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For over thirty years I have argued that all branches of science and scholarship would 

have both their intellectual and humanitarian value enhanced if pursued in accordance 

with the edicts of wisdom-inquiry rather than knowledge-inquiry. 

What, then, about mathematics?  How would the intellectual and human value of 

mathematics benefit from being pursued within the framework of wisdom-inquiry?  Is it 

not wildly implausible to suppose that this august field of mathematics could somehow 

benefit from a dose of wisdom-inquiry?  Would it become more rigorous?  Or more 

useful?  Would wisdom-inquiry help mathematicians prove theorems, or deploy their 

mathematical results in wiser ways?   

Is not mathematics, in any case, almost paradigmatic of knowledge-inquiry?  It is 

here, after all, in pure mathematics, that we have proven knowledge, secure knowledge, 

something we do not have in any other field (except logic, itself perhaps a branch of 

mathematics).  It almost looks as if mathematics is a counter-example to, a refutation of, 

my general thesis. 

A second look, however, might incur some doubts.  It may begin to seem highly 

implausible that pure mathematics can be regarded as a branch of knowledge at all. 

 

Problems of Platonism 

Suppose we ask: What is pure mathematics knowledge about?  One answer is 

Platonism: mathematics embodies knowledge of the abstract entities it purports to be 

about: number, spaces (of various kinds), groups, fields, functional relationships - 

ultimately, perhaps, sets and relationships on sets.  Immediately, something very odd 

arises.  No one has ever seen any of these abstract mathematical entities.  We have no 

real evidence for the existence of these entities whatsoever.  How is it possible for there 

to be absolutely secure, proven knowledge of entities which we have no grounds 

whatsoever to hold exist?  Does not Platonism demand that mathematics (and in what 

follows I mean pure mathematics) is held to be wildly speculative and conjectural - far 

more so than the wilder flights of theoretical physics? 

Plato might have replied that mathematicians do directly “see” these mathematical 

entities with the mind’s eye – proofs helping the mind’s eye to see more clearly.  But this 

kind of intellectual intuitionism is hardly very plausible even when put forward in the 

context of the mathematics of Plato’s day – elements of Euclidean geometry (to speak 

somewhat anachronistically).  It is wildly implausible when put forward in the context of 

modern mathematics, with its extremely abstract entities that resist all attempts at 

visualization, and with notions of proof that seem to have little to do with aiding mental 

visualization.  Mathematicians may develop mental images associated with the 

mathematics they work in, and these images may have a certain heuristic value, but 

mathematical results can hardly be said to be about these images, proofs acquiring their 

certainty from the fact that mathematicians “see” these entities with the mind’s eye.  

Either mathematics is about mental images per se, or it is about independently existing 
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non-mental entities of which we form mental images.  If the former, mathematics has to 

be put alongside descriptions of other imaginings, dreams and daydreams, as having the 

same character and epistemological status, a branch of phenomenology or psychology.  If 

the latter, imagining such entities can provide no grounds whatsoever for holding that 

these entities really do exist: mathematics, interpreted to be about such entities (for whose 

existence there is no evidence whatsoever) would be irredeemably speculative.  

Platonism must plump for one or other option, but neither does justice to the actual nature 

of mathematics.  Platonism is, it seems, untenable. 

 

Alternatives to Plato 

Much of 20th century philosophy of mathematics has been concerned to find an 

alternative to Platonism, one which rescues the idea that mathematics is a branch of 

secure, proven knowledge from the collapse of Platonism.  All these attempts, in my 

view, fail. 

The best known, perhaps, is the logicism of Frege, Russell and Whitehead.  This 

holds that mathematics is an elaboration of logic.  Logicism is generally held to fail for 

technical reasons.  In deriving mathematics from logic, Russell and Whitehead were 

obliged to introduce postulates that could hardly be judged to be a part of logic.  There is 

in my view a very much more serious objection to logicism that is never mentioned in the 

literature.  Logicism, if successful, would reveal mathematics to be utterly intellectually 

disreputable.  For, to put it bluntly, it would reveal that mathematics amounts to nothing 

more than increasingly intricate, obfuscating ways of asserting “p or not p” (which one 

may take to be a simple, paradigmatic truth of classical logic).  What could be more 

intellectually disreputable?  An elementary principle of intellectual integrity is that one 

says what one has to say in as simple, transparent a way as possible.  All of mathematics 

would violate this principle horribly, if logicism were correct. 

A modified version of this view, which might be attributed to Cantor or, perhaps with 

more justice, to the composite French mathematician Bourbaki, holds that mathematics is 

just elaborations of set theory.  This is more plausible.  A great deal of mathematics is 

formulated, at a fundamental level, in the language of set theory.  I will criticize this 

view, briefly, later on. 

Another attempt to rescue mathematics as knowledge from the downfall of Platonism 

is intuitionism.  This can be attributed to L. E. J. Brouwer.  According to intuitionism, 

mathematics is to be interpreted as being about, and embodying knowledge of, our 

mental constructs.  Intuitionism is of some interests to mathematicians because it rejects 

“p or not p” of classical logic, and regards reductio ad absurdum proofs as invalid.  It is 

of technical interest to see how much of classical mathematics can be derived from the 

impoverished means of intuitionism.  As a view about the nature of mathematics, 

however, intuitionism seems straightforwardly untenable, for the reasons given above. 

Another, almost desperate, attempt to construe mathematics as knowledge after the 

downfall of Platonism goes by the name of formalism.  According to formalism, 

mathematics consists of nothing more than uninterpreted symbols, as written down on the 

page, manipulated by means of specified rules.  Formalism hardly succeeds in doing 

justice to the profound significance and value of mathematics.  Nor does it, in the end, 

succeed in representing mathematics as knowledge.  Formalism is often attributed to 

David Hilbert but, in my view, this is a mistake.  Hilbert held that it was useful to regard 



axiomatic systems as uninterpreted systems of symbols manipulated by precise rules – in 

order to prove meta-theorems about such systems, such as those having to do with 

consistency and completeness.  But this does not mean Hilbert held formalism to give the 

correct account of mathematics.  When told a mathematician had given up mathematics 

to write novels, Hilbert remarked “Ah, he did not have enough imagination to be a 

mathematician” – hardly the comment of a formalist. 

Attempts to construe mathematics as a branch of knowledge have not, it seems, met 

with great success.  The paradigmatic case of knowledge looks, on closer inspection, 

rather less clear cut than one might suppose. 

 

Wisdom-Inquiry Mathematics 

Reject knowledge-inquiry and accept wisdom-inquiry instead, and we are no longer 

obliged to construe mathematics as a branch of knowledge.  What, then, is it?  I suggest 

that we should see mathematics as the enterprise of developing and unifying problem-

solving methods, the enterprise of exploring and delineating problematic possibilities.  

Mathematics is not about anything actual; it is about (problematic) possibilities.  Given a 

piece of axiomatized mathematics - Euclidean geometry say - what matters is not whether 

anything, X, actually exists - such as physical space - which is such that the axioms 

and theorems of Euclidean geometry, when interpreted to be about X, are true of X.  

What matters, rather, is that if anything, X say, exists which is such that when the axioms 

of Euclidean geometry are interpreted as being about X they are true of X, then the 

theorems of Euclidean geometry are true of X as well.  That is what matters to the 

mathematician.  Not that any such X exists, but if such an X exists, the theorems will be 

true of X (granted that the axioms are). 

Pure mathematics does not embody knowledge of anything.  Rather, it is a treasure 

trove of inter-related problem-solving methods, highly significant and useful for a variety 

of reasons and purposes, a systematic survey of significant problematic possibilities.  

Mathematics is meaningful but indifferent, at a formal level, as to whether anything 

actually exists which makes it true.  This view, incidentally, does justice to Hilbert’s 

remark about imagination.  One needs imagination in order to see the possibilities that a 

piece of mathematics would be about were these possibilities to exist in actuality. 

 

The Problem of Mathematical Significance 

My view is that 20th century philosophy of mathematics has been preoccupied with 

the wrong problems.  There is a fundamental problem that has been ignored, namely: 

How do we distinguish between significant and insignificant mathematics?  One could 

imagine endlessly many branches of mathematics existing corresponding, for example, to 

various board games like drafts and chess.  One would have theorems stating: given such 

and such a position, the shortest number of moves required for mate by white is six.  This 

kind of mathematics is insignificant, and is to be contrasted with what G. H. Hardy would 

call "real" mathematics: number theory, analysis, geometry, algebra, topology, and so 

on.  What is the basis for this distinction?  Given the modern proliferation of specialized 

kinds of mathematics which many mathematicians regard as "trivial" or insignificant, and 

the danger of mathematics being swamped by this sort of thing, this problem of 

significant mathematics is of practical importance for mathematics itself, as well as being 

important for our understanding of the nature of mathematics. 



One could think that Platonism attempts to solve the problem.  Significant 

mathematics is that part of mathematics which is about real, Platonic, existing 

mathematical entities, while insignificant mathematics is insignificant because it is not 

about anything.  (Roger Penrose holds a version of this view: see his The Road to 

Reality.)  But this attempted solution does not work.  We have no reason whatsoever for 

holding that those and only those entities corresponding to significant 

mathematics actually exist.  Besides, significance is a matter of degree, and may well be 

multi-faceted, whereas the distinction existence/non-existence is sharp, absolute, and uni-

faceted. 

In order to solve the problem we need to bring in values, and relate mathematics to 

values.  My criticism of knowledge-inquiry is that it suppresses highly problematic, 

influential assumptions concerning metaphysics, values and politics.  This is true of 

physics, and natural science more generally.  And it is true of mathematics. 

If we view mathematics from a knowledge-inquiry perspective, rigour seems to 

require that anything as irrational, or non-rational, as values must be excluded from 

mathematics.  Allowing values to influence what goes on in mathematics could, it seems, 

only subvert mathematical rigour. 

But viewed from a wisdom-inquiry perspective, it is all the other way round.  We 

need to bring values into mathematics in order to make sense of, and improve, our 

judgements about what is mathematically significant and insignificant.  If we exclude 

consideration of values from mathematics, we deprive ourselves of any rationale for 

making the distinction.  It will become a mere matter of subjective taste - more or less the 

situation today. 

So what is the solution to the problem of mathematical significance?  It is vital to 

remember the links between mathematics and life.  Mathematics begins with the 

discovery that a problem (or set of problems) in one area of life or activity is similar in 

certain respects to a problem (or set of problems) in another, possibly apparently very 

different area - so that solutions to problems in one field can be used to solve problems in 

the other field.  An early example of this is the discovery that problems connected with 

counting sheep are similar to counting people, stones, or twigs.  Another early, but 

mathematically much more profound, example is the discovery that problems connected 

with counting are, in some respects, similar to problems connected with measuring 

lengths, areas and volumes.  This led to the discovery of irrational numbers.  There is 

also Fermat's and Descartes' discovery that geometrical problems and algebraic problems 

can be interconnected (via Cartesian coordinates).  Much of the power of mathematics 

resides from this feature, that a problem that may be insuperably difficult to solve in one 

field becomes, when translated into an equivalent problem in another field, much easier 

to solve - even solvable by means of standard methods.  The problem-solving power of 

mathematics is enormously enhanced as a result of its multi-faceted interconnectedness.  

I am inclined to conjecture that one of the important functions of set theory may be, in 

providing something like a common language for mathematics, to facilitate this 

interconnectedness.  (Mathematics should not be characterized as elaborations of set 

theory, but nevertheless set theory provides a common language for much of 

mathematics, which is of great value because it facilitates the vital inter-connectedness of 

mathematics.) 



This, to my mind, is of the essence of mathematics.  It is, as I have said, about the 

development and unification (or inter-relation) of problem-solving methods, the seeing of 

problematic possibilities related to actual problems we tackle in life. 

Very, very crudely, then, we can say this.  A new piece of mathematics will be 

significant to the extent that it satisfies two requirements: (a) it links up to the 

interconnected body of existing mathematics, ideally in such a way that some problems 

difficult to solve in other branches become much easier to solve when translated into the 

new piece of mathematics; (b) it has fruitful applications for (other) worthwhile human 

endeavours.  A new piece of mathematics might well be judged to be significant even 

though it met only one of these two requirements.  If it meets both, all the better.  If it 

meets neither, its champions will have to struggle to convince their fellow 

mathematicians that what they are doing is significant mathematics. 

Linking mathematics up to the problems it is designed to solve - whether practical or 

from some other branch of mathematics - is important, both for teaching, and in order to 

help clarify the nature of mathematics, and what matters and what does not within 

mathematics. 

 

Conclusion 

The transition from knowledge-inquiry to wisdom-inquiry does, then, have fruitful 

implications for mathematics.  Viewed from the perspective of knowledge-inquiry, 

mathematics confronts us with two fundamental problems.  (1) How can mathematics be 

held to be a branch of knowledge, in view of the difficulties that view engenders?  What 

could mathematics be knowledge about?  (2) How do we distinguish significant from 

insignificant mathematics?  This is a fundamental philosophical problem concerning the 

nature of mathematics.  But it is also a practical problem concerning mathematics itself.  

In the absence of the solution to the problem, there is the danger that genuinely 

significant mathematics will be lost among the unchecked growth of a mass of 

insignificant mathematics.  This second problem cannot, it would seem, be solved 

granted knowledge-inquiry.  For, in order to solve the problem, mathematics needs to be 

related to values, but this is, it seems, prohibited by knowledge-inquiry because it could 

only lead to the subversion of mathematical rigour. 

Both problems are solved, however, when mathematics is viewed from the 

perspective of wisdom-inquiry.  (1) Mathematics is not a branch of knowledge.  It is a 

body of systematized, unified and inter-connected problem-solving methods, a body of 

problematic possibilities.  (2) A piece of mathematics is significant if (a) it links up to the 

interconnected body of existing mathematics, ideally in such a way that some problems 

difficult to solve in other branches become much easier to solve when translated into the 

piece of mathematics in question; (b) it has fruitful applications for (other) worthwhile 

human endeavours. 

If ever the revolution from knowledge to wisdom occurs, I would hope wisdom 

mathematics would flourish, the nature of mathematics would become much more 

transparent, more pupils and students would come to appreciate the fascination of 

mathematics, and it would be easier to discern what is genuinely significant in 

mathematics (something that baffled even Einstein).  As a result of clarifying what should 

count as significant, the pursuit of wisdom mathematics might even lead to the 

development of significant new mathematics. 


