
Principles (and Philosophy) of Linear Algebra
A Gentle Introduction

Paul Mayer

December 2023

1 Introduction

This text serves as a gentle motivating introduction to some of the principles
(and philosophy) behind linear algebra. This is aimed at undergraduate stu-
dents taking a linear algebra class - in particular engineering students who are
expected to understand and use linear algebra to build stuff, however it may
also prove helpful for philosophy majors and anyone else interested in the ideas
behind linear algebra. Linear Algebra is an extremely important field that ex-
tends everyday concepts about geometry and algebra into higher spaces. Linear
algebra is used extensively in statistics, mechanical engineering, circuit theory,
signal processing, economics and data science/machine learning. The difficulty
learning linear algebra is that it can be very abstract and hard to visualize (since
we are often working in spaces without a fixed dimension). At bottom, Linear
Algebra is about abstract ideas that extend beyond 2-D and 3-D, and is much
more than simply doing operations on matrices (after all, why do we care about
matrices?). Definitions are important, but I find students tend to struggle the
most with motivating the why behind each of these things. This can be difficult
for professors to understand because we are so used to using the language of
linear algebra we take for granted why these questions are important in the first
place. In other words, we may understand the “why” (after years of using these
tools), but our students may not. This text seeks to explain this “why” in an
accessable, engaging way.

2 What is Linearity?

To talk about Linear Algebra, we need to understand what linearity is (and
what algebra is). Algebra is the easier one to define - algebra involves the
use of abstract symbols instead of numbers. Why is this helpful? The principle
behind algebra is abstraction - a word that means being able to think at a higher
(or more abstract) level that removes details. I like to think of abstraction as
enabling laziness: rather than think about little details, we can “abstract” them
away and think about things more generally. So algebra involves thinking about
things in a general (and lazy) way - rather than having to solve an equation a

1



bunch of different times as things change, we can solve it in terms of a variable
and substitute it in for a number when we need to. We can use this general
form multiple times as needed - often allowing us to do less work.

Linearity involves the word “line,” so a first thought is that linearity (and
this linear algebra) involves lines. This is partially true, but it does not tell
the whole story. Linearity is a concept that involves two definitions that are
so fundamental they are worth memorizing - we will go into more detail to the
“why” later 1. A function f is defined as linear if it satisfies the following two
properties:

1. Superposition: f(x+ y) = f(x) + f(y) and

2. Homogeneity: f(ax) = af(x)

We have listed these properties with pretty much no context, so let us go
into more detail on each. Superposition is the idea that you get the same result
whether you addition before or after applying f . Integrals are like this, which
makes them easy to break apart and recombine. Plenty of physical properties
also exhibit this behavior: consider weighing items on a scale - if you weigh
them separately and add the results, this is the same as weighing them all at
the same time. However many systems in the world do not exhibit homogeneity.
Consider the square function f(x) = x2: (x + y)2 is not the same as x2 + y2.
Also, putting eggs in the oven and dough in the oven and then combining the
result is not the same as putting dough and eggs into the oven at the same
time. So baking, for the most part, is nonlinear because it does not exhibit
superposition (recall that to be linear, it needs to satisfy both superposition
and homogeneity).

Homogeneity is another way of saying scalar invariance - in other words, if
an input gives a specific output, then a scaled version of the input gives a scaled
version of the output (with the same scalar number). This is the behavior that
is the most “line-like.” Standard addition behaves like this. Weighing items
does as well - if I put two times the number of grain on the scale, I will get twice
the weight. The square function fails here again, as (ax)2 ̸= ax2. Sin and Cos
also fail, since sin(x+ y) ̸= sin(x) + sin(y). Finally, consider microwaving items
like hot pockets. If putting a single pocket in the microwave gives me a (hot)
hot pocket in 7 minutes, then putting two pockets in the microwave should give
me two hot pockets in 7 minutes. If the box of hot pockets tells me heating two
at a time takes 10 minutes, while heating one only takes 7, then heating hot
pockets is nonlinear.

In general, we show a system is linear by starting with f(x+y) and showing
it leads to f(x)+f(y) (establishing superposition), and starting with f(ax) and
showing this leads to af(x) (establishing homogeneity). To show systems are not
linear (nonlinear), we just need to provide a single counterexample where either
superposition or homogeneity fails. As a result, showing a nonlinear system is
not linear is often easier than showing a linear system is linear.

1I should note that Linear Algebra is very concept heavy, which means definitions are very
important for understanding these concepts. Memorizing these will be helpful

2



Hopefully you now understand what superposition and homogeneity are.
What may not be clear is why we care about these properties enough to make a
whole field out of them: after all, many systems we care about (and are simple)
are not linear, like the square function or an oven. The reason we care about
linearity is that these assumptions are about as easy and simple as we can make
things to solve problems with them. When we look to nonlinear systems, much
of the intuition we have gain from linear systems will help. But honestly, the
main reason we use linear systems theory is that nonlinear systems are much
harder to solve. For all the difficulty found in solving linear systems (and linear
algebra is not an easy class), nonlinear systems are often way more difficult
if not completely intractable. However not all is lost - learning about linear
systems and linear algebra can help us even when the underlying dynamics are
nonlinear. For instance:

• Often at certain scales, a nonlinear system will behave somewhat linearly
(this is often called a “linear region” of device), so linear algebra will help
here.

• If we want to be lazy, we can simply assume the system behaves linearly.
In some cases, the difference is negligible or a linear approximation is
“good enough” to help us. In engineering, a linear approximation may be
enough for us to build awesome stuff without getting too bogged down by
details. For example, whenever you see physicists use the approximation
sin(x) ≈ x (for small x,) they are using a linear approximation for small
x.

• We can often perform a transformation to use linear systems theory on
a nonlinear system. What we do is perform some sort of transformation,
use linear algebra to solve it, and then perform a reverse transformation
back when we are done. This is how we can use linear algebra to solve for
polynomial interpolation (i.e. curve fitting) for higher order polynomials.

3 From numbers to vectors

We use numbers for a variety of purposes, including ordering and labeling (“I
am first in line,” and “I’ll have the number 1 combo”), measuring (“I am 4.2
miles away”) and counting (“I have 4 beers in my fridge”). There are different
kinds of numbers, including integers (Z), rationals (Q), real numbers (R), and
complex numbers (C). The most common we use in Linear Algebra are real
numbers, as they form a continuum (meaning there are no “holes” in between
numbers). To say x refers to a real number, we write x ∈ R, which is read “the
variable x is an element of the real numbers”.

However, there are times we want to represent something that cannot be
captured by a single number. One example of this are points in 2D space
(try seeing if you can represent an arbitrary location on a plane with a single
number). Or suppose you want to represent the number of dogs and cats a

3



person has 2. To represent these quantities, we use what are called vectors,
which is just an ordered list of numbers. The ordered part is important because
the location of each number matters: 5 dogs and 2 cats is different than 2 dogs
and 5 cats, and 4 units up, 3 to the right is different than 3 units up, 4 to the
right.

To represent a vector of a given type, we use the superscript to denote the
dimension of the vector, which corresponds to the elements (or numbers) in the
each vector. So x⃗ ∈ R2 refers to a vector which contains two real numbers, while
z⃗ ∈ Z4 refers to a vector with four integers. To try and avoid confusion, I put
a little arrow on top of the variables x⃗ and z⃗ to show they refer to vectors (and
not a single number). There are other conventions used to represent vectors
you may see: physicists may use one line on top, like this x, and sometimes
Electrical Engineers and Mathematicians use lowercase letters that are bolded
to represent vectors, like this x, so be aware of the fact that the notation may
change depending on the literature you are reading. Luckily, most people notate
when a variable refers to a vector by writing something like x ∈ R4.

4 Dimension

The dimension of a vector is the number of elements (numbers) it has. Here is
where the “algebra” in linear algebra comes in: we often use a positive integer
(the most common being n) to represent the dimension, so we can generalize
our results to any dimension. So when we say x⃗ ∈ Rn, our vector x⃗ refers to an
n−dimensional vector of real numbers – where n is a variable. This allows us
to prove results that exist independently of a specific dimension. Why is this
helpful? If we can prove a result in Rn, we have a proof that works for 2D, 3D,
and any other “D” we like (D meaning dimension) – meaning more results for
less work! Furthermore, our proofs are often easier when we abstract away from
a given dimension, especially if the dimension in question is very large and the
proof would involve a lot of tedious comparisons. When it comes to Cartesian
spaces of dimension n (meaning spaces that behave like 2D and 3D grids, but
of arbitrary dimension) we need vectors of length n to specify each point in the
space – any more and we have unneeded redundancy, and any less and we will
not be able to access every point in the space. This will be formalized later, but
for now just remember each coordinate needs its own number or “cell.”

It can help to think of a vector as a container or list of individual numbers,
where the dimension is the length of the list/number of members. This is
particularly helpful when representing vectors within a computer, since each
number in the vector will have a specific location in memory that can be accessed
as needed. In general, we index into a vector at a given location using a subscript

2One creative way to try and do this is to use a decimal point, so someone with 5 cats
and 2 dogs could be written as 5.2. This doesn’t quite work though, as the real number 5.2 is
larger than 2.9, despite the latter person having more dogs. This is a bit of a cheat because
we are simply writing two different numbers with a symbol to separate them - the encoding
of the numbers are separate and it would arguably be easier to just use two separate numbers
in this case

4



representing where we are “peeking.” For instance, consider the vector x⃗ =
[−2, 1000, 0.3, 42]T ∈ R4. We can grab the 2nd component of the vector by
saying x⃗2 = 1000. Alternatively, we can index into the vector using a variable,
such as when adding the individual components together to get the sum of the
elements, such as

n∑
i=1

x⃗i = −2 + 1000 + 0.3 + 42 = 1040.3

A vast majority of the time, we let n be a positive integer 3, however there
are times where a mathematical object can be described where n refers to a
rational number instead. In cases like these, such as R3/2, we have a fractional
dimension, or fractal, for short. You won’t encounter them much in introductory
linear algebra, but they do look cool!

5 Points and Vectors

One of the basic building blocks of a geometric space are things called points -
mathematical objects that exist at a specific location. Many of you are familiar
with a standard 2-D Cartesian grid of (x, y) pairs. In 2-D, each (x, y) pair
refers to a specific geometric point on a 2D plane. Linear Algebra extends this
definition from 2-D to arbitrary dimensions that are impossible to visualize,
however the idea is the same: the number in each space refers to how many
units to move in a specified direction.

Points and vectors are actually different things, however we often use the
words interchangeably because the difference between them is often too subtle
to really matter, and I am not a stickler about this difference because in practice
it often does not matter. In general, a point refers to the geometric object at a
given location in space, while a vector refers to a displacement in space which
has a direction and a magnitude. When this displacement is from the origin (i.e.
the “starting point,” where zero is defined), vector “points” exactly to the point
in question. In other words, vectors are relative to some starting point, while
points refer to absolute values in space. When vectors are specified relative to
the origin, they correspond with points (in the sense that they “point to” the
point specified by its coordinates).

There is quite a bit more that can be said about the difference between
points and vectors, but much of it is unimportant for our current discussion.
With that being said, linear algebra works with vector spaces, not necessarily
points, so we can do linear algebra on things that have no explicit geometry.
However we often use standard Euclidean geometry to visualize vectors and
vector spaces, which forms a helpful analogy between the 2-D and 3-D plots we
are familiar with and more abstract spaces. For instance, I can consider vectors
of the form [b, g]T which represent the number of boy (b) and girl (g) children a
given person has: this does not necessarily have any geometry since it is simply

3It is common mathematical convention for the variable n to refer to a positive integer

5



an encoding of things in the world, however we can use geometry to visualize
and compare these vectors.

6 Vector Spaces, Addition, and Multiplication

Vector spaces are the main thing we work with in linear algebra. A Vector Space
X involves the following:

• A (nonempty) set of vectors S

• A field 4 of scalars F (usually the real numbers, R)

• Two operations, + and ∗, that behave the way you expect

We sometimes write the vector space as X = (S, F,+, ∗) to specify each of
the four things needed, but since addition and scalar multiplication behave
“normally,” we often just omit writing them out of laziness. To be a legitimate
vector space, the vector space needs to be closed under vector addition and
scalar multiplication.

What does this mean? To be closed under vector addition means if I take
two vectors x⃗, y⃗ ∈ X (this is shorthand for saying x⃗ and y⃗ are elements of the
set X), the vector sum, x⃗ + y⃗ is also in X. Written in terms of shorthand, we
say x⃗, y⃗ ∈ X =⇒ x⃗+ y⃗ ∈ X, which basically reads as “if x⃗ and y⃗ are vectors in
a vector space X, then their sum x⃗+ y⃗ must also be in X”. What happens if I
find a pair of vectors in a given set whose vector sum is not in the set? Then the
set in question is not a legitimate vector space – sorry. What this captures is the
idea that you cannot “add your way out” of the space: any pair of vectors can be
added together and their sum will be in the space. You can take this sum, which
itself is a vector, and add it to any vectors in the space, and that vector will also
be in the space. In other words, there are no illegitimate children in a legitimate
vector space. Vector addition is done by simply adding together the elements
in each cell, [x1, x2, . . . , xn]

T + [y1, y2, . . . , yn] = [x1 + y1, x2 + y2, . . . , xn + yn].
Closure under scalar multiplication means if you take a vector, squish or

stretch it out (this is what scalar multiplication does), then this squished or
stretched vector will also be in the space. Recall that our vector space includes
an associated field F . So if I take some scalar (we use the word scalar to
differentiate it from a vector, since a scalar is a single number whereas a vector
can be a collection of numbers), and multiply it by any vector in the space,
this result is also in the space. When multiplying a vector by a scalar, you just
multiply each component (i.e. number) of the vector by the same scalar, so
2 · [3, 4]T = [6, 8]T . Closure under scalar multiplication can be written concisely
as x⃗ ∈ X, a ∈ F =⇒ ax⃗ ∈ F .

Multiplication is defined for scalars and vectors, but what about multipli-
cation between two vectors? This is actually undefined (which means you can

4A field is a set of individual numbers (not vectors) where addition, subtraction, multipli-
cation, and division work in the usual way

6



define it however you want, but it is not needed for a vector space, so we often do
not define it any particular way). Recall that to have a legitimate vector space
we only need vector addition (addition between vectors), and scalar multipli-
cation (multiplication between a scalar and a vector) – we do not need vector
multiplication defined. So you are free to invent it and define it however you
like: after all + and ∗ are just symbols that reference some operation that gives
a result according to some defined rule. More often than not, however, we just
leave it alone.

7 Orthogonality

Orthogonality is defined as a generalization of perpendicularity (i.e. things
being at right angles). However angles being 90 degrees is not really what we
care about. The principle of orthogonality is simply that of independence - it
just so happens that in Euclidean (i.e. normal) spaces, independence means at
90 degree angles. Orthogonality can generalize beyond Euclidean spaces to all
sorts of weird math areas, but it also applies to our everyday life.

Consider the following example: suppose I want to make a my favorite coffee
which has 3 creams and 2 sugars. For simplicity, let’s assume a single cream
has 1 unit of creaminess and a single packet of sugar has 1 unit of sweetness. If
creaminess and sweetness are orthogonal (i.e. independent) to each other, cream
only affects creaminess and sugar only affects sweetness. Sugar and Cream are
orthogonal to each other because adding sugar does not affect the creaminess
and adding cream does not affect the sweetness. We can draw this on a Carte-
sian grid with the x axis representing creaminess and the y axis representing
sweetness: the vector (3, 2) represents my favorite kind of coffee.

Now, suppose I run out of cream, but I do have sweet cream instead. A
single sweet cream has 1 unit of creaminess and 0.5 units of sweetness. Sweet
cream and sugar are not independent of each other, since sweet cream and sugar
both affect the sweetness of my coffee. So to make my optimal coffee, I now
need to do more work to figure out how much sweet cream and sugar I need to
add. This includes taking into account the interaction between sugar and sweet
cream - something you do not have to do when having independent (orthogonal)
ingredients. Worse still, I have to do this before I have had any coffee.

In general, orthogonality makes things easier and enables us to be lazy, so we
often want an orthogonal basis to build stuff or simply understand what is going
on. Luckily, the tools of linear algebra allow us to perform an orthogonalization,
removing the dependence between different variables (such as sweet cream and
cream), allowing us work in a space where things don’t affect each other. The
most well known method of orthogonalization is called the Gram–Schmidt pro-
cess – we will talk about it later, but in essence it simply subtracts away the
dependence each variable has with the others. This method works because we
are working in a linear vector space.

7



8 Inner Products

Recall that vectors tend to have a direction and a magnitude. This is especially
clear when we draw them as arrows - when positioned at the origin, the arrow
“points” in some specific direction away from the origin at some length. We often
want some way of quantifying how similar the directions of these arrows are.
This is what the inner product allows us to do – it defines a way of measuring
how similar two vectors are that takes into account their magnitude and angle.

You may not care about arrows, but you may want to know whether people
like the same movies as you do. For simplicity, let’s say we only have action
movies and romance movies, and we rate whether we like this type of on a
scale where large positive numbers mean you really like a given movie and large
negative numbers mean you really dislike this type of movie. My movie tastes
may best be described as the vector m⃗ = [5,−0.5]T , where the first component
says I really like action movies and the second component says I somewhat
dislike romance movies, (taking into account the few RomComs I enjoy but
would not admit to in public).

Now suppose we ask two people what their movie tastes are, person A’s
“preference vector” is a⃗ = [4,−1]T while person B’s “preference vector” is b⃗ =
[−3, 3]. Which of these people have a more similar movie taste to me? Now
you can probably tell by just looking at these numbers that it is person A, but
remember we want to formalize these notions so we can do this comparison when
we have a bunch of genres (i.e. in a super high dimensional space). The inner
product is a way to do this comparison - it multiplies the corresponding values
in each component together, and adds the result: if two people rate the same
type of movie highly, then you will be adding a very large positive number. If
one person rates it negatively and the other positively, then the inner product
(you can think of it as a “similarity value”) will be negative.

We define the standard inner product 5 between two n-dimensional vectors
is defined as follows:

⟨x⃗, y⃗⟩ =
n∑

i=1

xiyi (1)

. Now let’s compare my preferences to Person A and Person B: ⟨m⃗, a⃗⟩ = 5 · 4 +
−0.5 · −1 = 20.5 and ⟨m⃗, a⃗⟩ = 5 · −3 + −0.5 · 3 = −16.5. The fact that 20.5 >
−16.5 tells me that person A has more similar movie tastes to me than person
B. At the risk of beating a dead horse, let’s try and understand why: both me
and person A really like action movies, so we multiply two larger (relative to
the others) numbers together to get 20. We also both dislike romantic movies,
however since we both dislike them, the negatives cancel out and we end up
adding another positive number: the inner product is larger because our tastes
are in the same “direction” for each component. When we compare me and

5Vector Spaces do not need an inner product defined, however it is often helpful to define
one. The one defined here is not the only legitimate inner product, but it is by far the most
popular and arguably the most useful. My recommendation: when in doubt, use the standard
inner product defined here.

8



person B, the opposite happens: they like movies I do not, and I like movies
they do not, which is reflected in the sign of each additive term in the inner
product – both are negative.

9 Norms and Normalized Inner Products

9.1 The 2-Norm

The word “norm” simply refers to a measure of length – and it is used to
generalize the idea of distance we are all familiar with. There are different
kinds of norms, but each must satisfy a certain set of rules [1] to be considered a
legitimate norm. The most popular norm we will see is what is called the 2-norm,
which (if using the standard inner product above), is simply the squareroot of
a vector’s inner product with itself:

∥x∥22 = ⟨x⃗, x⃗⟩ =

√√√√ n∑
i=1

x⃗2
i (2)

It is called the 2-norm because we square each term and take the squareroot.
We can use a different power (other than the number 2) to get what is called
the p-norm (though when adding the terms, we take the absolute value as well,
something we do not have to do when p is even), but the 2-norm is by far the
most popular and useful.

In Cartesian spaces, it refers to the idea of distance we are all familiar with
(and in 2 dimensions, becomes the Pythagorean theorem: c2 = a2+ b2). This is
useful because we now have a measure of distance beyond two dimensions: we
can calculate distances in 3 dimensions, or even 10 if we like, and it behaves the
way we are used to.

9.2 Normalization

A Norm is a measure of distance, and for a vector, refers to its length. Recall
that a vector can be viewed as an arrow pointing from the origin to a specific
point, so the length or norm of this vector is its distance from the origin to the
point it “points to” (in other words, the length of the arrow).

In some cases, we care less about the length of the vector and only care
about its direction, and in these cases, we normalize the vector which means
we divide by its norm. Dividing a vector by its norm will give us a vector in the
same direction that has norm 1 (A vector with norm 1 is called a unit vector).
You can think of the number 1 as a mathematical unit, or you can remember
that “unit” sounds kind of like “uno,” the Spanish word for one.

Why is this helpful? Well, consider our movie example previously – my
vector of movie preferences of action and romance movies is m⃗ = [5,−0.5]T .
Suppose we ask two more people to rate their movie preferences: person C tells
us their preferences are c⃗ = [5,−0.5]T , while person D tells us their preferences

9



are d = [1000, 10]T . Woah! Person D must really like movies. Anyways, which
of these people has more similar movie preferences to me? In theory, it seems
person C should – after all, their preferences are the exact same as mine, while
person D has slightly different tastes when it comes to romance movies. How-
ever, when we compute the inner products, we get ⟨m⃗, c⃗⟩ = 25 + 1 = 26, while

⟨m⃗, d⃗⟩ = 5000−5 = 4995. When it comes to inner products, it seems that person
D is more similar to me. What is going on?

The issue here is that the norm of Person D’s preference vector is really
large – when we asked them to pick a “large number” for movies genres they
liked, they did what we asked. The problem is that we are not working with
the same standard units of movie likiness: I put 5 for movies that I really liked,
while person D chose numbers in the thousands. As a result, the inner product
is larger (even though are preferences differ) simply because they chose larger
numbers. I do not care whether or not someone chooses larger numbers – what
I care about is whether the relationship between their preferences are similar to
mine.

So to solve this problem, we can normalize each vector to a unit vector be-
fore we take the inner product – the preference vector will then always be of
length 1, but its direction will point to how much they like each genre relative
to a sum-of-squares length of 1. Calculating the norms, we get that m

∥m∥2
=

1√
25+0.25

[5,−0.5]T = [0.995,−0.0995]T . Likewise, c⃗
∥c⃗∥2

= [0.995,−0.0995]T (re-

member they have the same preference vector) and d⃗

∥d⃗∥2
= 1√

1000100
[1000, 10]T =

[0.999, 0.00999]T . Dividing by the norm of each vector really reeled in Per-
son D’s preference vector. Now let us compute the inner product with these

unit vectors: ⟨ m⃗
∥m⃗∥2

, c⃗
∥c⃗∥2

⟩ = (0.995)2 + (−0.0995)2 = 1, while ⟨ m⃗
∥m⃗∥2

, d⃗

∥d⃗∥2
⟩ =

0.995 · 0.999 +−0.0995 · 0.00999 = 0.99875.
So by using normalized vectors, we have enforced a consistent scale between

the vectors, and we now have a scale at which my preference vector to someone
else with the same preference vector will be maximum. Enforcing this scale is
probably something we should have done when we asked the question to begin
with. I should note that normalizing vectors is not always something we want
to do – by normalizing vectors, we remove information about the length of the
vector that may be useful. In our case, we have removed information about the
overall “intensity” of how much they like movies, so someone with a preference
vector of [−0.1, 0.1] will have the same normalized preference vector as someone
who answers [−10, 10]. This may or may not be what we want to do.

How do we know? Well, the answer lies with where the “information” we
want to represent or find is stored. If all we care about are the relative prefer-
ences of each movie, than normalization will actually help us find and compare
different preferences more accurately, as it removes any information about the
intensity of their preferences. In other words, normalization gives us a “common
ground” to compare them. However if we also want to know how much they like
movies, then normalization will be the wrong thing, as it removes the intensity
of their vector. In this case, I believe normalization was the right thing to do,

10



however we could have avoided this if, when we asked them to pick their pref-
erences, we gave them a “scale” that we want them to be consistent about. For
instance, we could say “5 represents a movie genre you love to death, while -5 is
a movie genre you hate with a seething passion.” This calibrates the scale so the
overall intensity has more meaning than leaving it up to peoples’ interpretation
on what a “large positive number” means.

10 Matrices

If you have been following along in order, you may be surprised that we have
not discussed matrices yet. In fact, most linear algebra books (such as Gil
Strang’s legendary book “Linear Algebra and Its Applications [2]” a book I
used, my dad used, my PhD advisor used, and my PhD advisor’s dad used to
learn linear algebra – seriously) start out talking about matrices in Chapter 1.
While matrices are important, I think they are often overemphasized relative to
the underlying ideas that motivate them. So let’s begin by explaining why we
need matrices.

Recall that a vector is an ordered list of numbers, where the dimension of the
vector is the number of numbers inside it. However there are times we want to
represent an ordered list of vectors, not just numbers. A matrix can be thought
of as just a vector of vectors. As a result, a matrix has two dimensions, one
referring to the dimension of each of the vectors inside of it (they must all be
the same), and the other referring to the number of vectors that make up the
matrix. Think about a spreadsheet or the game of battleship, where you have
rows and columns, and each row and column gives the location of a cell which
contains some information (like a number or part of a war boat).

At this point, we need to decide whether our vectors make up rows in the
matrix, lined up top-to-bottom, or columns, stacked left-to-right, and unfor-
tunately there is no agreed-upon way to do this. Mathematicians, Electrical
Engineers, and Physicists tend to make vectors columns of the matrix, while
statisticians tend to make vectors the rows (and I have no idea why there is
this difference in convention). For this text I will use column vectors but be
aware you may see the opposite depending on which literature you use. In fact,
we have been using this notation all along: when we write v⃗ = [1, 2, 3]T , the
superscript “T” tells us to turn this list of numbers from left to right to go from
top to bottom (that way it does not take up unnecessary space in the text).
This “T” refers to transpose, and I will define this more rigorously later, but
for now just know

[x1, x2, . . . , xn]
T =


x1

x2

...
xn.

 (3)

This will be much easier to see with an example. Let’s take movie pref-
erences for action and romance as before: my movie preferences vector was

11



m⃗ = [5,−0.5]T , Person A’s preference vector a⃗ = [4,−1]T while person B’s pref-

erence vector was b⃗ = [−3, 3]T . We can create a matrix of the collection of all
our movie preferences as follows:

P = [m⃗, a⃗, b⃗] =

[
5 4 −3

−0.5 −1 3

]
Note that the term [m⃗, a⃗, b⃗] works because the vectors m⃗, a⃗, b⃗ are all column
vectors, meaning each is a tall and skinny list of numbers from top to bottom.
If they were instead row vectors (short and fat lists of numbers from left to

right), then [m⃗, a⃗, b⃗] would just be a really long vector. Pay attention to the way
the individual vectors match up in the matrix – this tends to trip up students
(and it tripped me up when I was a linear algebra student as well). Also note
that we used a capital letter (P) to refer to the matrix – this is a pretty standard
convention I recommend you adopt (some also use a bold capital letter).

Like individual vectors, matrices can be indexed into as well. Convention
dictates we specify the row first and the column second, so P1,3 accesses the
element in the 1st row, 3rd column, which is the number −3 (starting from the
top-left, down one and to the right three). Likewise, P2,1 = −0.5, as that is the
number in the second row, first column (from the top-left down two, right one).
Remember that the row comes first and the column comes second – this always
trips up new students, and I would get confused about this as an undergraduate
because I was used to the Cartesian grid where the first number specified a
number on the horizontal (x) axis while the second specified a number on the
vertical (y) axis. What may help is to remember that we start in the upper-left
hand corner of the matrix, and go down by the first number and then right
by the second (you go down before going right because “down” comes before
“right” in the dictionary – not the best mnemonic so come up with your own if
you can think of a better one). It is important you remember this because the
dimensions of matrix multiplication, which we will talk about in a minute, are
easy to mess up.

11 Matrix-Vector Products and Matrix Multi-
plication

Remember those problems you used to solve in algebra that gave you a system
of linear equations (meaning a set of different, interrelated equations) and asked
you to solve it for some variables? Something like this, where you are asked to
solve for x and y:

2x− y = 1

x+ y = 5

When you took algebra years ago, you probably learned different ways to solve
these kinds of problems for x and y, such as substitution and elimination –

12



however now we are going to throw all of that out and teach you a new way
so you’ll never need to choose between different ways of solving these again –
you’ll have one way that works no matter what. Linear algebra takes the idea
of solving these kinds of problems and allows us to find a general method that
works no matter how many variables or equations we have. Better still, we can
program computers with the method we develop so we can be extra lazy and
not do anything by hand.

The first thing is to realize these algebraic equations express linear combi-
nations, meaning they only include addition and scalar multiplication talked
about in Section 2. There’s no squaring or sin’s or anything nonlinear. These lin-
ear combinations include addition (or subtraction) along with multiplication by
coefficients. Notice that each equation is of the following form: axx+ ayy = c.
In the first equation, ax = 2, ay = −1, and c = 1. In the second equation,
ax = 1, ay = 1, and c = 5. Notice that each equation is kind of like an inner
product: for each we take the variable x and multiply it by some scalar, then
add it to the variable y multiplied by some scalar, and the result is equal to a
single number.

Now for the tricky part: let’s encode our algebraic variables x and y into
a vector. The actual order doesn’t matter, but we do need to be consistent
once we decide on an order. Let’s put x in the first component and y in the
second: we use b⃗ to refer to the vector of algebraic variables: b⃗ = [x, y]T . Now,
as an intermediate step, we can write each of the original equations as an inner
product talked about in Section 8: the first equation can be written as

⟨[2,−1]T , b⃗⟩ = ⟨[2,−1]T , [x, y]T ⟩ = 2 · x− 1 · y = 2x− y = 1

The second equation can be written as:

⟨[1, 1]T , b⃗⟩ = ⟨[1, 1]T , [x, y]T ⟩ = 1 · x+ 1 · y = x+ y = 5

In general, each equation is of the form ⟨⃗a, b⃗⟩ = c. What we will do next is try
to “stack” each of these linear equations into a single expression that captures
each of the individual equations. What changes among each equation is simply
the coefficients vector a⃗ and the scalar c, however the general form (including
the dimension) and the algebraic variables are the same for each expression. To
write this as a single expression, we first create vectors for the coefficients:[

2
1

]
x+

[
−1
1

]
y =

[
1
5

]
We have encoded both equations into a single expression by writing the coeffi-
cients (and solutions) as vectors, with the algebraic variables as scalars (x and
y are scalars because each refers to a single number). Now, we simply put our
vector of algebraic variables on the right. So we have:[

2 −1
1 1

] [
x
y

]
=

[
1
5

]
=⇒

2x− y = 1

x+ y = 5

13



Pay very special attention to the way these operations are ordered here: we
have defined a new operation, a matrix-vector product, which takes an inner
product between a row of the matrix and the column vector on the right. We
move right, horizontally along the matrix on the left and down vertically along
the vector on the right, multiplying corresponding terms in each position and
adding them all together. It may help to think of it in reverse: to get the 1st
element in c⃗, which is on top, we start on the top-left element of A and the top
element of b⃗: we multiply the corresponding items, and then move to the next,
moving right along the matrix and down the vector. To get the 2nd element of
c⃗, which is on the bottom, we start at the bottom-left of A and the top of b⃗. In
general, to get the i-th element of a matrix-vector product, we take the inner
product between the ith row of the matrix and the vector in question.

Written in terms of the individual elements:

c⃗i =

n∑
j=1

Ai,j b⃗j = ⟨Ai,:, b⃗⟩

Here, the notation “:” means “take all of the values in this position,” which
extracts the i-th row of the matrix A.

A matrix-vector product is an easy way to write a system of linear equations
in a single line (remember we want to be as lazy as possible). We organize the
information in a way where we put the algebraic variables in one vector, the
coefficients in a matrix, and the solution in another vector. The general form of
a system of linear equations is Ab⃗ = c⃗[

2 −1
1 1

] [
x
y

]
=

[
1
5

]
=⇒ Ab⃗ = c⃗

Now the nice thing about this general system of linear equations is that Ab⃗ =
c⃗ simply tells us the form of a system of linear equations – and we do not
necessarily need to specify the dimensions or anything like this.

12 Why we care about matrix inverses

The general form Ab⃗ = c⃗ we wrote previously is very helpful, because it allows
us to see exactly what we want to do. Remember that we want to find the values
of x and y, which are loaded into the vector b⃗. If this was a scalar equation, we
could solve for b by simply dividing both sides by a: ab = c =⇒ b = c/a. But
this is a vector equation, so we need to be more careful: we can’t really divide
by a matrix the same way we divide by a scalar.

In fact, division isn’t what we really care about at all: the reason we use
division in the scalar case is that it “undoes” the transformation caused by
multiplication. It just so happens that reversing the transformation induced by
multiplication involves division. In general, whenever we have some equation of
the form f(x) = z, we can view solving for x as taking the inverse:

f−1(f(x)) = f−1(z) =⇒ x = f−1(z). (4)

14



It may seem like we are introducing extra layers of complexity to something
that doesn’t need it, but trust me, this will allow us to be lazy in the future:
this view of using division to perform an inverse function will allow us to extend
the idea of division to multiple systems of equations at once. With this new
idea of using functions to “undo” things, we can solve for all variables at the
same time, enabling maximum laziness.

What we really want to do when we solve for Ab⃗ = c⃗ for c⃗ is undo what is
caused by multiplication by A: if A is a single number, we “undo” multiplication
by division. a · 1

ax = x. The number 1
a is the multiplicative inverse, meaning it

“undoes” whatever multiplication by a does. So if f(x) = ax, then f−1(x) = x
a .

Consider ax = b, we apply f−1 to both sides, which gives f (ax) = f−1(b) =⇒
ax
a = b

a . The a’s cancel, and we are left with x = b
a .

What we want to do is “undo” multiplication by the matrix A. We will write
the mechanics of this later, but suppose such an inverse exists (we will notate

it as A−1). We want A−1 be defined so A−1Ab⃗ = b⃗. Now we can solve for our
algebraic variables by multiplying both sides by A−1:

Ab⃗ = c⃗ =⇒ A−1Ab⃗ = A−1c⃗ =⇒ b⃗ = A−1c⃗ (5)

References

[1] Walter Rudin. Principles of Mathematical Analysis. 1953.

[2] Gilbert Strang and Linear Algebra. Linear algebra and its applications.
Academic Press, New York, 14:181208, 1980.

15


