a controvertible philosophical presumption.

Wittgenstein’s analysis of the consequence relation resembles that of Tarski (1936).
The similarity is not just that both analyses generalize over something like logically
possible distributions of truth and falsehood. For Tarski seems furthermore to have
defined the consequence relation under a “fixed-domain” conception of structure,
according to which they all have the same domain in common (Bays, 2001). The
fixed-domain conception and the Russellian constraint are closely related, for they
both require that the domains of all structures have the same cardinality. However,
the fixed-domain conception of structure is not as strong. For it implies neither that
every object be denoted by a constant, nor that no constants codenote.

The two conceptions differ significantly in their effects on the complexity of
logic. As with Russellian consequence, the complexity of fixed-domain consequence
depends on whether the domain is infinite. In case the domain is finite, the fixed-
domain and Russellian notions pretty much coincide. But suppose that the domain
D is infinite, and consider the corresponding notion of fixed-domain consequence for
a countable signature. Let I be the set of formulas to the effect that there are at
least n objects for each n. Since D is infinite, A must be a fixed-domain consequence
of T if A is a classical consequence of T ∪ I. Conversely, suppose that some classical
structure satisfies T ∪ I but not A. Since the signature is countable and D is
infinite, the Lowenheim-Skolem theorems imply that some structure with domain D

satisfies T but not A. Therefore, if the signature is countable, then the fixed-domain
consequences of T are precisely the classical consequences of T ∪ I. So fixed-domain
consequence is recursively enumerable on any infinite domain. In contrast, we’ll see
in §2.2 and §4.3 that Russellian consequence permits categorical axiomatizations
of rich countable structures. On no infinite domain is Russellian consequence even
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arithmetically definable, at least if the signature contains a dyadic predicate. Finally,
it should be noted that a fixed-domain theorist can follow normal mathematical
practice in taking uncountable structures to have a countable signature. So the
fixed-domain theorist can generally avoid difficulties associated with uncountable
signatures.

1.2. Formal generality. We have now considered two of the three methods of
presenting propositional multiplicities which Wittgenstein sketches at 5.501. I’ve
indicated how they can together be understood to yield something like the expressive
resources of first-order logic, but also argued that this understanding must inflect
the underlying proto-model-theoretic analyses of validity and consequence. Let’s
now turn to the third method, which Wittgenstein describes as “giving a formal
law” according to which the presented sentences are constructed. The sentences so
presented constitute the terms of what he calls a “form-series”.

Series which are ordered by internal relations I call formal series.
The series of numbers is ordered not by an external relation, but by
an internal relation. Similarly the series of propositions aRb, ( Ex) :
aRx . xRb, ( Ex, y) :aRx . xRy . yRb, etc. (4.1252)

The general term of the formal series a,O’a,O’O’a, . . . I write like
so: “Ja, x,O’xK”. This expression in brackets is a variable. The first
term of the bracket expression is the beginning of a formal series,
the second the form of an arbitrary term x of the series, and the
third the form of that term of the series which immediately follows
x. (5.2522)

As Geach (1981, 171) observed, Wittgenstein here announces an intention, by means
of a so-called formal series, to construct an expression of the ancestral. Frege’s
analysis of the ancestral required second-order quantification, indeed impredicatively.
In contrast, Wittgenstein begins with the natural idea of constructing the countably
infinite disjunction of all propositions to the effect that b is connected to a by R
through this or that number of steps. However, he then proposes a notation—the
third kind of bracket-expression—by means of which a series of disjuncts would be
presented in finite space. The ancestral would be expressed by the negation of the
joint denial of the sentences which the bracket expression presents.

So, the form-series variable extends first-order logic to include the simulated
presence of some countably infinite disjunctions. Clearly, not every countably infinite
set of formulas will correspond to some such simulated disjunction, for the disjuncts
must be generated by means of what Wittgenstein calls an “operation”. In turn,
an operation should return some sentence B when applied to a sentence A only in
virtue of some “internal relation” which B bears to A. Sundholm (1992, 61) points
out that the apostrophe in Wittgenstein’s notation O’a apparently borrows from
the description in Principia of the object to which a bears the relation O. Thus,
the question what counts as an operation reduces to the question which relations
are “internal”.

Wittgenstein’s handling of technical matters is not widely celebrated for its
precision. But the remarks about quantifiers borrow some clarity from Russell and
Frege. And of course quantifiers became a standard part of the logical education of
philosophers. On the other hand, the origins of the concept of operation are obscure,
and corresponding extensions of quantificational logic never got much traction.
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What is widely acknowledged is that the form-series device is supposed to yield
an analysis of the ancestral in terms of an idea of iterated operation. There are few
published attempts to propose any general comprehension principles for operations
to do the job. Geach (1981, 170) suggests “the notation [aRb, aSb, aR/Sb] gives
us the series of propositions aRb, aR/Rb, aR/(R/R)b etc. ad inf.. . . .” Here, an
expression like aR/Rb is presumably supposed to abbreviate an ordinary first-order
formula. However, the disabbreviation for nonelementarily expressed relations is
left obscure; and the proposal makes the concept of operation seem tailored to
a particular one of what are presumably various possible uses. In a similar vein,
Potter (2009, 272) writes: “the formal series [of 4.1252] is expressed by the variable
[ aRb, aχb, (∃x) :aRx . xχb ]”. The grounds of this declaration aren’t made explicit:
it’s not clear why, for example, the third term of the series of indicated propositions
shouldn’t be something like (∃x) :aRx . (∃x) :xRx . xRb. The notation proposed by
Potter appears to indicate what’s intended only granted an understanding of what
the whole thing is supposed to mean. So the proposal runs afoul of Wittgenstein’s
complaint about Russell, that “he had to mention the meaning of signs when
establishing the rules for them” (3.331). Of course, Wittgenstein himself never
established those rules clearly. But as I’ve urged, the question whether anything
could realize the conception of logic in the Tractatus can’t be answered without
going beyond what Wittgenstein actually did. For better or for worse, the job is
ours to make something clear.

There has also been disagreement about what should count as an operation and
what shouldn’t. For example, Sullivan (2004) contends that no internal relation
distinguishes nontrivially between names, or—though this terminology is neither Sul-
livan’s nor Wittgenstein’s—that internal relations are “permutation-invariant” (see
also Sundholm, 1992, 69). In contrast, Ricketts (2012) conjectures that form-series
disjunctions might serve to simulate predicative higher-order existential general-
ization. Textual issues aside, the proposal would require enumerating the class
of formulas A[a], A[b], . . . for all names a, b, . . ., by means of logically insignificant
features like spelling. However, it is reasonable to assume that the class of operations
should be closed under composition. But then supposing O to enumerate the names
as in Ricketts’ proposal, the result of composing O once with itself would enumerate,
as it were, “every other name”. It may then so happen to turn out that in the actual
world, the thereby enumerated names would denote just those objects which are
spacetime points interior to Russell’s left hand. In another language, differing only
in what would seem to be a logically insignificant manner, the probability would be
zero that Russell’s left hand is definable, but his nose might be definable instead.
Ricketts’ proposal implies that languages which differ over logically insignificant
features are not intertranslatable.

Textual evidence suggests that Wittgenstein does countenance a formal enumer-
ation of names in the Notebooks (e.g., 23.11.16d). But such suggestions largely
disappear in the Tractatus. Disagreements about the precise extent of the concept
of operation may need to be resolved on systematic grounds, which I leave to
further work. In this paper’s formal development, I will adopt a fairly strict policy:
operations will be invariant under permutations of all names except those which
occur as parameters in the operator-sign. The key mathematical results depend
only on operations which are fully permutation invariant.
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1.2.1. Motivations for form-series. Textual evidence suggests that two motives drove
Wittgenstein to supplement the logic of objectual generality and truth-functions
with formal series. Wittgenstein seems to have postulated quite early the presence
of some propositional structure which shares the necessities inherent in a fact. The
postulation gets expressed in a remark, at 4.023, that thanks to some “logical
scaffolding”, a person can “see” how things must be if a proposition is true. An
example from the Notebooks of this sort of visibility might be the following:

For example, perhaps we assert of a patch in our visual field that
it is to the right of a line, and we assume that every patch in our
visual field is infinitely complex. Then if we say that a point in
that patch is to the right of the line, this proposition follows from
the previous one, and if there are infinitely many points in the
patch then infinitely many propositions of different content follow
LOGICALLY from that first one. And this of itself shews that
the proposition itself was as a matter of fact infinitely complex.
That is, not the propositional sign by itself, but it together with its
syntactical application.(Wittgenstein, 1979, 18.6.15g)

A year earlier, Wittgenstein had identified a similar complexity in the fact that a
chair is brown, and sketched a formal series of propositions which would reproduce
it (1979, 19.9.14, pp. 5 and 134).

The second motivation for the form-series device stems from problem of giving
the general propositional form. Although the problem is mentioned already in the
1914 notes of Moore (1979, 113) it is not until April 1916 that there appears a
sketch of Wittgenstein’s eventual approach: “suppose that all simple propositions
were given me: then it can simply be asked what propositions I can construct from
them. And these are all propositions and this is how they given” (16.4.16; cf. T4.51).
So, the notion of form-series here finds a second use, in an account of the way in
which propositions are constructed by elementary propositions through repeated
application of a formal procedure. As Avron (2003) argues, this technical task
provides a natural motivation for adding to first-order logic a device to express
the ancestral. Goldfarb (2012) speculates that it was a conviction that logic must
comprehend the grounds of people’s understanding of logic, and particularly the
underpinnings of recognition of formulas and proofs, which sustained in Wittgenstein
the view that induction is logical.

The two roles of formal series in the pre-Tractatus manuscripts lead to two roles in
the Tractatus. On the one hand, T4.1252, T5.252 and T5.501 invoke and explain an
“immanent” use of formal series in articulating the structure of facts; paradigmatic
of such use is the expression of the ancestral. On the other hand, a “transcendent”
use at T6 purportedly fulfills the promise of 4.51 to say how all propositions can be
constructed from certain simple ones.

Sundholm (1992, 66) remarks of the transcendent use that it is at least superficially
more complicated than the immanent one: it acts on a higher-order relation which
takes as one argument not a single item but a potentially infinite multiplicity. In
consequence, the use of a form-series variable to specify the totality of propositions
flirts with impredicativity (Sundholm, 1992, 70). Why couldn’t that variable be
used to specify the basis of a truth-operation?

Here it may help to note a textual detail. The Prototractatus (Wittgenstein, 1971)
antecedent of the explanation in the T5.252s addresses not the simpler, immanently
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admitted form but the higher-order form instead. So, in deriving the Tractatus from
this earlier draft, Wittgenstein restricted his explanation of formal series to the
immanent use. This clearly deliberate reversal suggests that Wittgenstein eventually
decided to admit only the lower-level form under constructional procedures described
at T6 by a use of the higher-level form.

The separation of “immanent” and “transcendent” form-series variables introduces
a couple of potential responses to the problem about impredicativity raised by
Sundholm. First, it might be proposed that there is some fixed type to which all
meaningful uses of the form-series device must conform, while allowing that the
expression at T6 does not conform to that type. To this proposal, it might be
objected that once a system of propositional construction has become surveyable
by means of a definite, though higher-level form-series variable, the higher-level
expression should itself become susceptible to significant use in a yet broader
collection of sentences. On this second proposal, any characterization of a system
of propositions would yield eo ipso a further method of propositional construction,
which the whole would still transcend. In that case, the general form of the truth-
function given at T6 would be understood as in some sense open-ended (cf. Floyd,
2001). A difficulty for this proposal is that Wittgenstein repeatedly attempts to
justify the postulation of a general propositional form precisely on the grounds that
every possible form of a proposition must be foreseeable (4.5c; see also Wittgenstein
(1979, 21.11.16)). Developing the open-endedness proposal would require clarifying
Wittgenstein’s notion of foreseeability.

1.2.2. Toward an explication. Luckily, the goals of this paper do not extend to expli-
cating the general propositional form in detail. But the above gloss would license one
helpful assumption, that the form-series method mentioned at 5.501 isn’t intended
to handle the apparently more complicated induction of T6. Rather, following the
5.2522s, we might naturally consider only form-series variables constructed from
unary operations. However, even the notion of unary operation is of course still
unclear, and no purportedly exhaustive reconstruction could be uncontroversial.

For several reasons I will take a minimalist approach to the positing of operations.
First, the goal of the paper is to establish lower bounds on the complexity of the
system, not upper bounds. Second, it is nice to see how much can be got from how
little. Third, details of implementation do not just take care of themselves, but
become complicated quickly (see §2.3, particularly Lemma 4).

The minimal analysis of operation I propose to investigate is roughly this. An
operation is presented by a schematic letter together with a formula; the presented
operation returns the result of substituting the operand for the letter in the presenting
formula.

A bit more concretely, suppose that

ξ 7→ Ω(ξ)

is a procedure which, applied to a formula, returns another formula. Then in
something like Wittgenstein’s notation,

JA, ξ,Ω(ξ)K

would signify the series of formulas

A,Ω(A),Ω(Ω(A)) . . . .
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Now, consider a first-order formula B which is ordinary except in that someplace
where an atomic formula might have occurred, there occurs instead a schematic
letter p. This can be supposed to determine, with respect to p, a function

(1) ξ 7→ B[p/ξ]

which, applied to the formula A, returns the result B[p/A] of replacing each occur-
rence of p in B with A. In turn, the notation

(2) JA, ξ,B[p/ξ]K

can be understood to signify the series of formulas

A,B[p/A], B[p/B[p/A]], . . . .

Of course, there are many other reasonable notions of operation besides those of
the form of (1). But I’ll consider just these. This justifies a notational economy:
instead of (2) I’ll just write

JA, p,BK.
As we’ll see in §3, this ostensibly weak reconstruction suffices to express all

notions which can be defined by induction, including in particular the ancestral.
There will actually be various ways of doing it, but they’ll all have in common
that they contain only finitely many variables. Thus, it’s clear that they don’t
express the ancestral in quite the way that Wittgenstein envisaged at 4.1252. And
more generally, it is certainly not the case that every formal procedure hazarded by
Wittgenstein has the form A 7→ B[p/A]. Conversely, however, it is plausible that
everything of that form should count as a formal procedure.

On the present reconstruction, the form-series device does not simulate the
occurrence of infinitely many variables in a formula. The form-series Wittgenstein
gives at 4.1252 to express the ancestral does use infinitely many variables, though
of course inessentially. One might take this to license essential uses too. A familiar
concept which might then become expressible is the quantifier “there are infinitely
many”. The interpretive grounds for such a strengthened line of reconstruction
should be supplemented with some systematic considerations. Wittgenstein does say
that number is a “formal” concept (4.1272); perhaps then “there are infinitely many”
ought to be a logically definable. However, by Wittgenstein’s lights a concept’s being
formal doesn’t imply that it’s definable at all. For example, identity is supposed to
be a formal concept but is not definable (see §1.1.3). Although the logicality of an
infinity quantifier doesn’t seem to be precluded by the text, the quantifier is not
logically definable by induction, yet induction handles all the envisaged applications
of the form-series device for which there is textual evidence.

1.2.3. Programmatic background. Let me conclude this section by sketching some
interpretive context for the two logical eccentricities to be investigated in this paper—
the restriction to Russellian structures and the addition of the form-series device.
In the preface to the book Wittgenstein promises to solve philosophical problems
by clarifying the nature of logic. A superficial survey indicates that the centrally
organizing task of the book is to give a general propositional form, a purported
common nature of whatever can be said or thought. It is not clear at first blush
how such a task could itself complete the understanding of logic which is needed for
the solution to philosophical problems.

In the Tractatus, the purported general propositional form gets presented twice.
At first, Wittgenstein keeps it short:
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[. . . ] The general propositional form is: es verhält sich so und so.
(4.5c)

It’s not at all clear how this could be a philosophical cure-all. In fact there is more
to consider:

A proposition constructs a world with the help of a logical scaffolding,
so that one can actually see from the proposition how everything
stands logically if it is true. (T4.023e)

Such scaffolding may be supposed to constitute the sort of logic whose misunder-
standing is the purported source of philosophical problems. If that’s right, the
solution to philosophical problems might be seen to require attention to the nature
of those manipulations of signs through which signs come to have sense: that is, to
lay out the pieces of scaffolding clearly. Wittgenstein announces such a consideration
of details at T5, which leads at T6 to a refinement of the general propositional form:

A proposition is a truth-function of elementary propositions. (T5)
The general form of the truth-function is [p, ξ,N ’(ξ)]. That is

the general form of the proposition. (T6)

So, Wittgenstein’s promised solution to philosophical problems would appear to
depend, at least in part, on the progress from T4.5 to T6. In particular, the progress
is supposed to clarify just how it could be of necessity that if some propositions
are true, then some other propositions are true as well. Accordingly, possibilities
reappear as distributions of truth-value over propositions. And a fundamental
problem of logic becomes to clarify how the structure of propositions constrains
what distributions of truth and falsehood are possible for them.

As we’ll see, the program leads to a realization of logic whose complexity turns
on the number of objects that exist. In particular, if the number of objects might be
uncountably infinite, then the complexity of the resulting notion of tautology seems to
rule out any reasonable sense in which, after all, logical validity or logical consequence
could be a mere matter of propositional structure. Under the assumption that validity
and consequence can depend only on propositional structure, the significance of
the main results of this paper can be stated as follows: it is only if the universe is
countable that the conception of logic in the Tractatus might be coherent.

2. Framework

We’ve now seen that Wittgenstein’s conception of logic differs from the classical
understanding of first-order logic in at least the following two ways. First, the
notion of structure is subjected to a Russellian constraint, so that the elements
of its domain are in one-one correspondence with the constants of its signature.
Second, the logical vocabulary contains a device for the expression in finite space of
countably infinite disjunctions.

In this section, I’ll assemble a framework for studying those features. After
sketching in §2.1 a suitable variant L of first-order logic, I’ll show in §2.2 that
the Russellian constraint yields an interpretation of some familiar slogans from
the Tractatus. In §2.3, I’ll show that L can be extended to a system LF which
implements an analysis of Wittgenstein’s form-series device. But first some common
background.

A signature S consists, for all k, of a set of k-place predicates and a set of k-place
function symbols. I will say that a signature R is Russellian provided that R contains
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at least one predicate and at least one function symbol, but no function symbol of
arity greater than zero. Function symbols of arity zero are also known as constants.

A structure M for S consists of a nonempty set, its domain D, plus a mapping
which takes k-place function symbols and k-place predicates to k-ary functions and
k-ary relations on D. Let R be a Russellian signature. I will say that a structure M

for R is Russellian, or is a D-structure, if it meets the following further conditions:

• every constant of R is its own image under M, and
• every element of D is the image of a constant.

The convention that constants denote themselves is purely for notational convenience,
and all subsequent results will extend transparently to the general situation in the
Tractatus where denotation is any bijection between the constants and the domain.

Finally, a logic maps a signature to the collection of classes of its structures.
Typically the mapping is determined in two steps. First a syntax generates from
the signature a class of formulas. Then a semantics associates with a formula the
class of structures in which it is true. Let’s now see how this works for L and LF.

2.1. The system L. As indicated in §1.1, the system of the Tractatus can be
understood as including a variant of first-order logic. I’ll refer to this variant as L.
Let me begin by rehearsing its mostly familiar construction.

Given a Russellian signature, first-order logic determines a language like this.
There is a set of individual variables x, y, . . . , x0, y0, . . ., which, given the function
symbols of S, determines the class of terms of the language. Second, the class of
L-formulas is given by an induction with just these clauses:

• R~t is a formula if R is a k-ary predicate and ~t is a list of terms of length k
• t = u is a formula if t, u are terms
• ¬A, (A ∨B), and ∃xA are formulas whenever A,B are formulas and x is a

variable.

I will refer to formulas so generated as the proper formulas of L.
It will be useful to have extended L with a category of schematic letters,

p, q, r, p1, . . ., adding the inductive clause

• every schematic letter is a formula.

Improper formulas will not be assigned semantic values directly. Rather, they
support the implementation of the form-series device in LF (see §2.3).

Just to fix notation, here are some fairly standard niceties. Free, bound, and
binding occurrences of a variable should be taken in the usual way. I’ll write A[x/t]
for the result of replacing each free occurrence of x in A with the term t, unless this
replacement introduces new bound occurrences. Vectors over terms for expressions
indicate finite sequences of expressions of the indicated type. Then A[~x/~t] signifies
the result of simultaneously substituting each element of the sequence ~t for the
corresponding element of the sequence ~x, relettering variables bound in A where
necessary. Finally, A[~a] abbreviates A[~x/~a] where ~x is the canonically ordered
sequence of all variables occurring free in A.

The definition of truth for L is straightforward. I will specialize for the notion
of Russellian structure the approach of Shoenfield (1967). Let R be a Russellian
signature with D its class of constants, and let M be a D-structure for R. Now
suppose that A is a proper closed formula of L. The atomic, equality, and truth-
functional cases are handled as usual. But suppose that A is ∃xB. In this case we
stipulate that
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• M |= ∃xB iff M |= B[a] for some a in D.

2.2. Effects of the Russellian constraint. The specialization to Russellian struc-
tures has deep effects on the notions of validity and consequence, which are nonethe-
less defined in a familiar-looking way.

Definition 1. Let R be a Russellian signature with domain D. A proper closed
formula A over the signature R is D-valid if M |= A for all D-structures M for R.
Likewise, A is a D-consequence of the set X of proper closed formulas, or X ⇒D A,
provided that there is no D-structure M for R such that M 6|= A while M |= B for
all B in X.

With the notion of D-consequence in hand, we can begin to interpret some basic
slogans of the Tractatus. According to 4.26, “the world” is supposed to be completely
described by specifying which elementary propositions are true and which false. Say
that the diagram ∆(M) of a structure consists of the atomic sentences true in M,
plus the negations of the atomic sentences false in M. The remark of 4.26 now
becomes that a structure is axiomatized up to identity by its diagram.

Proposition 1. Let M and M′ be D-structures. If M′ |= ∆(M), then M′ = M.

Proof. Since M and M′ are both D-structures, they have the same domain. So
suppose R is an R-predicate. Then (~a) ∈ RM iff R~a ∈ ∆(M), and R~a ∈ ∆(M) iff

(~a) ∈ RM′ . �

Note that if the notion of D-structure is relaxed so as to require only that
denotation of constants be a bijection, then diagrams axiomatize structures only up
to isomorphism. Subsequent results don’t depend on this difference.

When every structure is axiomatized by its diagram, consequence becomes a
generalization of truth. Or in other words, truth is what follows from a diagram.

Proposition 2. Let M be a D-structure. Then M |= A iff ∆(M)⇒D A.

Proof. Since M |= ∆(M), therefore ∆(M) 6⇒D A if M 6|= A. Conversely, suppose
M |= A. By Proposition 1, if M′ |= ∆(M), then M′ = M, so M′ |= A. Hence
∆(M)⇒D A. �

Proposition 2 records a radical departure from the classical concept of consequence:
for Wittgenstein, the concept of consequence embeds the concept of truth. See
Martin-Löf (1996) for discussion of this approach. Of course, it is the left-to-right
direction of Proposition 2 which does not hold for the classical or fixed-domain
consequence relations.

Another slogan of the Tractatus is that a proposition is a “truth-function” of
elementary propositions. In the present framework, this slogan becomes that each
sentence or its negation is a Russellian consequence of the diagram of a structure.

Proposition 3. ∆(M)⇒D A iff ∆(M) 6⇒D ¬A.

Proof. Of course M |= A iff M 6|= ¬A. But by Proposition 2, ∆(M) ⇒D A iff
M |= A, and M 6|= ¬A iff ∆(M) 6⇒D ¬A. �

Consider, for example, the concept of arithmetical truth. Let R be a Russellian
signature with a couple of three-place predicates, while the set D of constants of R
is countably infinite. Now, let N be a D-structure for R which is isomorphic to the
structure of the natural numbers under the ternary relations of sum and product.



22 MAX WEISS

Proposition 4. Under the D-consequence relation, the set ∆(N) axiomatizes N up
to identity. Thus, the set of arithmetical truths is decidable relative to the set of
D-consequences of ∆(N).

Proof. Immediate from Propositions 1 and 2. �

Of course, there’s nothing special about the structure N in this context; Proposi-
tion 4 holds for any structure whatsoever.

2.3. The system LF. In §1.2, I argued that Wittgenstein envisions logic also to
include a method of expressing some countably infinite disjunctions, though in
finite space. Let’s now develop an extension LF of L, which implements this idea.
The goal is to become able to express a disjunction whose disjuncts are the results
of applying repeatedly some finitely presented “operation”. We will pursue the
proposal of §1.2.2, to consider only operations of substituting the operand for a
schematic letter in a formula.

2.3.1. LF-syntax. The rules for building formulas of LF are precisely those of L,
plus just one more:

•
∨

JA, p,BK is an LF-formula provided that A is an LF-formula and B is an
L-formula.

Let’s call the indicated occurrence of p a binding occurrence of p; its scope will
be said to be the formula B. An occurrence of p is bound iff it falls in the scope of
a binding occurrence of p.

I’ll say that a formula of LF is proper iff it contains no free occurrence of a
schematic letter. Note that an improper formula B may be a subformula of a proper
formula iff B is actually a formula of L. Improper formulas which don’t belong to
L remain only for theoretical convenience. It will be just the proper closed formulas
which receive a truth-value in a structure.

2.3.2. LF-operations. A formula
∨

JA, p,BK is to become understood as a disjunction.
Its terms are to be the results of repeatedly applying the operation presented by
p,B to the initial formula A. The pair p,B presents the operation which substitutes
the operand for each occurrence of p in B. To spell this out, let’s fix some notation.

Definition 2. (i) The formula B[p/A] is the result of substituting A for every
free occurrence of p in B. (ii) If C =

∨
JA, p,BK, then write C0 = A and Ci+1 =

B[p/Ci].

Regarding clause (i), note that operator-signs contain no bound schematic letters,
so the qualifier “free” isn’t necessary for intepreting form-series formulas. But it
will be useful to have the more general concept of substitution on hand throughout.
The clause (ii) begins to spell out how form-series disjunctions present a series of
disjuncts. I will sometimes write JA, p,BKk for (

∨
JA, p,BK)k.

An alternative characterization of iterated substitution will become useful shortly,
in proving the fundamental Lemma 4. Write [p/B]k for k successive applications of
the substitution [p/B].

Lemma 1. Let
∨

JA, p,BK be a formula of LF. Then

JA, p,BKk = p[p/B]k[p/A].
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Proof. Let’s use induction on k. The result is clear for k = 0. So suppose it to hold
for k. Then

JA, p,BKk+1 = B[p/JA, p,BKk]

= B[p/p[p/B]k[p/A]]

= B[p/p[p/B]k][p/A]

= B[p/B]k[p/A]

= p[p/B]k+1[p/A]. �

Before proceeding to the semantics, let’s consider a nontrivial application of
the form-series device. Let R be a dyadic predicate. The ancestral of the relation
expressed by R can be expressed by an infinite disjunction of a series of formulas
like

Rxy

∃z0(Rxz0 ∧Rz0y)

∃z1(∃z0(Rxz0 ∧Rz0z1) ∧Rz1y)

∃z2(∃z1(∃z0(Rxz0 ∧Rz0z1) ∧Rz1z2) ∧Rz2y)

...

These formulas altogether contain infinitely many variables z0, z1, . . ., and so they
can’t be generated merely by an operation of the sort postulated here. But, each
quantifier ∃zk+2 doesn’t bind any variable in the scope of ∃zk. So the indices should
be recyclable by some trick or other. For example, write A0, A1, . . . for the first,
second, . . . terms of the series

Rxy

∃z(Rxz ∧Rzy)

∃z(∃y(Rxy ∧Ryz) ∧Rzy)

∃z(∃y(∃z(Rxz ∧Rzy) ∧Ryz) ∧Rzy)

...

Let B = ∃z(∃y(p ∧Ryz) ∧Rzy). Then

A2k = p[p/B]k[p/A0], and

A2k+1 = p[p/B]k[p/A1]

for all k < ω. So by Lemma 1, the disjuncts Ai of an expression of an ancestral are
precisely the ‘disjuncts’ of(∨

JA0, p, BK
)
∨
(∨

JA1, p, BK
)
.

Of course, I have not yet said what it is for a formula of LF to express something.
Let’s fix that.

2.3.3. LF-semantics. Developing a semantics for LF will take a little more effort. To
construct a definition of truth it is tempting simply to extend the classical definition
directly, evaluating bound variables by assignment or instantiation. Unfortunately,
this does not work. The reason is that, roughly speaking, we would like form-series
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formulas to behave like countably infinite disjunctions—but that’s not what they
are.

To see the difficulty, note that the substitution of terms does not commute with
the expansion of form-series formulas into their infinitary counterparts. Consider,
for example, a formula A =

∨
JFx, p,∃x(Gx ∧ p)K. Applying directly the usual

notion of substitution of terms would yield A[x/a] =
∨

JFa, p,∃x(Gx ∧ p)K, and
so, for example, A[x/a]1 = ∃x(Gx ∧ Fa). On the other hand, A1 = ∃x(Gx ∧ Fx),
and so A1[x/a] = ∃x(Gx ∧ Fx). Of course, quantification doesn’t quite require the
good behavior of substitution, but here the mischief is deeper: the introduction of
form-series into first-order logic disrupts the expected notion of free occurrence of a
variable.

To solve this problem, let’s play a trick: run two stages of evaluation. First expand
form-series variables into the formal series they present, and only then evaluate
the quantifiers. Formulas of LF thus get expanded into an infinitary extension of

first-order logic LF. This results by adding, to the formation rules of L, the clause

•
∨
k<ω Ak is a formula if each Ak is a formula,

and to the evaluation rules of L the corresponding clause

• M |=
∨
k<ω Ak iff M |= Ak for some k < ω.

As with L, I’ll say that a formula of LF is proper if it contains no schematic letters.
We want to define recursively a mapping · · · which expands a formula of LF into

some corresponding formula of LF. To justify the recursion we need a further idea.

Definition 3. The level of a formula A of LF is the pair (iA, jA), where

• iA = 0, if A is atomic or schematic; iA = iB + 1 if A =
∨

JB, p, CK, and
otherwise iA is the maximum of the iB for all immediate subformulas B of
A;
• jA = 0 if A is atomic or schematic, and otherwise jA = k + 1, where k is

the maximum of the jB for B an immediate subformula of A.

The level of A is lower than the level of B iff either iA < iB or iA = iB and jA < jB.

The ordering of levels is clearly wellfounded. Unlike ordinary syntactical com-
plexity, it fulfils the following useful condition.

Lemma 2. Suppose that C =
∨

JA, p,BK is a formula of LF. Then Ck has lower
level than C.

Proof. The result is clear since iCk ≤ iC0 and iC0 < iC . �

Lemma 2 now justifies the desired analysis of form-series expansion.

Definition 4. The form-series expansion of a formula A is the LF-formula

A =



∨
k<ω A

k, if A is
∨

JB, p, CK
∃xB, if A is ∃xB
B ∨ C, if A is B ∨ C
¬B, if A is ¬B
A, if A is atomic or schematic.

In ordinary quantificational logic, a formula is truth-evaluable if closed. That is
not the case in LF, because a formula with no free variables may still contain an
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unbound schematic letter. But a proper closed formula is one that contains neither
free variables nor unbound schematic letters. The following somewhat tedious lemma

guarantees that proper closed formulas expand into proper closed formulas of LF.

Lemma 3. Suppose that A is a merely proper formula of LF. Then A is a proper

formula of LF whose free variables are among those of A.

Proof. We argue by induction on the level of A. Only two cases are nontrivial.

First suppose that A is ∃xB. By induction hypothesis, B is a proper formula of

LF whose free variables are among those of B. Then A = ∃xB is a proper formula
of LF, whose free variables are among those of A.

Now suppose A =
∨

JB, p,CK. By Definition 4, A =
∨
k<ω A

k. Clearly B = A0

must be proper if A is, and the free variables of B are among those of A. Suppose
now that Ak is proper and that its free variables are among those of A. Then
Ak+1 = C[p/Ak]. The free variables of C must be among those of A. And since
A is proper, a schematic letter q can occur free in C only if q = p. Hence Ak+1 is
proper, and its free variables are among those of A. Since each Ai has lower level

than A, it follows by outer induction hypothesis that each A
i
, and hence A itself, is

a proper formula of LF whose free variables are among those of A. �

After that bit of ground-clearing we can extend the definition of truth to LF.

Definition 5. Let A be a proper closed formula of LF. Then M |= A iff M |= A.

2.3.4. Extensionality. A primary goal of this paper is to determine the expressiveness
of LF. We have just seen a definition of truth which does not proceed by syntactical
complexity. So it is not at all obvious that LF can be given a robust semantics.

I’ll now show, however, that LF is extensional. Toward this end, let me first
record a basic lemma, that the expansion of a form-series formula into its infinitary
counterpart commutes with substitution of formulas.

Lemma 4. Suppose that A is proper, and that B[p/A] is a formula of LF. Then

B[p/A] = B[p/A].

Let’s now use the lemma to derive the promised extensionality. Then I’ll prove
the lemma to conclude the section.

Proposition 5. Suppose that C[p/A], C[p/B] are proper formulas of LF, and that
A and B are proper. If

M |= ∀~u(A↔ B)

then
M |= C[p/A]↔ C[p/B].

Proof. By the definition of |= and · · ·, the condition M |= ∀~u(A↔ B) implies

M |= ∀~u(A↔ B).

By the extensionality of infinitary logic it follows that

M |= C[p/A]↔ C[p/B].

So by Lemma 4,

M |= C[p/A]↔ C[p/B].

The result now follows by the definition of |=. �
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Lemma 4 owes its relatively straightforward proof to the parsimonious implemen-
tation of formal series in LF.

Proof of Lemma 4. The goal is to prove that B[p/A] = B[p/A], under the assump-
tion that A is proper. We argue by induction on the level of B. It suffices to handle
the only nontrivial situation, where B =

∨
JC, q,DK.

Let’s distinguish cases according to whether or not p = q. First suppose that
p = q. It is clear that

p[p/D]k[p/C[p/A]] = p[p/D]k[p/C][p/A].

By Lemma 1 together with Definitions 2 and 4, it follows that

B[p/A] =
∨

JC, p,DK[p/A] =
∨

JC[p/A], p,DK

=
∨
k<ω

p[p/D]k[p/C[p/A]] =
∨
k<ω

p[p/D]k[p/C][p/A]

=
∨
k<ω

Bk[p/A].(3)

On the other hand, suppose that p 6= q. Using By Lemma 1 together with
Definitions 2 and 4 again,

B[p/A] =
∨

JC, q,DK[p/A] =
∨

JC[p/A], q,D[p/A]K

=
∨
k<ω

q[q/D[p/A]]k[q/C[p/A]](4)

Let’s now argue by induction on k that

q[q/D[p/A]]k[q/C[p/A]] = q[q/D]k[q/C][p/A].(5)

The case of k = 0 is trivial. So assume (5) to hold for k ≥ 0. Using p 6= q and the
propriety of A, straightforward considerations about substitution imply that

q[q/D[p/A]]k+1[q/C][p/A] = q[q/D[p/A]][q/D]k[q/C[p/A]]

= q[q/D][p/A][q/D]k[q/C][p/A]

= q[q/D]k+1[q/C][p/A].(6)

This proves (5). But (5) together with (4) imply by Lemma 1 that

B[p/A] =
∨
k<ω

q[q/D]k[q/C][p/A] =
∨
k<ω

Bk[p/A](7)

holds in the case that p 6= q as well as in the case that p = q.
However, Bk has lower level than B. So the outer induction hypothesis applies:

Bk[p/A] = Bk[p/A].(8)

From (3), (7), and (8), we obtain the desired conclusion

B[p/A] =
∨
k<ω

Bk[p/A] =
∨
k<ω

Bk [p/A] = B[p/A]. �
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3. Expressiveness

We’ve now got a reconstruction LF of Wittgenstein’s logical system. Let’s see
what it can do. In §3.1, I’ll begin by developing the semantics a bit further, spelling
out what it is for formulas to define relations and operators. I’ll then show that LF

has some further nice properties: one result settles an issue about definability of
infinitary conjunctions, and another gives a semantic characterization of form-series
formulas. In §3.2, I’ll apply that semantic machinery to show that LF is capable of
expressing finitary inductive definitions; we’ll see in particular that the form-series
device yields a categorical analysis of arithmetic. Finally, in §3.3 I’ll sketch the
rather diffuse system of relationships, in point of expressiveness, between LF and
other extensions of first-order logic.

3.1. Definability of relations and operators. Recall that by Proposition 5 of
§2.3, the system LF enjoys a strong form of extensionality: in any reasonable
situation, a subformula can be exchanged with any of its logical equivalents without
change of truth-value. Exploiting extensionality everywhere, we can now complete
the task of wrangling the unruly syntactical manipulations into a denotational
semantics. This will sharpen later talk of expressiveness, for example in the treatment
of induction in §3.2.

By Lemma 3, a formula which is closed and proper has a truth-value. So such
formulas have truth-values as suitable semantic values. What about other formulas?
Regarding those which are proper but not closed, we can follow an approach which
is typical to first-order logic. Take an n-ary relation over a domain D to be a set
of n-tuples of elements of D. As a limiting case, assume that there is exactly one
0-tuple ∅. Now, suppose that A is any proper formula containing exactly k ≥ 0
free variables. Then the formula A defines over M a k-ary relation |A|M over D as
follows:

|A|M = {(a1, . . . , ak) : M |= A[a1, . . . , ak]}.
This stipulation subsumes the treatment of closed formulas, once the truth-values
are identified with the zeroary relations {∅} and ∅ (Krivine, 1998, 63).

To interpret form-series expressions, we also need to make some sense of improper
formulas. Here it is easiest to proceed indirectly. Say that a operator on D is a
function from j-ary relations on D to k-ary relations on D; let’s call the pair j, k its
type. Now, let M be a structure. Where R,S . . . are predicates not in the signature
of M, let M, X, Y, . . . be the result of expanding M to interpret R as X, S as Y ,
and so on. As with the treatment of satisfaction, the notation M, X, Y, . . . tacitly
assumes a lexicographic ordering of the predicates interpreted.

Suppose that A is a formula in the signature of an expansion M, X of M to R.
Then A defines through R over M the operator

|A|R:M : X 7→ |A|M,X .

The type of A is j, k, with j the arity of R, and k the arity of |A|M,X . I will say
that an operator is L- or LF-definable if some formula of L, or of LF, defines Γ.

For example, the formula ∃yRx1 · · ·xky defines through R the operator of type
k + 1, k such that

|∃yR~xy|R:M(X) = {(~a) : M, X |= ∃yR~xy[~a]}
= {(~a) : (~a, b) ∈ X for some b ∈ D}.
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We can now give a method of interpreting improper formulas. It will only be
needed here to interpret an improper formula B with at most one free letter, say p.
Suppose that R is not in the signature of M. The above stipulations imply that the
formula B[p/R~x] defines through R over M the operator

|B[p/R~x]|R:M : X 7→ |B[p/R~x]|M,X .

In this way, an improper formula B is interpreted relative to a substitution of
some R~x for p. The type of the defined operator is j, k where j is the length of ~x,
and k is the number of variables free in B[p/R~x]. Clearly, the choice of ~x affects
the type of the operator defined. In form-series contexts, normal uses will involve
an operator of type j, j for some j.

The following lemma will clarify the semantics of LF’s form-series device.

Lemma 5. Suppose that B[p/C] is a proper LF-formula, that C is proper, and
that the variables free in C are precisely ~x. Then

|B[p/C]|M = |B[p/R~x]|R:M(|C|M).

Proof. Immediate from extensionality plus the notion of defined operator. �

Before applying Lemma 5 to interpret formal series, we just need to smooth out
one wrinkle. Say that a form-series expression JA, p,BK is normal if the variables
free in each JA, p,BKk are precisely the variables free in A. It suffices to interpret
normal expressions:

∨
JA, p,BK is equivalent to A ∨

∨
JB[p/A], p, BK, and the latter

is normal. At last, we interpret a normal form-series disjunction as the union of
results of applying a L-defined operator zero or more times to a defined relation.

Proposition 6. Suppose that JA, p,BK is normal and proper, and that the variables
free in A are ~x. Then∣∣∣∨JA, p,BK

∣∣∣ =
⋃
k<ω

(
|B[p/R~x]|R:M

)k (|A|M) .
Proof. Lemma 5 implies for all k that∣∣JA, p,BKk+1

∣∣ = |B[p/R~x]|R:M (∣∣JA, p,BKk
∣∣)

from which the claim is immediate by induction and the definition of truth. �

We can now take care of a puzzle which has been left hanging for a while. Recall
that in building up LF, form-series disjunctions were adopted as primitive. But what
about conjunctions? As noted in §1.1.1, an adequate reconstruction of Wittgenstein’s
system ought to predict the question is not trivial.

Note that by Proposition 6, it is reasonable to understand a formula C to express
the conjunction of JA, p,BK provided that

|C|M =
⋂
k<ω

(
|B[p/R~x]|R:M

)k (|A|M)
for all M. We now have the following.

Proposition 7. Suppose that JA, p,BK is normal and proper. Then

¬
∨

J¬A, p,¬B[p/¬p]K

expresses the conjunction of JA, p,BK.
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Proof. Suppose that Γ = |B[p/R~x]|R:M. Let’s write X for the complement of X

relative to the domain of M. Let Γ̂ be defined by Γ̂(X) = Γ
(
X
)
.

Applying Lemma 5 twice,

|¬B[p/¬R~x]|R:M(X) = |B[p/R~x]|M,X = Γ̂(X).

By Proposition 6, it follows that∣∣∣¬∨J¬A, p,¬B[p/¬p]K
∣∣∣ =

⋃
k<ω

Γ̂k
(
X
)
.

It therefore suffices to show that⋃
k<ω

Γ̂k
(
X
)

=
⋂
k<ω

Γk(X).

To this end, let’s argue by induction on k that Γ̂k
(
X
)

= Γk(X). The claim is
trivial for k = 0. So suppose it to hold for k. Then

Γ̂k+1
(
X
)

= Γ̂
(

Γ̂k
(
X
))

= Γ̂
(

Γk (X)
)

= Γ (Γk (X)) = Γk+1(X). �

Before pressing further, let’s get a routine syntactical lemma out of the way. In
§2.3, I sketched a method of expressing the ancestral of a relation, which relies on
a trick for recycling bound variables. The following lemma generalizes that trick.
Note that it relies on the presence of an equality predicate. I’ve found this to be
the main obstacle to interpreting LF under Wehmeier’s 2004 semantics of variables.

Lemma 6. Each formula A of LF is equivalent to a formula of the form A′[p/R~x]
such that R does not occur in A′, for any predicate R.

Proof. Let A be a formula of LF. Then there are some sequences ~t1, . . . ,~tk of terms
such that A has the form A′[p1/R~t1] · · · [pk/R~tk], where R does not occur in A′. Let
R~x~ti be the formula

∃~x(ti,1 = x1 ∧ · · · ∧ ti,n = xn ∧R~x),

where x1, . . . , xn = ~x and ti,1, . . . , ti,n = ~ti. Then, R~x~ti is logically equivalent to R~ti.

So by Proposition 5, the formula A is equivalent to A′[p1/R~x~t1] · · · [pk/R~x~tk]. �

3.2. Induction. Let’s now turn to the main goal of this section: to clarify the
relationship between form-series disjunctions and finitary inductive definitions. The
essential idea, attributed by Barwise (1977) to Arthur Rubin, is that a finitary
inductive definition can be regarded as a countably infinite disjunction which contains
only finitely many variables. I’ll aim to show that every finitary inductive definition
can be expressed by a form-series disjunction. To this end, we need first to spell out
what is a finitary inductive definition and what it is for a logic to express one.

Consider some examples.

(A) the empty set is hereditarily finite; every finite set of hereditarily finite sets
is hereditarily finite.

(B) the empty set is hereditarily countable; every countable set of hereditarily
countable sets is hereditarily countable.

Each of these clauses can be used to specify the totality of results of repeatedly
applying a rule to some initially given objects. The rule determines an operation, Γ,
which takes a class X and returns the class Γ(X) of all results of once applying the
rule to any of its elements. The rule is applied again to X ∪ Γ(X), and so on. Write
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Γ∪ : X 7→ X ∪Γ(X). Then the inductively specified totality should certainly include
all elements of the classes X,Γ∪(X),Γ∪(Γ∪(X)), . . ., each class being obtained by
some finite number of applications of Γ. Consider the union of all those classes.
Does it contain every result of applying the rule to its elements? Say that the
induction is finitary if this is so. Thus, example (A) is finitary but (B) is not.

Now for some notation. Let I0
Γ = Γ(∅), let Iα+1

Γ = IαΓ ∪Γ(IαΓ), and for λ a limit

ordinal let IλΓ =
⋃
α<λ IαΓ. If α is the least ordinal such that Iα+1

Γ = IαΓ, then write
IΓ = IαΓ. Induction transforms the operator Γ into the class IΓ. So the induction
determined by Γ is finitary if IΓ = IωΓ .

The notation just introduced assumes induction always to take the empty class
as a “base case”. Of course this implies no loss of generality. Let ΓX(∅) = X and
ΓX(Y ) = Γ(Y ) otherwise. I’ll sometimes write IαΓ(X) for IαΓX

.

Proposition 8. Suppose that Γ is L-definable. Then IωΓ is LF-definable. And so is
the operator X 7→ IωΓ(X).

Proof. Write Γ = |A|R:M, where the variables free in A are ~x. Also suppose that

A = A′[p/R~x], with R not in A′. Clearly, |(p ∨A′)[p/R~x]|R:M
= Γ∪. So using

Proposition 6, ∣∣∣∨J⊥, p, p ∨A′K
∣∣∣M =

⋃
k<ω

I kΓ = IωΓ ,

where ⊥ is any unsatisfiable L-formula. For the second part, take the defining
formula to be

∨
JR~x, p, p ∨A′K. �

As a first application of Proposition 8, let’s reconsider the ancestral. Suppose
that X is a two-place relation. Following (1903, 210), let’s write X1 = X, and write
Xk+1 for the class of all (a, b) such that (a, c) ∈ Xk and (c, b) ∈ X for some c. The
ancestral can now be interpreted as an operator Γ∗ : X 7→

⋃
0<k<ωX

k.

Proposition 9. In the logic LF, the ancestral operator is definable.

Proof. Let A be the formula Rxy ∨ ∃z(Rxz ∧ Rzy). Then |A|R:M :
⋃k
i=1X

i 7→⋃2k
i=1X

i. So Iω|A|R:M(X) =
⋃
k<ωX

k = Γ∗(X). By Proposition 8, it follows that

there is a formula, call it Ancestral , such that |Ancestral |R:M = Γ∗. �

Toward a second example, let’s develop an analysis of arithmetical concepts
within LF. For Wittgenstein unlike for Frege and Russell, this will not be a matter
of specifying relations between distinctively numerical objects. Rather, arithmetical
concepts are techniques for reporting factual relationships (see Tractatus 6.2ff).
Accordingly, let’s now build a method of arithmetical reporting.

Let X be an ordinary two-place relation on D. Then X can be understood to
determine counterparts of arbitary arithmetical relations. For example, consider the
one-place arithmetical relation which holds just of the natural number k. To this
there will correspond a two-place relation on D which holds of just those a, b ∈ D

such that (a, b) ∈ Xk. Similarly, if ρ is the arithmetical relation which holds of just
those j, k, l such that l = j+k, then the choice of X determines as corresponding to ρ
the four-place relation on D which holds of just those a, b, c, d such that (a, b) ∈ Xj ,
(a, c) ∈ Xk, and (a, d) ∈ Xj+k.

Now since numbers are not objects, arithmetical relations are not relations on
objects. Therefore no particular choice of material relation X belongs in the analysis
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of arithmetic. Instead, an arbitrary k-place arithmetical relation ρ will be analyzed
as an operator Γρ of type 2, k + 1:

Γρ(X) = {(a, b1, . . . , bk) : (a,b1) ∈ Xn1 , . . . , (a, bk) ∈ Xnk

for some (n1, . . . , nk) ∈ ρ}.(9)

Specifically, addition and multiplication determine operators Γ+ and Γ× of type
2, 4.

Proposition 10. The addition and multiplication operators are LF-definable.

Proof. In the case of addition, the idea is to show how to build a minimal four-place
relation between initial object, left and right summands, and sum, so that (i) any
initial object has itself as a sum of itself with itself and (ii) any successor of a sum
of left and right summands is a sum both of the left summand with the successor of
the right, and of the right summand with the successor of the left.

Let R,S be two- and four-place predicates not in the signature of M. For the
base case, let A be the formula w = x = y = z. For the induction step, let B be the
formula ∃y∃z(Swxyz ∧Ryy1 ∧Rzz1). Then

|B|S:M,X : Y 7→ {(a, b, c1, d1) : (a, b, c, d) ∈ Y for some c, d

with (c, c1) ∈ X and (d, d1) ∈ X}.

Now similarly, let C be an L-formula which describes the effect of at once taking
successor in the left summand and the sum. Then

Iω|B∨C|S:M,X (|A|M) = Γ+(X).

By Proposition 8, it follows that in the signature of an expansion of M to R, there
is a formula Plus such that |PlusR:M| = Γ+.

Let’s now turn to multiplication. In handling the successor steps, the strategy
will be to refer to addition by passing the buck to the base case. More precisely, I’ll
prove the definability of an operator Γ+× of type 2, 7 such that

Γ+× : X 7→ {(a, b, c, d, e, f, g) : (a, b, c, d) ∈ Γ+(X) ∧ (a, e, f, g) ∈ Γ×(X)}.

For the base case let A be an LF-formula, in the signature of an expansion of M
to a new dyadic predicate R, such that

|A|M,X = {(a, b, c, d, a, a, a) : (a, b, c, d) ∈ |Plus|M,X}.

Now let S be a new seven-place predicate. Then there is a first-order formula B in
the signature of an expansion of M to R,S such that

|B|S:M,X : Y 7→ {(a, b, c, d, e, f1, g1) : (a,b, c, d, e, f, g) ∈ Y for some f, g

with (f, f1) ∈ X and (a, g, e, g1, a, a, a) ∈ Y }.

Similarly, let C be a formula which specifies the effect of taking successor in the left
multiplicand rather than in the right. Then

Iω|B∨C|S:M,X (|A|M) = Γ+×(X).

By Proposition 8 there is, in the signature of an expansion of M to R, a for-
mula PlusTimes such that |PlusTimes|R:M = Γ+×. Existentially generalizing out
the three addition placeholders of PlusTimes gives a formula Times such that
|Times|R:M = Γ×, as desired. �
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Proposition 11. If ρ is an arithmetically definable relation on the natural numbers,
then Γρ is an LF-definable operator.

Proof. It suffices to show that for any arithmetically definable relation ρ, there
is an operator Γρ satisfying (9) above. We argue by induction on the complexity
of formulas in a language of arithmetic with signature 0,′ ,+,×, where ′,+,× are
treated as relations.

The proof is trivial. Let WeakAncestral be the formula x = y ∨ Ancestral . Let
φ? be the image of φ under the translation

• 0(x) 7→ x = w; ′(x, y) 7→ Rxy; +(x, y, z) 7→ Plus[w, x, y, z];
×(x, y, z) 7→ Times[w, x, y, z];
• x = y 7→ x = y; ¬φ 7→ ¬φ?; φ∨ψ 7→ φ?∨ψ?; ∃xφ 7→ ∃x(WeakAncestral [w, x]∧
φ?).

Now define Aφ to be the formula WeakAncestral [w, x1]∧. . .∧WeakAncestral [w, xk]∧
φ?, where x1, . . . , xk are the variables free in φ. If φ defines ρ over a standard model

of arithmetic, then
∣∣Aφ∣∣R:M

= Γρ. �

From a given relation X, the addition and multiplication operators determine
relations which look only as much like addition and multiplication as X looks like
successor. For example, if X looks like the successor relation on the hours of a
clock, then the corresponding addition and multiplication relations look like those
of arithmetic modulo twelve. However, in the odd event that ω itself happens to be
lying around somewhere, then that can certainly be reported. The proposal that
Wittgenstein’s form-series operator ought to yield a categorical axiomatization of
arithmetic is due to Goldfarb (2012).

Proposition 12. Suppose that the domain of M is infinite, and that M contains a
dyadic predicate. There is a single formula A of LF such that M |= A iff M contains
a corresponding copy of the natural numbers under the successor relation. Moreover,
if M |= A, then any counterpart of an arithmetically definable relation is definable
on M.

Proof. Immediate from Propositions 9 and 11. �

After that foray into applications, let’s return to the general theory. The operator
of an inductive definition is often specified by reference to a previously inductively
defined concept: in this way, for example, the usual definition of multiplication
invokes the concept of addition. But the syntax of LF does not allow operator-
signs to contain form-series expressions. So it might be wondered whether this
technique can always be simulated in LF. In the proof of Proposition 10, we saw
that multiplication can be defined from addition by folding the concept of addition
into a second-order parameter of the base case. Let me conclude this section by
sketching a result to the effect that the method is general. Any LF-defined relations
can be treated like primitives of the underlying structure.

Proposition 13. Suppose that Γ is L-definable over M, Y1, . . . , Yn and that Y1, . . . , Yn
are LF-definable over M. Then IωΓ is LF-definable over M.

Proof. By hypothesis, there is an L-formula A such that |A|R:M,Y1,...,Yk = Γ; and
there are LF-formulas B1, . . . , Bn with |Bi|M = Yi for each of the Bi. We may
assume A to have the form A′[p/R~x, q1/S1~y1, . . . , qn/Sn~yn], where A′ is an L-formula
containing none of R,S1, . . . , Sn. Indeed, suppose that the free variables of A are
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precisely ~x, and that the free variables of each Bi are ~yi, with the ~yi distinct from
all ~x and from all ~yj with j 6= i.

For any relations V,W , write V ×W for set of all (~a,~b) with (~a) ∈ V and (~b) ∈W .
And write ΠiVi for V1 × V2 × · · · . Now it would be nice to define in L an operator
satisfying

(10) IkΓ×ΠiYi 7→ Ik+1
Γ ×ΠiYi

for all k. Sadly, such an operator will not in general exist unless IkΓ and each of the
Yi = |B|M are nonempty. So, the construction must be split into cases.

Note that IωΓ = IωΓ∪ . So we can assume that Γ = Γ∪. We can at once get a
trivial case out of the way, namely where Γ(∅) = ∅. For in this case, IωΓ = ∅, and so

|⊥|M = IωΓ .
To motivate the handling of the other cases, let’s first work the end of the proof.

Let e be a selection e1, . . . , em of numbers from 1, . . . , n. For every such e, we’ll aim
to have constructed a formula De such that if it is precisely Be1 , . . . , Bem amongst

B1, . . . , Bn which have nonempty extension, then |De|M = IωΓ. Now let Ee be a
formula which says that it is precisely the Be1 , . . . , Bem with nonempty extension.
Take Ce to be the formula Ee → De. For the trivial case, we can choose C0 to be
the formula ¬∃~xA′[p/⊥, q1/B1, . . . , qn/Bn]→ ⊥. Finally, let C be the conjunction
of C0 with each of the 2n formulas Ce. The construction of the De will then give

the desired result that |C|M = IωΓ .
It remains to build each formula De, under the hypothesis that Γ(∅) and precisely

Ye1 , . . . , Yem are nonempty. Write ~ye for ~ye1 , . . . , ~yem . Let Te be a new predicate
whose arity is the length of ~x, ~ye. Now for 0 ≤ j ≤ n, let

Ge,j =


∃~yeTe~x~ye, if j = 0;

∃~x~ye1 · · · ~yei−1
~yei+1
· · · ~yemTe~x~ye, if j = ei

⊥, otherwise.

Then |Ge,0|M,ΠiYei = Γ(∅), and |Ge,j |M,ΠiYei = Yj if 1 ≤ j ≤ n.
Let Fe be the formula A′[p/Ge,0, q1/Ge,1, . . . , qn/Ge,n]∧Ge,e1 ∧· · ·∧Ge,em . Then

Fe defines over M an approximation of the operator (10), so that

(11) Iω|Fe|Te:M : Γ(∅)×ΠiYei 7→ IωΓ ×ΠiYei .

Since Fe is a formula of L, we can apply the induction of Proposition 8 to define the
operator mentioned in (11). Using A′ and the Bi, it is also clear that Γ(∅)×ΠiYei
is LF-definable over M. So, the relation IωΓ ×ΠiYei is itself definable over M.
Existentially generalizing out the ~ye yields the formula De desired for the case in
question, namely such that |De|M = IωΓ . �

3.3. Comparisons. Let’s now zoom way out, and compare LF with some other
extensions of first-order logic. First, it is obvious from the double-bar semantics that
LF is a subsystem of the infinitary logic Lω1ω which results by adding to first-order
logic countably infinite disjunctions. However, even L∞ω has no wellfoundedness
quantifier (Lopez-Escobar, 1966). Indeed, LF is a subsystem of the fragment Lωω1ω

in which no formula contains infinitely many variables (Barwise, 1977); and Lωω1ω

lacks a quantifier “there are infinitely many”. The system LF is also related to some
subsystems of second-order logic. For example, the Π1

1 fragment of second-order
logic (Π1

1SOL, as defined in Heck (2011)) expresses finitary inductive definitions,
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so it is at least as expressive as LF. But it also has an infinity quantifier, so it is
strictly more expressive. The situation is different with monadic second-order logic
(MSOL), which a priori expresses finitary inductive definitions only of monadic
properties. And indeed, since the monadic second-order theory of the successor
relation is decidable (Büchi, 1960), it follows that unlike LF, monadic second-order
logic cannot define both addition and multiplication from successor. Conversely,
the monadic fragment, like the Π1

1 fragment, does have a wellfoundedness quantifier.
Thus monadic second-order logic and LF are incomparable. Strictly weaker than
all of these systems is the result LA of adding an ancestral operator to first-order
logic. In sum, we have

Proposition 14. Write X → Y to mean that logic Y is strictly more expressive
than logic X. Then

Lω1ω Π1
1SOL MSOL

Lωω1ω

OO

LQ∞

cc ::

LQwf

dd ::

LF

ii

OO

LA.

jj

OO

4. Definability

One way to characterize the consequence relation in first-order logic is through
a universal generalization over structures. Since a structure consists of a maybe
infinite collection of objects plus some relations on the collection, this analysis makes
the consequence relation look unmanageable: to verify that the relation obtains, it
looks as though we’d have to run through an infinity of in general infinite structures
and determine that each is not a countermodel. However, first-order logic admits
a complete notion of proof: accordingly, whenever some formula is a first-order
consequence of some others, some finite pattern of formulas gives an effective witness.
So, it turns out to suffice instead to enumerate the finite patterns of formulas until
a proof appears. This collapse in the complexity of the consequence relation is a
fairly special property of first-order logic. Slight enrichments of the logic tend to
complicate the consequence relation and outrun any system of finite witnesses.

In this section, we turn to the problem of characterizing the complexity-theoretic
effects of the Russellian semantics and of the form-series device. On the one hand,
the Russellian constraint winnows the class of countermodels, so that the answers
to old questions may change. On the other hand, the form-series device introduces
new formulas, hence raising more questions.

In §4.1, I’ll develop an appropriate framework for measuring the complexity of
metalogical concepts of LF. In §4.2 and §4.3, I’ll respectively consider the cases
in which the domain has been chosen to be some fixed finite or infinite collection.
Finally, §4.4 will address the complexity of D-validity and D-consequence considered
prior to a choice of D.
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4.1. Measuring definitions. Let’s start with a simple framework for measuring
the complexity of logical notions, which we can then apply to the notions of D-validity
and D-consequence for L and LF. A standard measure of logical complexity derives
from the theory of computable functions on the natural numbers. Its application to
logic depends on the technique of arithmetization, according to which formulas are
“coded” as natural numbers. In the present context, arithmetization is somewhat
annoying, since it prejudges nontrivial interpretive questions. First, it applies only
if the signature is countable. Since a Russellian signature includes the domain of its
Russellian structures, this excludes structures with uncountable domains. Second,
arithmetization yields the definability of, e.g., the class of names coded by the even
integers. This leads to troubles of the sort indicated in §1.2.

Sundholm (1992, 71) recommends an approach to this problem derived from
Barwise (1975, 78ff): code syntactical constructions not arithmetically but set-
theoretically, treating logical vocabulary as pure sets, and the terms of the signature
as urelements. In a little more detail, suppose S is a structure. Let HF(|S|) be the
class of hereditarily finite sets over the domain |S| of S; thus the elements of HF(|S|)
are generated, given the elements of |S| initially, by repeatedly forming all finite sets
of what’s obtained already. This determines a first-order structure HF(S) whose
domain is HF(|S|), together with the natural membership relation on HF(|S|), the
property of belonging to the domain |S| of urelements, and each of the relations
and functions baked into S itself. I will write HF and HF for HF(∅) and HF(∅)
respectively.

We’ll be specially concerned with HF(S) for S not any old structure, but a
Russellian signature considered as a structure. The class HF(S) will be regarded as
the universe of possible syntactical constructions from the initially given assortment
of nonlogical vocabulary. For simplicity of coding, I will just identify the signature
with its collection D of names. This implies no serious loss of generality. For one
thing, a signature with countably many predicates can be interpreted as a signature
with at most one predicate of each arity: take the jth predicate of arity k to be
the predicate whose arity is the numerical code of the pair j, k. But second, a
language with at most one predicate of each arity can take an atomic formula to
be simply a sequence of terms, so doesn’t need predicates. We will therefore work
over HF(D), where the underlying structure D is a bare class of urelements. Logical
vocabulary should be coded by pure sets. Atomic formulas are coded in HF(D) as
finite sequences of variables and of elements of D. Nonatomic formulas result from
atomic formulas through this or that finitary set-theoretic construction.

The structure HF(D) is of course itself a structure for a first-order language
whose two nonlogical predicates are those of membership and urelementhood, or ∈
and D. The complexity of a class on HF(D) can now be measured by the logical
complexity of the simplest formulas which define it. I’ll just sketch the portion of
the framework we’ll need; the details can be found in Barwise (1975). A formula
is ∆0 if it is built up from atomic formulas by negation, disjunction, and bounded
existential quantification ∃x ∈ y . . .. A formula is Σ1 (or Π1) if it’s the result of
prefixing a ∆0 formula with a sequence of existential (universal) quantifiers; also
the result of prefixing a Πn (or Σn) formula with a string of existential (universal)
quantifiers is said to be Σn+1 (Πn+1). Now the complexity of a subclass of HF(D)
is given by the complexity of the simplest formula which defines it. A class is said
to be ∆n if it is both Σn and Πn.
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The definability-theoretic characterization of complexity of classes of hereditarily
finite sets generalizes naturally the recursion-theoretic measures of complexity on
the natural numbers. Note that each natural number is uniquely represented as a
sum of powers of two, and so it can be taken to code the set of whatever is coded
by the powers (Ackermann, 1937). This gives a bijection between the naturals and
HF. It’s now straightforward to verify that a set of integers is recursive iff it is it
is ∆1 on HF (Barwise, 1975, 47ff), likewise for r.e. and Σ1, and so on. As Kirby
(2009) argues, HF can therefore be seen as a natural home of finitary constructions.

Moreover, the extension of HF to HF(D) preserves the alignment of definability-
theoretic and computability-theoretic classifications. In particular, the introduction
of D does not affect first-order definability-theoretic complexity of pure classes.

Proposition 15. Suppose X ⊆ HF. Then X is Σn on HF iff X is Σn on HF(D).

Proof. In one direction, note that the class HF is Σ1 on HF(D). So if φ is a Σn

definition of X on HF, then the relativization of φ to HF is a Σn definition of X on
HF(D).

Conversely, the downward Löwenheim-Skolem theorem implies that HF(D) has a
countable elementary substructure HF(D)′. Let D′ be the least subclass of D such
that each element of the domain of HF(D)′ belongs to HF(D′). Each element of
HF(D′) is definable on HF(D) by a first-order formula with parameters in D′. So
in fact, HF(D)′ = HF(D′). So any HF(D) has a countable elementary substructure
HF(D′). We may therefore assume that D is countable.

Let p be a bijection from D onto the class of pure sets of the form (0, a). Define
f : HF(D) → HF so that f(a) = p(a) for a ∈ D, and otherwise f(a) = (1, {f(b) :
b ∈ a}). Let HF(D)∗ = {f(a) : a ∈ HF(D)}; let D∗ = {p(a) : a ∈ D}, and let
a ∈∗ b iff b = (1, c) for some c such that f(a) ∈ c. Then f is an isomorphism of
HF(D) onto (HF(D)∗,D∗,∈∗), while D∗,∈∗ are Σ1 on HF. Now, suppose that φ
is a Σn definition of X on HF(D). Let φ∗ be the relativization to HF(D)∗ of the
result of replacing ∈ and D in φ with the definitions of ∈∗ and D∗. Then φ∗ is a
Σn definition of X∗ on HF(D). Moreover, the restriction of f to HF is Σ1 on HF.
Therefore, φ∗[f(x)] is a Σn definition of X on HF. �

4.2. The finite case. Let’s now apply this framework to analyze the metatheory
of L and LF. The first couple of results should be reassuring.

Proposition 16. Suppose D is finite. Then D-validity for LF is ∆1 on HF(D),
and D-consequence for L is Σ1.

Proof. Consider the infinitary expansion A of a formula A. Let B be an unquantified
infinitary formula which results by successively replacing each existentially quantified

subformula of A with the finite disjunction of its D-instances. Now consider an
infinite disjunctive subformula C of B; suppose by induction that all subformulas of
C are finitary. Then C has the form

∨
(D,E[p/D], E[p/E[p/d]], . . .), where D and

E are constructed from some k atomic formulas by negation and finite disjunction,
though E itself may also contain p. By extensionality, Proposition 5, C must be

equivalent to the disjunction of its first 22k

disjuncts, and we can just drop the rest.
Let A↓ be the formula, constructed from atomic sentences by negation and finite
disjunction, which results by eliminating from B in this way each of its infinitary
subformulas. Clearly there is a Σ1-definable function on HF(D) associating A↓ to
A. But validity for finitary formulas is ∆1.
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If D is finite, then D-consequence is compact. So, A is an D-consequence of X
iff there’s a conjunction B of elements of X such that B → A is valid; this can be
expressed as a Σ1 formula on HF(D). �

Let’s now drop the assumption that D is finite. The second reassuring result is
that, if we drop form-series from the logic, and consider only the notion of D-validity,
then this is no more complicated than usual.

Proposition 17. D-validity for L is Σ1 on HF(D), for all D.

Proof. It suffices to consider the case where D is infinite. Let I be a collection of
L-formulas to the effect that “there is at least one thing, there are at least two
things, . . . ”. For A a formula of L, Let TA be an L-formula a 6= b ∧ a 6= c ∧ . . . to
the effect that no two names in A denote the same thing.

We now argue that A is D-valid iff A is a classical consequence of I ∪ TA. In one
direction, suppose that A is not D-valid, so that M 6|= A for some D-structure M.
Clearly M |= TA since A is a D-structure, and M |= I since D is infinite. Hence
A is not a classical consequence of I ∪ TA. Conversely, suppose that there’s a
classical structure M such that M |= I ∪ TA but M 6|= A, where the signature of M
consists just of the nonlogical vocabulary of A. Since M |= TA, it follows by the
Lowenheim-Skolem theorems that M is elementarily equivalent to a structure M′

whose domain is D. Since M′ |= I, therefore M′ is isomorphic to an M′′ such that

aM
′′

= a for each constant a which occurs in A. In turn, M′′ may be expanded to
an D-structure M′′′ such that M′′′ 6|= A.

The completeness theorem for first-order logic implies that A is a classical
consequence of I ∪ TA iff there is a proof of A from I ∪ TA. Formally, however, the
property “being a proof of A from I ∪ TA” is ∆1 on HF(D), so that “having a proof
from T ∪ IA” is Σ1. From the previous paragraph, it follows that the collection of
D-valid formulas is Σ1 on HF(D). �

So, D-validity is never more complicated than classical validity. Does this also
hold for D-consequence? By the compactness theorem, classical consequence is no
more complicated than classical validity. But if D is infinite, then D-consequence is
clearly not compact. For example, a universal generalization is a D-consequence of
the set of its instances, but not of any finite subset. In other words, the complexity
of the D-consequence relation remains to be determined.

4.3. Countability and categoricity. Let’s now fix the domain to be infinite.
What, then, is the complexity of D-validity and of D-consequence for LF in this
case? Recall, from §2.2 and §3.2, that the Russellian constraint and the form-series
device each lead to categorical axiomatizations of the standard model of arithmetic.
I’ll now show that LF categorically axiomatizes another infinite structure as well:
HF(D) itself. This leads to an amusing application of Tarski’s theorem, which
shows that validity is not first-order definable on HF(D). After establishing the
definability of satisfaction relative to truth, we then conclude that in fact LF-validity
is Π1

1-complete. Finally I’ll show that L-consequence is Π1
1-complete as well.

Let M be a relational structure without constants. Now, say that M is D-
axiomatized up to isomorphism by some formulas X iff the formulas X are true
in some D-structure, and if by an addition of constants, M can be expanded to a
structure which is isomorphic to every D-structure satisfying X.
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Proposition 18. Suppose D is infinite. Then HF(D) is D-axiomatizable up to
isomorphism by a single formula of LF.

Proof. We want to find a formula Z such that M |= Z iff M is isomorphic to HF(D),
for all D-structures M. Write D and E for a monadic and dyadic predicate of L;
these can serve, inside L or LF, as counterparts of the predicates “x is an urelement”
and “x belongs to y”.

Note that HF(D) can be seen as the smallest set which contains the empty set
and all urelements, and which is closed under the procedure x, y 7→ x ∪ {y} of
adjoining y to x. This suggests that the class of D-structures which are isomorphic
to HF(D) can be defined by a single formula of LF. Using the predicate E for
the counterpart of membership, it’s straightforward to express the graph of the
corresponding procedure of adjunction:

Adj = ∀w(Ewz ↔ Ewx ∨ w = y).

Let F be a new monadic predicate. Let

ClAdj = ∃x∃y(Fx ∧ Fy ∧Adj)

and let Γ = |ClAdj|F :M. Let M0 = |¬∃yExy|M. By Proposition 8, let Z ′ be a
formula in the one free variable x such that |Z ′|M = IωΓ(M0). And let Z1 = ∀xZ ′.
Thus, Z1 is true in just those M where everything results from things without
elementsM by repeated adjunctionM. Furthermore, let

Z2 = ∀x∀y∃!zAdj[x, y, z])

Z3 = ∃!x(¬Dx ∧ ∀y¬Eyx)

Z4 = ∀x(Dx→ ∀y¬Eyx)

Z5 = ∀x∃y(Dy ∧ ¬Eyx).

And finally let

Z = Z1 ∧ Z2 ∧ Z3 ∧ Z4 ∧ Z5.

It remains to show that M |= Z iff M is isomorphic to HF(D). In one direction,
it is clear that any D-structure isomorphic to HF(D) satisfies Z.

Conversely, suppose that M |= Z. We want to construct an isomorphism from M

onto HF(D). Since M is a D-structure, its domain is just D.
By Z3 and Z4, the class M0 consists of the stuff in DM plus exactly one thing

∅M not in DM. Conditions Z1 and Z2 ensure that the cardinality of D differs by at
most ℵ0 from the cardinality of DM. Moreover if D is countable, then Z5 together
with Z2 ensures that DM is infinite and therefore also countable. So in any case,
there is a bijection f from DM onto D. For a ∈ M0, let h(a) = ∅ if a = ∅M, and
otherwise let h(a) = f(a).

A couple of quick observations before extending h from M0 to all of D. First:
it is routine to show by induction on k that if a ∈ IkΓ(M0), then every EM-chain
descending from a has length at most k. Since D = IωΓ(M0), therefore EM is
wellfounded.

Second: the truth of Z2 implies that adjunctionM is functional; write a # b for the
c such that M |= Adj[a, b, c]. By Z1, each c ∈ D−M0 can be written in the form
c = a # b for some a, b. Now Z2 says that there is exactly one thing whose elementsM

are b together with the elementsM of a. So, c is determined by its elementsM. But
c was arbitrary. So no two setsM have the same elementsM.
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For a ∈ D−M0, we may now define h(a) = {h(b) : EMba}. Let’s argue that h is
an isomorphism of M onto HF(D). Suppose s ∈ HF(D). Clearly if s = ∅ or s ∈ D,
then s is in the range of h. Otherwise s = {s1, . . . , sk}; by induction on rank we
may assume each si = h(ai) for some ai, and so s = h(∅M # a1 # · · · # ak) where #
associates to the left. Conversely, suppose that h(a) = h(b) but a 6= b. Without
loss of generality, we can assume there’s a c such that EMca but not EMcb while
h(c) ∈ h(b), so that h(c) = h(d) for some d 6= c, contradicting the wellfoundedness
of EM. Since h is a bijection, we must therefore also have that h(b) ∈ h(a) iff
EMba. �

We’re exploring the complexity of concepts of the metatheory of L and LF. So
far it has been enough simply to identify formulas of these object-languages with
elements of a certain convenient structure, namely HF(D). At this point we’ll need
to begin making explicit reference to expressions of the formal metatheory. Indeed,
it will also be useful to think of L as containing copies of the first-order expressions
of the metalanguage.

To keep things clear, I will in the rest of this subsection never any longer use
unadorned logical notation to refer to expressions of L or LF. using unadorned
logical notation. Whereas ∃,¬,∨, (, ), x, y, . . . ,∈,D . . ., etc., now refer to expressions

of the metalanguage, only ∃̇, ¬̇, ∨̇, (̇, )̇, ẋ, ẏ, . . . , Ė, Ḋ . . . now refer to corresponding
expressions of L, which are understood as elements of HF(D). Where φ is a formula

of the metalanguage, its L-copy is φ̇: for example if φ is ∃x(x ∈ y → x ∈ z), then φ̇ is

∃̇ẋ(̇Ėẋẏ→̇ẋ∈̇ż)̇. We’ll also consider second-order quantification in the metalanguage;
the coding scheme must then be extended correspondingly. I’ll continue to use
uppercase italic letters informally to range over those elements of HF(D) which code
formulas of L or of LF. Finally, the notions of D-validity and D-consequence have
obvious counterparts as relations on codes of L- and LF-formulas; I’ll refer to these
counterparts as ValidL, ImpliesL, ValidLF and ImpliesLF.

With Proposition 18, we saw that the structure HF(D) can be D-axiomatized
up to isomorphism by a single formula of LF. This implies that the concept of
first-order truth-in-HF(D) is embedded in the concept of LF-validity.

Proposition 19. Suppose that D is infinite. Then, there is a first-order formula θ
in the signature of HF(D), with one extra monadic predicate V, such that

HF(D),ValidLF |= θ[φ̇]↔ φ

for all first-order formulas φ in the signature of HF(D).

Proof. Let Z be the categorical LF-axiom for HF(D), which is given by the proof of
Lemma 18. Let ζ be a formula of the metalanguage such that HF(D) |= ζ[x/a, y/b]
iff a is an LF-formula A and b is Z→̇A. Let θ be the formula ∃y(ζ ∧ V y). Given
that D is infinite, HF(D) is isomorphic to an HF(D)-coded D-structure. Using this
fact, it is routine to verify that θ satisfies the claim of the lemma. �

We are clearly in the vicinity of Tarski’s theorem, which has the following corollary.

Lemma 7. Suppose that θ is a first-order formula in the signature of HF(D) together
with a single new predicate R, such that

HF(D), X |= θ[φ̇]↔ φ.

for every first-order formula φ in the signature of HF(D). Then X is not first-order
definable on HF(D).
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Proof. Suppose to the contrary that X were first-order definable, say by a formula
ψ whose free variables are just ~x. Let θ′ be the result of everywhere replacing R~x
with ψ. Then

HF(D) |= θ′[φ̇]↔ φ

for all φ, and this contradicts Tarski’s theorem. �

Proposition 20. Suppose that D is infinite. Then the class of D-valid LF-formulas
is not first-order definable on HF(D).

Proof. Immediate from Proposition 19 and Lemma 7. �

In fact, something stronger is true. A formula is said to be (explicitly) Π1
1 if it is

the result of prefixing a first-order formula with a string of universal second-order
quantifiers. The official definitions of D-validity and of D-consequence have the form
“for all D-structures. . . ”. Moreover, a D-structure is determined by its diagram. And
under the coding of L-formulas with elements of HF(D), a diagram is just a class
on HF(D). So the official definitions of D-validity and D-consequence are naturally
expressed over HF(D) with Π1

1 formulas. Can this rendering be simplified?
A class P is said to be Π1

1-complete over some structure if for every Π1
1 formula

φ, there’s a first-order formula ψ such that φ[~a] ↔ ψ[P,~a] holds for all ~a in the
domain. Thus, P is Π1

1-complete if every class definable by a second-order universal
generalization of a first-order formula is first-order definable relative to P . Note that
since HF(D) permits coding finite sequences of classes as classes of finite sequences,
it is enough to consider the case of a single universal second-order quantifier.

I’ll now show that for formulas of LF, the concept of D-validity is Π1
1-complete.

To this end, I’ll show that in HF(D), the concept of satisfaction can be reduced to
the concept of truth, and then show that the concept of truth for Π1

1 formulas is
first-order definable relative to D-validity.

Reducing satisfaction to truth is somewhat like trying to replace de re mental
states with de dicto ones (except perhaps in being easier). As is well known,
each element of HF has a parameter-free first-order definition, so in that case, the
satisfaction of a formula by an element can be reduced to truth using something
like Russell’s theory of descriptions. This is not so for elements of HF(D), since the
urelements are indiscernible. But for present purposes, a notion weaker than that of
definition will suffice. Say that sets a, b are isomorphic if they are identical modulo
swapping of urelements. Now let’s say that a formula describes a if it is satisfied
precisely by the sets isomorphic to a. The crucial fact about descriptions will be
this: that no objects satisfying the same description differ over any parameter-free
formula. As I’ll verify below, every element of HF(D) is first-order describable.
Indeed, a “canonical” description of a can be generated from a in a simple uniform
manner. This means that lying within HF(D), there is a definable “road back” from
each object to a bunch of codes of its canonical descriptions.

Lemma 8. There’s a formula δ in the signature of HF(D), such that (i) if HF(D) |=
δ[a, b] then b codes a canonical description of a, and (ii) HF(D) |= ∀x∃yδ[x, y].

Proof. Let’s begin by associating to each element a of HF(D) a formula γa without
parameters which canonically describes it. First, write ν for a one-one association
of variables νa, νb, . . . for some finitely many elements a, b, . . . of HF(D). Now, let’s
construct a formula βa,ν which says of the objects assigned to its free variables that
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they’re arranged as the elements of the transitive closure of a:

βa,ν =

{
Dνa if a ∈ D, and

∀y
(
y ∈ νa ↔

∨
b∈a y = νb

)
∧
∧
b∈a βb,ν , otherwise .

Conjoin βa,ν with each formula νb 6= νc such that b, c are distinct urelements in the
transitive closure of a. Finally, let γa,ν be the result of existentially generalizing
this with respect to each variable νb such that b 6= a. Then HF(D) |= γa,ν [b] iff b is
isomorphic to a, and so γa,ν describes a.

Clearly the construction of γa,ν from a can be first-order definably replicated
inside of HF(D). The formula γa,ν is given relative to the choice ν of variables for
sets. To wash this out, we’ll now take as defined, by induction on rank, the relation
that holds between a and b iff b = γ̇a,ν for some ν. It remains only to conjoin the
requirement that the one free variable of γ̇a,ν is ẋ. The result is a first-order formula
δ in the signature of HF(D) such that

HF(D) |= δ[a, b] iff b = γ̇a,ν for some ν such that ν̇a = ẋ.

Then δ satisfies

if HF(D) |= δ[a, b], then there’s a φ such that b = φ̇ and φ describes a,

for all a, b. Thus, δ defines the graph of a function which takes an element of HF(D)
to a nonempty class of codes of its canonical descriptions. Since every element of
HF(D) has a canonical description, therefore also HF(D) |= ∀x∃yδ[x, y]. �

The definable describability of each element of HF(D) now yields the desired
reduction of Π1

1 satisfaction. The reduction is more general, but I’ll just state the
relevant case. Let TrueΠ1

1
be the class of codes of Π1

1 formulas which are true in

HF(D).

Lemma 9. There’s a first-order formula θ such that

HF(D) |= φ[a] iff HF(D),TrueΠ1
1
|= θ[a, φ̇](12)

for all a and all Π1
1 formulas φ in the signature of HF(D).

Proof. Let δ be the formula provided by Lemma 8, and let T be the predicate
interpreted by TrueΠ1

1
. We can assume that the free variable of φ is x. Let’s work

out how to say that ∃̇ẋ(̇φ̇∧̇γ̇a)̇ belongs to TrueΠ1
1

for some description γa of a.

Let η be the formula ∃w(Tw ∧ w = ∃̇ẋ(̇y∧̇z)̇ ). Then HF(D),TrueΠ1
1
|= η[b, c]

iff b and c are codes of Π1
1 formulas such that ∃̇ẋ(̇b∧̇c)̇ is in TrueΠ1

1
. Let θ be the

formula ∃z(δ[x, z] ∧ η). Noting that any metalinguistic formula φ is parameter-free,
it is routine to verify that (12) holds of θ. �

Proposition 21. If D is infinite, then TrueΠ1
1

is first-order definable relative to
ValidLF.

Proof. Let θ be the formula V(Z→̇x) where V is a predicate not in the signature of
HF(D), and Z is the LF-formula of Proposition 18 which categorically axiomatizes

HF(D). Suppose φ is a first-order formula in the free second-order variables ~X.
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Then

HF(D) |= ∀ ~Xφ iff HF(D), ~P |= φ for all subclasses ~P of HF(D)

iff M, ~P |= φ for all D-structures M ' HF(D) and all ~P ⊆ D

iff HF(D),ValidLF |= θ[φ̇]. �

Proposition 22. If D is infinite, then the class of D-valid formulas of LF is
Π1

1-complete on HF(D).

Proof. Immediate from Lemma 9 and Proposition 21. �

Note that a priori, the definition of D-consequence is Π1
1, since quantification

over structures is essentially just second-order quantification over HF(D). So,
Proposition 22 is as strong as possible. It shows that if the underlying universe is
infinite, then there cannot be a notion of proof whose completeness would, as in
the case of first-order logic, secure any reduction in the complexity of class of valid
formulas. The fact which underlies this is that if the universe is infinite, then LF

can itself characterize HF(D) up to isomorphism.
Needless to say, a concept of proof need not serve only to situate validity or

consequence in the complexity-theoretic universe. For example, the existence of a
sound and complete proof procedure might be held to supply its correlative notion
of consequence with some sort of an explanation or analysis. From that point of
view, the limitive results of this section don’t rule out philosophical importance for
some sound and complete notion of proof for LF.

Under the assumption that D is countable, the languages L and LF can be
translated into countably infinite truth-functional logic. And so they do have a
complete notion of proof (Lopez-Escobar, 1965). Unlike the notion of proof for
classical logic, this cannot show the consequence relation to be any simpler than
what’s given by its a priori specification. Nonetheless, it might be claimed to
demonstrate that the corresponding consequence relation is uniformly realized
through infinitary symbolic patterns, and, therefore, still appropriately grounded
in propositional structure. The philosophical development and evaluation of this
proposal is a difficult problem, which must be left to further work.

Let’s conclude this subsection by evaluating the complexity-theoretic significance
of the restriction to countable Russellian structures independently of the form-series
device. We saw in §2.2 that under D-consequence, every structure is categorically
axiomatized by its diagram. Consequently, a counterpart of Proposition 22 holds
for the notion of D-consequence over L-formulas. The counterpart is somewhat
weaker, because infinite diagrams are not in general definable over HF(D). So within
HF(D), the concept of D-consequence yields the concept of truth-in-HF(D) only
relative to an enumeration of D. The proof mimics that of Proposition 22. Let
(HF(D),D,∈, f) be the result of adding to HF(D) a mapping f of ω onto D.

Proposition 23. Suppose that D is countably infinite. ImpliesL is Π1
1-complete

on (HF(D),D,∈, f).

Proof. By Lemma 9, TrueΠ1
1

is Π1
1-complete on HF(D). Since HF(D) contains

a first-order definable copy of (HF(D),D,∈, f), therefore TrueΠ1
1

must also be

Π1
1-complete on (HF(D),D,∈, f). So it suffices to show that TrueΠ1

1
is first-order

definable on (HF(D),D,∈, f, ImpliesL).



LOGIC IN THE TRACTATUS 43

Suppose that MHF(D) is a D-structure isomorphic to HF(D) itself. Let

∆(MHF(D)) = the diagram of MHF(D).

From Proposition 1 it follows that M |= ∆(MHF(D)) iff M = MHF(D). So there’s a
first-order formula θ such that

HF(D), ImpliesL,∆(MHF(D)) |= θ[φ̇] iff HF(D) |= φ

for all Π1
1 formulas φ . But there is an M, isomorphic to HF(D), whose diagram

is first-order definable on (HF(D),D,∈, f). So, the class TrueΠ1
1

is first-order

definable on (HF(D),D,∈, f, ImpliesL), as desired. �

4.4. Uncountability and nonabsoluteness. So far, we’ve been investigating the
complexity of concepts of the metatheory of L and LF relative to this or that fixed
choice of D. If the universe must be finite, then the notion of tautology is in any
case decidable. If the universe is fixed as some infinite set D, then the notion of
LF-tautology is Π1

1-complete on HF(D). However, from an epistemological point
of view it is not clear that the most significant measure of complexity presumes
a determination of D. For as we’ll see in §5, Wittgenstein appears to demand,
in some sense, that the size of the universe not be prejudged. So, I want now to
investigate what can be said about the complexity of D-validity as a relation between
LF-formulas and arbitrary choices of D, and analogously for D-consequence with
sets of L-formulas.

As we’ve seen, the concept of being D-valid formula of LF can be expressed by a
formula using second-order quantification over HF(D). The definition can also be
phrased as a formula which uses a single first-order universal quantification ranging
over the power set of HF(D). Can that universal quantifier be replaced with an
existential one? By Proposition 22, the existential quantifier couldn’t just range
over HF(D), but we might hope to find some infinitary notion of “proof”, or more
broadly of “pattern”, to witness the concept of D-validity for LF. Could such a
complete, if perhaps quite profligate, notion of proof be established on the basis of
the axioms of set theory?

As before, it’s natural to avoid assuming that D has been coded as some pure
set. Here, let’s adapt ZFC to handle D as a collection of urelements. Add to the
language of set theory a primitive predicate D which corresponds to the property of
belonging to the class D of urelements. Add an axiom to the effect that nothing
in D has an element, and replace the usual axiom of extensionality with an axiom
that things outside of D are the same if they have the same elements. It simplifies
matters to assume that the elements of D form a set, although the result established
here can be extended to the case in which the assumption is dropped.

In the resulting set theory ZFCU, the theory of logics L and LF easily results by
formalizing the construction which earlier took place in HF(D). In particular, the
assumption that D forms a set means that the definition of validity and consequence
become expressible by universal, first-order generalization over subsets of D.

It is clear that the Russellian constraint on the class of all structures implies that
the consequence relation discriminates between domains of different cardinality. For
example, it certainly discriminates between domains of different finite cardinality.
As we’ll now see, the Russellian constraint also implies that the consequence relation
effects transfinite discriminations as well.
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Proposition 24. (i) There is an LF-formula Uncountable such that Uncountable
is D-valid iff D is uncountable. (ii) For any subset s of D, there is a set Ontos of
L-formulas such that Ontos is D-satisfiable iff s has the same cardinality as D.

Proof. (i) Call a binary relation successorlike if it stands to D as the successor
relation stands to the finite ordinals. Let Uncountable be an LF-formula which says
that R is not successorlike. Clearly Uncountable works as desired. (ii) Suppose that
D is infinite, and let s be a subset of D. For some monadic predicate F , let Fs be
the collection of all formulas Fa for a ∈ s, together with all formulas ¬Fa for a 6∈ s.
And, for some dyadic predicate R, let B be an L-formula to the effect that R maps
the F s onto D. Let Ontos = Fs ∪ {B}. Then Ontos is D-satisfiable iff there is a
surjection from s onto D. �

However, the following lemma shows that the condition of uncountability of the
class of urelements cannot be expressed by a Σ1 formula.

Lemma 10. There is no Σ1 formula θ such that ZFCU ` D � ℵ0 ↔ θ.

Proof. Assume to the contrary that θ is a Σ1 formula such that ZFCU ` D � ℵ0 ↔ θ.
Let V(x) formalize “the class of all sets with urelements drawn from x”. For any
formula φ, write φV(x) for the relativization of φ to V(x). And let Tc(x) formalize
“the transitive closure of x”.

Clearly, ZFCU proves that any surjection from ω to a set m belongs to the class
of all sets with urelements drawn from Tc(m). So,

(13) ZFCU ` m 4 ℵ0 → (D 4 ℵ0)V(Tc(m)).

Since D ≤ ℵ0 and θ are Σ1, therefore D 4 ℵ0 → ¬θ is Π1. Moreover, V(Tc(m))
is transitive. But, Π1 formulas are downward absolute for transitive classes (Jech,
2003, 185). So from ZFCU ` D � ℵ0 ↔ θ, it follows that

(14) ZFCU ` (D 4 ℵ0)V(Tc(m)) → ¬θV(Tc(m)).

And (13) and (14) together imply

(15) ZFCU ` m 4 ℵ0 → ¬θV(Tc(m)).

On the other hand, we assumed that ZFCU ` D � ℵ0 → θ. Write φm for the
relativization of φ to m. Using the axiom of choice, a version of the reflection theorem
implies that if ZFCU + φ ` θ then ZFCU + φ ` ∃m(m 4 ℵ0 ∧m is transitive∧ θm))
(Jech, 2003, 165ff). So by the deduction theorem,

(16) ZFCU ` D � ℵ0 → ∃m(m 4 ℵ0 ∧m is transitive ∧ θm).

We also assumed that θ is Σ1, so that θ is upward absolute for transitive classes.
Consequently, (16) implies

(17) ZFCU ` D � ℵ0 → ∃m(m 4 ℵ0 ∧ θV(Tc(m)).

From (15) and (17), it follows that

(18) ZFCU ` D � ℵ0 → ⊥.

But ZFCU + D � ℵ0 is consistent relative to ZF. So (18) contradicts the consistency
of ZF. �
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We can now put the pieces together, establishing the last technical result of this
paper. Let ValidLF formalize in ZFCU the property of being a D-tautology; and
let ImpliesL formalize the relation of D-consequence which holds between a set of
formulas and a formula. Say that a formula is Σ1-definable in ZFCU if it is provably
equivalent to a Σ1 formula. Then

Proposition 25. Neither ValidLF nor ImpliesL is Σ1-definable in ZFCU.

Proof. First suppose that φ is a Σ1 formula such that

(19) ZFCU ` φ↔ ValidLF.

Let ξ be a Σ1 term for the (coded) LF-formula Uncountable of Proposition 24.
Clearly, it is provable in ZFCU that Uncountable is a tautology iff D is uncountable:

(20) ZFCU ` ValidLF[ξ]↔ D � ℵ0.

So by (19) and (20) there would be a Σ1 equivalent of D � ℵ0, and this contradicts
Lemma 10.

Similarly, suppose that ψ is a Σ1 formula such that

(21) ZFCU ` ψ ↔ ImpliesL.

The proof of Proposition 24 (ii) gives a method of constructing, from any subset s
of D, a set Ontos of formulas which is D-satisfiable iff s has the same cardinality
as D. When formalized in ZFCU, this construction yields a Σ1 term ζ in the free
variable x such that

(22) ZFCU ` ∀x(ImpliesL[ζ, ⊥̄]↔ x ≺ D)

where ⊥̄ is a Σ1 term for the code of an L-contradiction. By (21) and (22) it follows
that

(23) ZFCU ` ∃x(ℵ0 4 x ∧ ψ[ζ, ⊥̄])↔ ℵ0 ≺ D.

But the left side of (23) is Σ1, again contradicting Lemma 10. �

By itself, Russellian constraint broadens but does not significantly complicate
the class of validities. However, on classical semantics, it’s compactness which
ensures that if validity is witnessed by finite proofs, then so is consequence. And
D-consequence is not compact, because for example a universal generalization is
a D-consequence of the class of its instances. So D-consequence might turn out
to be more complicated than validity. And indeed, the effects are as strong as
possible: D-consequence permits no simplification of the analysis of consequence
through universal generalization over structures. On the other hand, in the case of
D countably infinite, the form-series device makes the concept of validity already
that bad regardless of the Russellian constraint. But, the form-series device also
has the effect of concentrating, into the notion of validity, the complications of the
consequence relation which follow from the Russellian constraint. This implies, in
the general case, that the concept of tautology, or of logically valid formula, is not
even Σ1 definable in set theory. So in the general case, it is not just that we cannot
replace the search through the collection of structures on some infinite domain with
an enumeration of finite proofs. Rather, validity cannot in general be witnessed
by any system of mathematical constructions which are identifiable by properties
intrinsic to the constructions themselves. It depends essentially on the extrinsic
matter of which bijections happen to exist in the mathematical universe.
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5. Conclusion

Let me now summarize the results of the previous sections, and then sketch
an implication which I take to be of philosophical significance. We’ve seen that
logic as Wittgenstein conceives it in the Tractatus differs from classical logic in
two ways. The presence of the form-series device contributes to LF the capacity
to express induction, and therefore allows categorical finite axiomatization of rich
countable structures. Wittgenstein also relativizes the notion of structure to some
fixed domain D of what has a unique name. This doesn’t, by itself, significantly
complicate the notion of validity. But it breaks the compactness theorem: indeed, the
D-consequence relation embeds the concept of truth. When the two departures from
classical logic are combined, then we obtain the notion of D-validity for LF-formulas.
And this notion turns out to depend on the distinction between D countable and
uncountable.

I want now to consider the significance, for the Tractatus, of distinctions in the
cardinality of domain. In the Tractatus, the question of the number of existing
objects has a problematic status. Specifically, Wittgenstein distinguishes in the 5.55s
between logic and its “application”. The application of logic supposedly “decides
what elementary propositions there are” (5.557a). At the same time, “logic and
its application must not overlap” (5.557e), because logic “cannot anticipate” what
lies in its application (5.557b). Now, the totality of objects, and the totality of
elementary propositions, are alike in that each constitutes, or makes manifest, some
limit to “empirical reality” (5.5561). So, the size of the universe would appear to
belong to the “application” of logic, rather than to logic itself; and so it could not
be anticipated by logic alone (see also 5.55b, together with 5.551a).

It would seem obvious that Wittgenstein wants to maintain that relations of
consequence, contradictoriness, and so on do belong to logic (6.1ff). For example,
it might be supposed to belong to logic that the disjunction of some proposition
with its negation is a tautology. Among what belongs to logic, then, Wittgenstein
would include the consequence relation, but exclude the size of the universe. From
what became the classical understanding of the consequence relation, this pair of
constraints seems quite natural. Indeed, the classical understanding would exclude
the size of the universe from logic: no proposition “there are at least n F s” classically
entails the proposition “everything is F”, yet nor is any proposition “there are at
least n things” a logical truth. But as we’ve seen, Wittgenstein restricts the class of
all structures to those with some common underlying domain. So from the Tractatus
point of view, if the number of objects is finite, then the consequence relation would
evince this; likewise it could be seen that the number of objects isn’t any particular
finite n. Wittgenstein maintains that if infinitely many objects exist, then this fact
would show up in the extent of the consequence relation. Thus, if consequence
belongs to logic, then something that would make itself felt in logic is the size of
the universe.

We’ve now reached something of an antinomy. It’s natural to understand 5.557
as denying that logic might by itself anticipate the number of objects. But as we’ve
just seen, logic would anticipate the number of objects if the consequence relation
belonged to logic.

I’m inclined to conclude that for the early Wittgenstein, the consequence relation
does not belong to logic without qualification. Instead, the consequence relation
emerges in the application of logic. It is in the application of logic, for example, that
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“formal-logical properties of language and the world” would get shown through the
fact that a given proposition of logic is a tautology: “the fact that a tautology is
yielded by this particular way of connecting its constituents characterizes the logic
of its constituents” (6.12b). The consequence relation belongs to logic only once
logic is taken together with its application.

One thing that is fairly clear, though, is that applying logic was not a job
Wittgenstein undertook in the Tractatus itself: he gives only an illustrative example
at 6.3751. So, he cannot coherently have intended the consequence relation itself to
be revealed in the Tractatus. The question then arises: in what respect could that
book have been intended to illuminate logic?

As I suggested toward the end of §1.2.3, Wittgenstein’s promised solution to
philosophical problems appears to depend on the evolution of the general proposi-
tional form: it begins with the gnomic “this is how things are” at 4.5, but becomes
the “general form of the truth-function” at 6. Specifically, philosophical progress
would, in any particular case, involve rewriting propositions in such a way that their
logical interrelations would be made manifest in the resulting propositional signs.
For example, rewriting “the mug reflects white light” as a conjunction one of whose
conjuncts is “the mug reflects red light” would make manifest that the former entails
the latter. Wittgenstein’s rather attenuated conception of philosophical progress
would seem to turn on the conviction that analysis is possible: that the totality of
propositions can be rewritten in such a way that all modal interdependence between
propositions would be made manifest merely in the signs for them. Thus it would
become clear that “the only necessity that exists is logical necessity” (6.37).

This conception of philosophical progress plainly requires some independent
standard for a logical relationship’s being made manifest. Suppose people recognize
some propositions p and q to be such that p entails q, and suppose some purported
analysis to rewrite them in the signs A and B. The adequacy of such an analysis
would be determined at least partly by whether the entailment of q by p is shown
in the new signs A,B. Without such a standard, the adequacy of the purported
analysis would be indeterminate.

But what is it, exactly, for something to be made manifest, or shown? It is
unlikely that Wittgenstein could have meant by this anything like “made evident”
in an epistemic sense. He wrote that “it is remarkable that so exact a thinker as
Frege should have appealed to the degree of self-evidence as the criterion of a logical
proposition” (6.1271). The assimilation of epistemology to psychology tells against
evidentness as a criterion for logical consequence. Moreover, the number of objects
that exist is supposed to be shown (Wittgenstein, 1979, 19.8.19): but the epistemic
status of the question of the number of objects is, to say the least, obscure.

Let’s say that a feature of symbols is symbolically realized if it supervenes
purely on what makes anything into those symbols. I propose that Wittgenstein
took something’s being shown to require that it be symbolically realized. The
philosophical purpose of the evolution of a general form of the proposition at 4.5
into a general form of the truth-function at 6 can then be understood at least in
part as responding to the demand for a univocal account of the symbolic realization
of logical consequence.

Wittgenstein deigns to no concerted application of logic himself. So, if he had
achieved his goal in the general form of the truth-function, then the symbolic
realization of consequence would have to have been identified independently of the
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application of logic. It is tempting to conclude that this could be achieved. For
example, the contradictoriness of any proposition with its negation would be so fixed,
no matter what the proposition’s ultimate analysis reveals it to be. Another example
of something fixed by Wittgenstein’s purported logical achievement would be this:
that ∀xA would follow from A[a], A[b], . . . under the condition that A[a], A[b], . . .
are all the instances of ∀xA. More generally, as I understand it, the Tractatus
presents an attempt to show how the entirety of the consequence relation might be
fixed, conditional on any determination of the totality of objects. Having proposed
an account of the symbolic realization of logical consequence, Wittgenstein then
could declaim a priori that logic, in its application, makes manifest “formal-logical
properties of language and the world” (6.12).

The propositions show the logical form of reality.
They exhibit it. (4.121e-g)

Thus a proposition fa shows that in its sense the object a occurs,
two propositions fa and ga that they are both about the same
object.
If two propositions contradict one another, this is shown by their
structure; similarly if one follows from another, etc. (4.1211)

Within this sketch of Wittgenstein’s logical aims in the Tractatus, the complexity-
theoretic analyses of §4 assume a new significance. Compatibly with those analyses,
is there some way in which mere propositional structure could be taken to make
manifest the D-validity of all D-valid formulas, no matter the size of D? Wittgenstein
suggested that axiomatic proofs represent progress toward this goal:

Whether a proposition belongs to logic can be calculated by calcu-
lating the logical properties of the symbol.

And this we do when we prove a logical proposition. For without
troubling ourselves about a sense and a meaning, we form the
logical propositions out of others by mere symbolic rules (6.126a,b).

We’ve seen that if the number of objects is infinite, then it is completely out of the
question that some notion of finite proof could suffice to demonstrate the validity
of all valid formulas. But Wittgenstein himself couldn’t have rested content with
axiomatic proof, because he held that validity, or tautologousness, is only a limiting
case of the broader phenomenon of logical consequence.

If the truth of one proposition follows from the truth of others, this
expresses itself in relations in which the forms of these propositions
stand to one another, and we do not need to put them in these
relations first by connecting them with one another in a proposition;
for these relations are internal, and exist as soon as, and by the very
fact that, the propositions exist. (5.131)

Toward an account of the consequence relation Wittgenstein gives only this
seemingly proto-Tarskian sketch:

If the truth-grounds which are common to a number of propositions
are all also truth-grounds of some one proposition, we say that the
truth of this proposition follows from the truth of those propositions.
(5.12)

Unfortunately, this apparent analysis falls under a remark that “truth-functions can
be arranged in series” (5.1a). So it looks to be lodged in a notational proposal which
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is at best incomplete. The proposal is that some propositions can be written as tables
of agreement and disagreement with the distributions of truth-value over elementary
propositions (4.442). Surely, Wittgenstein couldn’t say that all propositions can be
so written, for a priori the number of elementary propositions might be infinite.
The details of the construction of a general form of the truth-function through
iterations of joint denial are evidently driven by a demand that propositions can
be written down even if they have infinite logical ancestry. So, the truth-tabular
symbolism does make some logical consequence manifest. But like a proof system
for first-order logic, it is only partial.

The question then remains: is there some very loose, even wildly profligate,
notion of symbolic pattern, which could serve to make manifest all instances of the
D-consequence relation, or even the D-validity of all D-valid formulas, no matter
the size of D? The results of §4.4 suggest that the answer to this question is no.
We may suppose the relevant “pattern” to be exemplifiable by sets at any level of
the cumulative hierarchy, and require only that exemplification of the pattern by
a set be discernible by a first-order formula whose quantifiers are restricted to the
set’s transitive closure. No first-order formula could, in this way, univocally discern
a pattern which would be adequate to Wittgenstein’s notion of consequence, not
without prejudging the number of objects. At least, that’s the drift of Proposition
25. The underlying problem is that Wittgenstein’s concept of consequence detects
the difference between countable and uncountable domains: by Proposition 24, there
is even a single LF-formula which is valid iff the domain is uncountable. Whether
some set is countable doesn’t depend only on its internal structure, but on the
extrinsic matter of which functions happen to exist in the mathematical universe.
The sensitivity of consequence to distinctions in the transfinite suggests that there
is no reasonable notion of symbolic pattern whose exemplifications could serve to
realize all instances of the consequence relation—at least not without some a priori
constraint on the number of objects.

Thus, the reason Wittgenstein’s concept of consequence cannot in general be
realized in some univocally specified kind of symbolic pattern is that so conceived,
consequence depends on distinctions of transfinite cardinality. It might be wondered
whether this sensitivity to the transfinite could be trimmed away without great loss.
But its origins were already recorded way back in Proposition 2: that Wittgenstein’s
concept of consequence embeds the concept of truth. In turn, the embedding of
truth in consequence is immediate from the book’s core thesis, that a proposition is
a truth-function of elementary propositions. So the results are deeply rooted.

To conclude, Wittgenstein’s early conception of philosophical progress requires
some independent standard for a logical relationship’s being made manifest in
signs. The evolution of the general form of a proposition into the general form of
a truth-function looks like a gesture toward such a standard. Yet that attempt
proceeds without any concerted application of logic, and hence avowedly without
prejudice to the size of the universe. The results of this paper suggest, however,
that without prejudging the number of objects, no single concept of manifestation
could be adequate to Wittgenstein’s concept of consequence.

6. Further work

1. formal procedures. The implementation in LF of the form-series device does not
accommodate everything Wittgenstein might have accepted as a formal procedure.
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For example, LF does not allow operator-signs to contain form-series expressions;
nor does it accommodate many-place or multigrade operations. Could a richer
operation-scheme maintain a tractable semantics but yield a more expressive logic?

I have also not attempted in this paper to clarify the interaction between the
form-series device and the interpretation of objectual variables which is developed
by Wehmeier (2004). The example of §2.3 gives an expression of the ancestral under
the exclusive interpretation. But Wehmeier’s translation schemes do not extend
straightforwardly to LF, and I do not know how to avoid the use of equality in
proving the adequacy of LF to finitary induction (see Lemma 6 and Propositions 8
and 13).
2. the bar notation. Wittgenstein introduces a bar notation, which is said to
convert a propositional variable ξ into an expression ξ of the plurality of its values
(see especially 5.501). In §2.3, we saw that form-series contexts complicate the
interpretation of free variables; I handled the problem somewhat brutally by dividing
semantic evaluation into two stages. A more interesting approach is to introduce
Wittgenstein’s bar notation into the object-language. In a propositional sign, each
enclosed propositional variable would have a bar written somewhere above it, with
the priority of the expansions indicated by the vertical order of the bars. It is
tempting to speculate that Wittgenstein’s use of a bar, rather than an “inline”
device, represents an attempt to escape the parse tree in some such way as we’ve
seen 5.501 to require.
3. philosophy of arithmetic. In this paper, I’ve argued that the form-series device
permits definitions by induction on ordinary dyadic relations, like adjacency or
temporal priority. Any such ordinary relation thereby generates material analogues
of the system of finite ordinals, together with addition, multiplication, and indeed
all arithmetically definable relations. Within this account, ordinal concepts are
generated by an operation of taking the relative product of a relation with itself. So
understood, “a number is an exponent of an operation” (6.021). Frascolla (1997)
offers another perspective on 6.021, developing an operational interpretation of
the equational fragment of Peano arithmetic; he concludes that the interpretation
cannot be extended to quantified arithmetical formulas. Can the two appearances
of arithmetic be somehow understood as complementary?
4. a presumption of countability? Some commentators do already appear to find
Wittgenstein to be committed in the Tractatus to the domain’s countability (Ricketts,
2012). As I’ve already noted, there exist complete notions of “proof” for countably
infinite truth-functional logic. The N -operator lends itself to elegant proof-theoretic
analysis, particularly through a transfinite generalization of “bilateral” proof systems
(Smiley 1996 and Rumfitt 2006). Could some such notion be relevantly found to
underwrite a realization of logical consequence by symbolic patterns? And can
a presumption of countability be squared with Wittgenstein’s insistence that the
number of names not be prejudged?
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