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Abstract

A dynamical system is called “chaotic” if small changes to its initial
conditions can create large changes in its behavior. By analogy, call a
dynamical system “structurally chaotic” if small changes to the equa-
tions describing the evolution of the system produce large changes in
its behavior. Although there are many definitions of “chaos”, there are
few mathematically precise candidate definitions of “structural chaos.”
I propose a definition, and I explain two new theorems that show that
a set of models is structurally chaotic if contains a chaotic function. I
conclude by discussing the relationship between structural chaos and
structural stability.

Suppose a scientist wishes to predict the behavior of a dynamical system,
such as the evolution of an ecosystem, the motion of a pendulum, or the
spread of an epidemic. To do so, the scientist might estimate the current
state of the system (e.g., the number of predators in an ecosystem), develop
a mathematical model of how the system evolves (e.g., equations describing
how the number of predators changes over time), and use her model to
predict the future given the estimated current state. Thus, there are at
least two potential sources of predictive inaccuracy. First, predictions may
be inaccurate because the scientist mismeasures or misestimates the system’s
initial conditions. Call this initial conditions error (ICE). Alternatively,
error may arise from an inaccurate model of how the system changes over
time. Call this structural model error (SME).!

Frigg et al. [2014] argue that the distinction between SME and ICE is
crucial for both scientific practice and policy-making. They claim that, al-
though there are methods that generate accurate predictions in the presence
of both 1CE and chaos, there are no known methods for doing the same with

'For a discussion of other sources of error in modeling, see Bradley [2012].



respect to SME and a phenomenon akin to chaos, which they call the “hawk-
moth effect.”? For this reason, Frigg et al. [2014] argue that the hawk-moth
effect and SME are neglected but important topics for philosophers of science.

The hawk-moth effect is intended to be the analog of Lorenz’s famous
“butterfly effect”, which occurs when small changes to a system’s initial
conditions (e.g. a butterfly flapping its wings) can create large changes in
the system’s behavior (e.g., storm patterns). Analogously, a hawk-moth
effect occurs when small changes to the structural equations describing the
evolution of a dynamical system produce large changes in its behavior. Frigg
et al. [2014] produce ample argument and computer simulations to think the
hawk-moth effect is both widespread and important, but they do not provide
a precise a mathematical definition of the phenomenon. This is important
because although there are many formal definitions of the butterfly effect and
“chaos” [Batterman, 1993, Werndl, 2009], there are far fewer mathematically
precise definitions that might be used to formalize Frigg et al. [2014]’s hawk-
moth effect, or what I will call “structural chaos.”

Frigg et al. [2014]’s argument, therefore, raises at least three important
questions for philosophers of science, applied mathematicians, and working
scientists. First, for each definition of “chaos”, what is the analogous concept
of structural chaos? Second, what are the relationships among the various
notions of chaos (simpliciter) and the analogous notions of structural chaos?
Finally, what are the implications of structural chaos for prediction, control,
and explanation?

This paper takes a preliminary step with respect to the first two ques-
tions. Section one discusses definitions of “chaos.” I focus on topologically
mixing systems, which are an important class of chaotic ones.? In section
two, I define an analogous notion of “structural mixing” that might be used
to characterize structural chaos. I then prove that a collection of models is
structurally mixing if it contains a topologically mixing model.

Section three explores the relationship between my results and other po-
tential characterizations of structural chaos. There, I argue that definitions
of “structural instability” are not clearly analogous to notions of chaos. The
final section discusses the philosophical importance of my results.

2Similar arguments appear in [Parker, 2011].

3 According to Devaney et al. [1989]’s widely-cited definition, chaotic systems satisfy
three conditions: (i) they are sensitive to initial conditions; (ii) they are topologically
transitive, and (iii) their periodic points are dense in state space. Topological mixing
systems are topologically transitive, and under very general conditions, they are also
sensitive to initial conditions. Thus, they satisfy two of the three properties that are
widely used to define “chaos.”



1 Chaos

To study chaos, it is necessary to define precisely what a “dynamical system”
is. I will consider only discrete-time dynamical systems, which are
triples (X, d, ¢) where (i) (X,d) is a metric space called the state space,
and (ii) ¢ : X — X is a time-evolution function. For the remainder
of the paper, I use the phrases “model”, “dynamical function” and “time-
evolution function” interchangeably, though of course I recognize not all
models in science are time-evolution functions.

For example, a dynamical system might describe the number of rabbits
in an ecosystem over time. In this case, X is the set of natural numbers,
which represent different numbers of rabbits; d measures the difference be-
tween two population sizes, and ¢ describes how the number of rabbits
changes over time. Or X might be the set of vectors specifying the temper-
ature, pressure, and wind velocities at different places in the atmosphere;
d would represent how similar two descriptions of the earth’s climate are,
and ¢ would represent how the climate changes over time. I consider only
deterministic dynamical systems, in which future states are determined
entirely by initial conditions and the system’s time evolution function ¢. If
the system’s initial condition is x, then ¢"(x) represents the state of the
system after n stages, so that o(z), p?(x), p>(x), etc. represent the state of
the system after one unit of time, two units, three units, and so on.

When is a dynamical system sensitive to initial conditions? Let A be
a number representing a large distance between states. What counts as
“large” can depend upon the state space and one’s interests. Say a dy-
namical system’s behavior is sensitive to initial conditions to degree A
if for every state z € X and every arbitrarily small distance ¢ > 0, there
exists a state y within distance € of x and a natural number N such that
d(eN (x), oV (y)) > A. Informally, a system exhibits sensitivity to initial
conditions if no matter the true initial state x, there is an arbitrarily close
state y such that, if ¥ had been the initial state, the future would have been
radically different.

This mathematical definition is the natural way of capturing the above
informal description of the butterfly effect above, but there are many time-
evolution functions that are sensitive to initial conditions in the above sense
and yet are hardly “chaotic” in any sense of the word. Consider, for example,
the function f(z) = 2x on the state space consisting of all real numbers.
Then f is sensitive to initial conditions because if two numbers x and y differ
by even the smallest amount, then the result of multiplying them by two
repeatedly will cause them to drift apart. That is, | f" () — f™(y)| = 2" |x—y|



becomes arbitrarily large as n grows. So f is sensitive to initial conditions,
but f does not exhibit “chaotic” behavior in the least.

What other conditions might one add to characterize “chaos”? There is
no wide agreement, and several different definitions of chaos are common.*
Because my aim is to show how three types of questions might be answered,
I will not defend a particular analysis of chaos. Rather, I will show how
to answer the three questions with respect to the concept of “topologically
mixing”, which plays an important in characterizing chaos (see footnote 3).

A time-evolution function ¢ is called topologically mixing if for any
pair of non-empty open sets U and V, there exists a number N > 1 such
that @"(U) NV #  for all n > N. To reduce technical jargon, I say ¢ is
chaotic if it is topologically mixing.

For the reader unfamiliar with topology, ignore the phrase “open set.”
Just think of U and V as representing sections of state space. If the system
begins in some state in U, then the expression ¢™(U) represents all possible
future states after n many steps of time. For example, suppose the dynamical
system describes the movement of a gas molecule in a room. Further, assume
that U represents the upper-left quarter of the room and that V represents
the lower-right hand corner. Then ¢™(U) represents the possible positions of
the gas molecule after n units of time if the gas particle starts in the upper-
left quarter of the room. The above equation says that there is some time
in the future such that, from that point onward, there is always a position
in the upper-left corner of the room (U) such that, if the gas particle starts
in that position, then it will end up in the lower-right quarter of the room
(V). A model is chaotic if this holds for any regions of state space, so that
a gas particle that starts in one area of the room can end up in any other
area after a sufficiently long time.

2 Structural Chaos

A dynamical system is chaotic if, when model is held fixed, similar initial
conditions can have any future. Analogously, a set of models should be
called “structural chaotic” if, when the initial conditions are held fixed,
similar models can produce any future. See Figure 1. To rigorously define

4For what it’s worth, I agree with Werndl [2009] that most systems that are agreed
to be chaotic are strongly mixing. Moreover, I agree with Berkovitz et al. [2006] that,
because strong mixing is one among several concepts of probabilistic independence in the
ergodic hierarchy, it is most productive to think of chaos as coming in degrees, where
different degrees may have different implications for prediction, explanation, and control.



“structural chaos”, therefore, one needs a metric to quantify how “close”
two models are.

Let XX represent all time-evolution functions for a system with state
space X. Depending upon one’s interests, different metrics will be appro-
priate. However, there is clearly some relationship between (1) the distance
between two models and (2) the distances between their predicted future
states after one unit of time. If two models entail that a system, starting
in the same initial position, will be in radically different places in a short
amount of time, then the models are substantially different.

One demanding notion of closeness requires that two models are close
only if their values are close everywhere in state space. That is, the dis-
tance between two models is the maximum /supremum distance between the
models after one unit of time, where the maximum is taken over all possible
starting states. In symbols, define:

D(¢, ) = sup d(p(z),9(x)).
zeX
Henceforth, I assume that D quantifies the distance between two models,
but my results hold for a variety of metrics.

“Structural mixing” should capture the idea that similar models can
produce very different trajectories through the state space given the same
initial conditions. To make this idea rigorous, I introduce some notation.
Suppose ® C XX is a set of models which a scientist considers to be plausible
for a given dynamical system. For any ¢ > 0, let B® () denote all models in
® that are within distance € of . The set BL(y) represents all models that
are “sufficiently similar” to . Next, for any natural number n € N and any
point x € X, define a map fy, : P(XX) — P(X) as follows:

fen (V) = {¢"(z) : p € ¥}

where P(S) is the power set of S, i.e., the set of all subsets of S. In other
words, fz, maps a set of time-evolution functions to the set of points they
reach after n stages if they are initialized to start at x.

Say that the set of models ® is structurally mixing at ¢ if for all
states z € X, all € > 0 and all non-empty open sets V' C X, there is some
time N € N such that

Fan(BE(@)) NV #0
for all n > N. In other words, small differences between the estimated
model and the true one can lead to divergent predictions even if one correctly
identifies the initial condition. To reduce jargon, I sometimes say a set of
models is structurally chaotic at ¢ if it is structurally mixing.
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What is the relationship between chaos and structural chaos so defined?
To answer that question, one last definition is necessary. Say the state space
X has no isolated points if every state contains points arbitrarily close to
it. For example, if X is the set of real numbers (e.g., representing a location
in space, or speed, or temperature), then there are no isolated points. Why?
For every real number x and every arbitrarily small distance €, there are
numbers within distance € of x. Many dynamical systems have no isolated
points, and so the assumption is not particularly strong. Nonetheless, under
this very weak assumption, a set of time-evolution functions is structurally
chaotic if it contains a chaotic model.?

Theorem 1 Suppose ¢ is continuous and topologically mixzing. Then XX
18 structurally mizing at ¢ if X has no isolated points,

One might object that this theorem is very weak. According to the theo-
rem, one should worry about structurally chaos if every time-evolution func-
tion were a plausible description of the dynamics of the system. However,
in practice, the set of plausible models ® is much narrower given available
data, domain-specific knowledge, and so on. For example, if it is 40°C in
Demascus today, then it would be bizarre if it snowed tomorrow. However,
one possible time-evolution function for Demascus’ weather entails that 40
degree days are followed by snowy ones. Thus, one might object that if the

5See appendix for a proof.



class of models is restricted to realistic ones, then structural chaos will be
rarer.

However, the proof of the above theorem shows something much stronger.
It shows that, if the true model is chaotic and the set of “plausible” models
contains those that are empirically indistinguishable from the true one, then
structural chaos will arise. To explain why, I introduce some definitions.

Data sets are always finite. So let I’ by a finite set of states, which
represents the observed history of the system so far. Let ¢ > 0 be a small
number representing the precision of one’s measurement devices. Say two
models are eF-indistinguishable if (1) the values of the two models are
equal for all but finitely many states outside F' and (2) the two models are
no more than e apart according to D.

Two models are eF-indistinguishable if they are, in a very strong sense,
indistinguishable given all available data. Why? The first clause entails
that the two models are equal on all observed data points, and so there is
no way that past data alone can distinguish between them. If two models
differ anywhere, however, then there are logically possible experiments that
can distinguish them. Namely, if controlled experiments are financially,
pragmatically and ethically feasible (which they often are not), one can
initialize the system to one of the states at which the two models differ and
observe the results.

This is where the second clause kicks in. Suppose scientists’ measur-
ing instruments and statistical techniques cannot guarantee estimates of the
observed states with accuracy better than € > 0. If two models are eF-
indistiguishable, then second clause guarantees that no information about
the current or next state of the system is sufficient to distinguish the mod-
els. One might object that small measurement errors are detectable in the
long run, especially if chaos is present. However, if the true dynamics are
continuous and e is sufficiently small, then the second clause entails that no
experiment of a feasible length (i.e. time) will distinguish between it and an
eF-indistinguishable model.

The previous discussion motivates the following definition. Let £’ denote
the finite set of observed states. Say a set ® of models is closed under
empirical indistinguishability if there exists some € > 0 such that if
p € ® and v is eF-indistinguishable from ¢, then ¢ € ®. If scientists are
strict empiricists, then the set of models that they consider possible ought
to be closed under empirical indistinguishability. Theorem 1 is a special case
of the following stronger result.

Theorem 2 Suppose p is continuous and chaotic. Let ® be a set of models



containing . If X has no isolated points and ® is closed under empirical
indistinguishability, then ® is structurally chaotic at .

3 Structural Stability: Conclusions and Future Re-
search

Readers familiar with chaos theory may find the previous theorem surpris-
ing. On one hand, my definition of “structural chaos” seems to formalize the
idea that small errors in identifying the model can lead to divergent future
behavior. On the other hand, many of “structurally chaotic” models (ac-
cording to my definition) are structurally stable in several senses discussed
by chaos theorists.® This is counter-intuitive because structural stability is
intended to formalize the idea that small changes to the model do not result
in large differences in the model’s trajectory.

One possible reason for the tension is that definitions of structural sta-
bility almost always assume that the set of models under investigation are
well-behaved, in the sense that models are differentiable (perhaps several
times) and hence, continuous. In contrast, in order to demonstrate the ex-
istence of “structural chaos” in computer simulations, Frigg et al. [2014]
simulate discretized functions that are, by necessity, discontinuous. More-
over, if a set of models is closed under empirical indistinguishability in my
sense, it will contain discontinuous functions and other “poorly behaved”
models.

I will not defend the thesis that physical laws might be discontinuous or
non-differentiable. Rather, I discuss the relation between structural chaos
(in my sense) and various notions of structural stability in order to illustrate
a broader point. Mathematicians, scientists, and philosophers have yet to in-
vestigate whether plausible structural analogs of “chaos” are in tension with
definitions of structural stability. My results show that there may be no
direct logical inconsistency, and that inconsistency may only arise when ad-
ditional, substantive assumptions (e.g. continuity or differentiability) about
the dynamics of the system are introduced.

There are two further reasons to question whether standard definitions
of “structural instability” are really the appropriate dynamical analogs of

6Suppose f: A — A and g : B — B are functions on topological spaces. Then f and
g are said to be topologically conjugate if there is a homeomorphism h : A — B such that
goh =nho f. A function f: A — A is C" structurally stable if there is some ¢ > 0 such
that every function within distance € of f in the C" metric is topologically conjugate to
f. C" structural stability is perhaps the most common definition of structural stability.



chaos. It is not necessary to review all existing definitions of structural sta-
bility. Rather, it suffices to describe their common logical form [Pugh and
Peixoto, 2008]. Given some equivalence relation R (e.g., topological conju-
gacy) over models, one says a function f is structurally stable if all “close”
models (under some metric) are R-equivalent to f. Why are definitions of
this form not analogous to definitions of chaos?

First, the concepts employed to define structural stability are disjoint
from those used to define chaos. For example, definitions of structural stabil-
ity typically discuss homeomorphisms and diffeomorphisms, whereas defini-
tions of chaos employ notions like sensitivity to initial conditions, topological
transitivity, density, etc. Of course, some difference in definitions is unavoid-
able, as structural stability is about small changes in models, whereas chaos
is about small changes in states.

Nonetheless, if Werndl [2009] and Berkovitz et al. [2006] are correct,
then probability is a key concept in characterizing chaos. In contrast, none
of the definitions of structural stability employ probability at all. This is
surprising, given that probability is perhaps the most widely-employed tool
used to characterize uncertainty, noise, and (expected) error. The fact that
probability is not used in definitions of structural stability, therefore, raises
serious questions about the importance of such definitions for discussions of
prediction, control, and explanation.”

Second, time plays different roles in definitions of chaos and structural
stability respectively. Definitions of chaos — like the definition of topological
mixing — typically place constraints on the distant future of the system. For
example, in many chaotic systems, nearby initial conditions may have similar
trajectories for a long period of time, but their trajectories may diverge radi-
cally in the distant future. The potential for such sudden divergence is what
renders long-term predictions problematic. In contrast, to my knowledge,
all but one of the equivalence relations used to define structural stability
constrain only one time step in the evolution of a dynamical system, and
the exception is applicable only to dynamical systems that are described by
differential equations.

These two reasons do not provide conclusive evidence that the math-
ematically rich research on structural stability is, at the end of the day,
unimportant for empirical science. Rather, they suggest two more questions
to add to the list at the outset of the paper: what are the relationships

"The reader will note that my definition of structural mixing likewise does not employ
probability. It turns out that the standard notion of topological mixing is closely related
the ergodic (and hence, probabilistic) concept of strong mixing. I conjecture an analogous
relationship will hold in the structural case, but that remains to be shown.



among various definitions of chaos and structural stability? And what is
the importance of the various notions of structural stability for prediction,
control, and explanation?

4 Philosophical Upshots

Section one described three questions for philosophers and scientists who
study chaos theory. Section two provided an example of how one might go
about answering two of the three questions. There, I defined a notion of
“structural mixing” that is analogous to the standard notion of “topological
mixing”, and I proved a theorem relating the two concepts. I conclude by
discussing the philosophical significance of this research program.

Roughly, the main result asserts that, if the dynamics of a system might
be chaotic, then there are many “similar” regularities that (i) produce widely
different future behavior and (ii) are compatible with the observed past. The
consequent of that conditional is just an instance of the problem of induction.
So an investigation of structural chaos amounts to a mathematically precise
investigation of a central philosophical problem.

It is now easy to see why the three questions above are philosophically
important. Question one asks, “For each definition of ‘chaos’, what is the
analogous concept of structural chaos?” Because there are different “de-
grees” of chaos [Berkovitz et al., 2006], an answer to that question would
characterize differing “degrees” of problem of induction.® That is, an answer
to the first question would allow one to characterize inductive problems in
terms of their difficulty.

Question two asks, “what is the relationship between chaos and struc-
tural chaos?” The classic problem of induction shows that past observations
are insufficient to identify a dynamical system’s time-evolution function, and
hence, there are many regularities that (a) are compatible with past obser-
vations and (b) predict radically different futures. The existence of chaos
entails that predicting or manipulating a dynamical system’s behavior might
be impossible even if the exact dynamics of the system are known. Hence, an
answer to question two connects research on the classical problem of induc-
tion and new research in chaos theory, which respectively identify different
sources of difficulty for prediction and manipulation.

8Kelly [1996] contains a sophisticated hierarchy of “problems” of induction. I am
skeptical there is any relationship between Kelly’s hierarchy and that which would arise
from pursuing the first question here. So this project would provide an orthogonal way of
characterizing inductive difficulty.
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Finally, question three asks, “what are the implications of structural
chaos for prediction, control, and explanation?” The importance of this
question is self-explanatory: prediction, control, and explanation are three
central goals of science, and so an answer to question three amounts to an
answer to the question, “Why is structural chaos important?”
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A Proofs

Lemma 1 Let X be any metric space, U C X an open set and FF C X
be finite. Then U \ F is open. If X be has no isolated points, U \ F is

non-empty.

Theorem 2 Suppose p is continuous and topologically mizing. Suppose
that ¢ € ® and that ® is closed under F-indistinguishability for some finite
F C X. If X has no isolated points, then ® is structurally mizing at ©.

Proof: Let zg € X. It must be shown that for all € > 0 and all non-empty
open sets V' C X, there is some NV € N such that

Foon(BE(@) NV £ 0 for all n > N

Call this condition f(e, V, N). Let € > 0 and V' C X be an open set.

Define ; = ¢’(z) for all natural numbers j, and let M = |F| + 1.
Because ® is closed under F-indistiguishability, there is § > 0 such that if
(a) ¢ and 1 agree everywhere on all but finitely many elements of X \ F
and (b) D(p,v) < B, then ¢ € ®. As ¢ is continuous and F' is finite, it
follows that for all £ < M there is §; > 0 such that

Bg (:ck.)ﬂF:{ {zx} HfapeF
k

0 otherwise.

and
y € B, (z) = d(v(y), ¢(z1)) < min{e, B}

11



Here I am using B,(z) to refer to the v-ball around z € X with respect to
the metric d.

Let § = min{dy : K < M}. Because ¢ is topologically mixing, for each
k < M there is Ni € N such that for all n > Ny:

©"(Bs(zr)) NV #0

Let Ny = M + max{Ny : k < M}. I claim that f(e, V, Ny). Let n > N,.
It is necessary to find some ¢ € B® () such that ¢" () € V.. If " (x9) € V,
then we’re done. Otherwise, because M > |F|, there is k& < M such that
xp € F. Notice

n—k>N,—M2>max{N;:j <M} > N.

Hence, by choices of § and Ny, there is y € Bs(xy,) such that " *(y) € V.
Note y # 3 because " *(x1) = ¢"(xg) € V. I claim that y may be chosen
so that ¢/ (y) # xy for all j <n — k.

Why? Suppose for the sake of contradiction that for all y € Bs(xy),
there is some j < (n — k) such that ¢/(y) = zj. In particular, there is
jo < (n — k) such that ©’(x;) = xx. Thus, for all m > (n — k) and all
Yy e Bg(l‘k)l .

0™ (y) € {zr, p(wr), - @ ()}

Let T = X \ {xk, o(zx), ..., (x))}. Then T is non-empty and open by
the lemma. However, ¢™(Bs(zg)) NT = 0 for all m > (n — k). So ¢ is not
topologically mixing, contradicting assumption.

It has been shown that y € Bs(zx) may be chosen so that ¢/ (y) #
for all j < (n — k). Define ¢ : X — X as follows:

¢(Z) _ { @(y) if 2 =xy

©(z) otherwise.

Note D(p, 1) = d(p(zk), ¢(y)). By continuity of p, it follows that d(¢(xk), ¢(y)) <

min{f, e}. Hence, ¥ € B.(p). Because 9 is equal to ¢ everywhere except
xr € F, it follows that v is SF-indistinguishable from . As ® is closed
under §F-indistinguishability, ¢ € ®.

Finally, 9™ (x) = " *(y) € V because ¢’ (y) # x), forall 0 < j < n — k.

O
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