
On Classical Motion

C.D. McCoy∗†

12 April 2017

Abstract

The impetus theory of motion states that to be in motion is to have a non-zero velocity. The
at-at theory of motion states that to be in motion is to be at different places at different times,
which in classical physics is naturally understood as the reduction of velocities to position
developments. I first defend the at-at theory against the criticism raised by Arntzenius that
it renders determinism impossible. I then develop a novel impetus theory of motion that re-
duces positions to velocity developments. As this impetus theory of motion is by construction
a mirror image of the at-at theory of motion, I claim that the two theories of motion are in fact
epistemically on par—despite the unfamiliar metaphysical picture of the world furnished by
the impetus version.

1 Introduction
There are two intuitively appealing ways to understand the nature of motion. One is that motion is
nothing over and above the occupation, by an object, of different places at different times. This is
known as the at-at theory of motion (being at different places at different times) and is generally
attributed to Russell (Russell, 1903, Ch. 54). One is inclined (because of the “nothing over and
above” qualification) to say in this case that facts about motion are grounded in facts about the
positions of objects; it is, in other words, usually understood as a reductionist account of motion.
The other way of comprehending the nature of motion is to take motion to be the process of
moving, where moving is understood as the possession, by an object, of a non-zero instantaneous
quantity of motion—a non-zero instantaneous velocity. I will call this the impetus theory of motion,
essentially in keeping with the terminology in (Arntzenius, 2000). As velocity on this account is a
basic quantity possessed by objects, it is evidently a non-reductive account of motion.
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When stated without the reductionist qualification, neither view would seem, on the face of it, to
necessarily preclude the other. The possession of an instantaneous velocity is not obviously at odds
with being at different places at different times; in other words, instantaneous velocities appear to
be entirely consistent with the at-at theory of motion. There is a compelling argument, however,
that the at-at theory implies that there are in fact no truly instantaneous velocities (Russell, 1903;
Arntzenius, 2000; Albert, 2000). Briefly, the argument is that the explication of instantaneous
velocity using calculus makes reference to non-instantaneous position developments and hence
velocity determined by position developments is not truly instantaneous. Although at each instant
one can define an object’s velocity at that instant, the velocity itself is fully grounded in the object’s
past and future behavior. Velocity is not a basic quantity possessed by objects, as the impetus theory
would have it. Thus the at-at theory of motion and the impetus theory of motion furnish distinct
metaphysical accounts of motion.

Significant criticisms of these two accounts of motion are raised by Arntzenius (2000). In par-
ticular, he argues that the at-at theory precludes the possibility of determinism by the way it defines
velocity, whence he concludes that “surely the ‘at-at’ theory is wrong if it entails that” (Arntzenius,
2000, 191). The impetus theory avoids this problem, at least, by reifying instantaneous velocities,
but it does so at the ontological costs of adding fundamental quantities and necessarily imposing
what I will call a kinematical constraint—an additional law of nature. Since the at-at theory is suf-
ficient for describing motion without the inclusion of instantaneous velocities, the impetus theory
should, it seems, by parsimony be rejected. Given these drawbacks we might find both theories
unsatisfactory, as Arntzenius himself does, leaving us bereft of an acceptable account of something
so simple and familiar as motion.

In my view, however, the lie is not so bad. My aim in this paper is to relate satisfactory
versions of both theories of motion, using the criticisms of Arntzenius as a foil. I should note
at the outset that there are various other criticisms of the at-at theory of motion as well, based
mainly on the notion that the reductive account fails to do justice to the causal role of velocity
(Tooley, 1988; Lange, 2005; Easwaran, 2014). As I think there is a natural extension of what I say
here to those concerns (and for the sake of some concision), I leave discussion of these concerns for
another occasion and concentrate mainly on Arntzenius’s arguments, for these arguments represent
important challenges to any theory of motion and must be overcome if we are to have a satisfactory
account thereof.

The course of the paper is as follows. In §2 I rebut Arntzenius’s criticisms of the at-at theory of
motion, arguing that the at-at theory only precludes one particularly strong version of determinism
and does not in fact do so “by logic and definition alone,” as he claims. In §3 I take up the impetus
theory of motion. I do agree with the standard argument against the most familiar impetus theory
of motion, one that merely super-adds instantaneous velocities to the at-at theory of motion, and
rehearse this argument for convenience of exposition. There is, however, a subtle way to develop
the impetus account to avoid any metaphysical profligacy. Arntzenius (2003) himself in fact moots
the basic thought briefly. The idea is to treat velocity as basic (as the impetus account states)
but define positions in terms of velocity developments through integration. Arntzenius quickly
rejects it, albeit for what I will argue are poor reasons. I pick up the thought, developing it in
detail and fully in parallel to the at-at theory, i.e. as an alternative reductive account, one that,
however, instead reduces position facts to velocity facts rather than the other way around. Readers
familiar with modern physical frameworks for classical motion might suspect that they suggest
differing accounts of motion, so in §4 I discuss two of the best known frameworks, Hamiltonian
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and Lagrangian mechanics, concluding that the issues nevertheless remain the same despite initial
appearances to the contrary. I briefly conclude in §5.

2 The At-At Theory
The at-at theory of motion holds that what it is to be in motion is nothing over and above being at
different places at different times. To add physical content to the account, it will be convenient to
set it in the simplest theoretical framework of classical mechanics. In classical mechanics motion
is conventionally understood to be continuous, and velocity is defined as the time rate of change of
position using calculus. Velocity is hence a derived quantity of motion depending only on objects’
positions at different times. The standard presentation of classical mechanics therefore is naturally
understood in the at-at way.

2.1 Instantaneous Velocity as a Neighborhood Property
Let us begin with the claim that velocity on the at-at theory is not a truly instantaneous quantity
(Russell, 1903; Albert, 2000; Arntzenius, 2000), since it is important to understand the claim in
order to appreciate the objection over determinism. The typical calculus-based definition of what
is usually called instantaneous velocity, which I will denote ẋ, is simply the rate of change of
position x with respect to time t, i.e. the time derivative of position dx/dt.

To compute the derivative of a function one must determine the limit of a particular sequence of
functions. In the case of instantaneous velocity, the relevant sequence of functions is the sequence
of average velocities over increasingly small temporal intervals approaching the instant of interest.
The average velocity ū over an interval 2∗∆t centered on time t is normally defined as follows:

DEFINITION.
ū(t,∆t) :=

x(t +∆t)−x(t−∆t)
2∗∆t

.

In words, the average velocity ū is just the difference in positions at two times divided by the time
interval between them.

Now, given a particular instant t, consider the sequence of average velocities as the temporal
interval ∆t decreases to zero. The limiting value of these average velocities as ∆t goes to zero
defines the time derivative of position dx/dt, i.e. the instantaneous velocity ẋ:

DEFINITION.

ẋ(t) :=
dx(t)

dt
:= lim

∆t→0
ū(t,∆t) = lim

∆t→0

x(t +∆t)−x(t−∆t)
2∗∆t

,

Let us think now about what these definitions suggest about the metaphysics of position and
velocity.

It is often assumed that position functions can take any functional form in classical mechanics.
In principle one may even allow discontinuous functions. Position is therefore taken to be a truly
instantaneous property and hence a component of an object’s instantaneous state, where we under-
stand the state of an object as the complete description of all dynamical (changeable) properties of
that object at an instant.
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Is instantaneous velocity a truly instantaneous property like position? While instantaneous
velocity is defined at particular times t, Albert and Arntzenius argue that it is not truly a quantity
of an object at an instant. As Albert says, “What needs to be kept in mind is just that there is all
the difference in the world between being uniquely attachable to some particular time and being
the component of the instantaneous physical situation of the world at that time!” (Albert, 2000,
17). So, although an instantaneous velocity can be defined for instants that satisfy the conditions of
differentiability, it would be a mistake, according to Albert and Arntzenius, to say that this velocity
is a property of an object at an instant.

As this is an essential point to grasp for what follows—and since Albert and Arntzenius only
offer few comments on why this is so—it is worth expanding on the underlying reasoning. The
reasoning is clearest in the analogous case of average velocity. Let us ask, “of precisely what is
average velocity a property?” In general, given an average velocity centered at time t and over
an interval t −∆t to t +∆t, an object in motion does not possess an instantaneous velocity at t
equal to the given average velocity except perhaps at isolated instants (unless of course it is in
uniform motion). One would surely not want to say that average velocity is a property of an
object only at these points, since average velocity is well-defined regardless of whether it equals
instantaneous velocity. One would also not want to say it is a property of the object at each instant
in the given interval, since average velocity in general changes depending on the chosen interval
∆t and one would end up with inconsistent properties. Indeed, this is why ∆t is included explicitly
as an argument of the average velocity function. What the definition suggests, then, is that average
velocity ought to be understood as the property of an object over a specific interval, i.e. the interval
between t−∆t and t +∆t (that is, if one believes that averages should be thought of as properties
at all).

Similar reasoning suggests that instantaneous velocities are not truly instantaneous properties
in the at-at theory. Refer to the definition of instantaneous velocity above. It necessarily makes
reference to a sequence of intervals (denoted by ∆t) in the neighborhood of the given instant t
(the limit point). Instantaneous velocity is therefore better thought of as what Arntzenius calls a
neighborhood property. Neighborhood properties are properties possessed by an object not at an
instant but in neighborhoods of an instant. It is crucial to understand, however, that a neighborhood
property is not to be thought of as a property of some specific interval around the instant, for it
is not some particular interval to which one attributes the property but to the development of the
function in arbitrary neighborhoods of the instant.

Arntzenius’s explication of the notion of neighborhood properties is rather compressed, relying
on an intimate familiarity with differential calculus. To better understand the concept of neighbor-
hood properties and the kind of reference at work here one needs to fully grasp the concept of a
limit, so let us look carefully at the usual ε−δ definition:

DEFINITION. The function f approaches the limit l near a means: for every ε > 0 there is some
δ > 0 such that, for all x, if 0 < |x−a|< δ , then | f (x)− l|< ε .

To put this definition to work in the case of instantaneous velocity, replace the symbols in the
previous definition with the ones used above in the definition of instantaneous velocity, recalling
that the instantaneous velocity is equal to the limit of average velocities in the neighborhood of t,
i.e. ẋ(t) = lim∆t→0ū(t,∆t):

DEFINITION. The average velocity ū(t,∆t) approaches the limit ẋ near t means: for every ε > 0
there is some δ > 0 such that, for all ∆t, if 0 < |∆t|< δ , then |ū(t,∆t)− ẋ(t)|< ε .
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It will help to unpack the limit definition a bit in words to get clear on the role of neighborhoods.
Here is what it says. First we pick any positive real number ε we like. If the instantaneous
velocity exists at t, then what the definition requires is that we can always find some neighborhood
around t, e.g. a temporal interval between t − ∆t and t + ∆t, such that the difference between
the average velocity over the interval and the instantaneous velocity is less than ε . Since the
choice of ε is up to us, we can require the difference between them to be as small as we like;
if the instantaneous velocity exists, there will still be some choice of δ for which all temporal
neighborhoods of t with intervals between t − δ and t + δ will secure the required difference
(or less). Thus the instantaneous velocity does not depend on any particular choice of ε or any
particular neighborhood t ± ∆t. One can always choose an ε which forces a choice of δ that
“moves inside” of a particular neighborhood. The instantaneous velocity does, however, clearly
depend on more than the position of the object at t to exist, namely the behavior of the position
function in arbitrary temporal neighborhoods of the instant in question.

To illustrate the application of these concepts, it is useful to consider an example of discon-
tinuous motion. Suppose that there is an object in uniform motion which at some instant t jumps
discontinuously to position L before immediately returning to its previous inertial trajectory. The
limits of the object’s position x(t) and its instantaneous velocity ẋ(t) are well-defined in this ex-
ample. Because it is defined by way of t’s neighborhood, the limit of its position is where it would
have been had it not made the jump and its velocity is the velocity it was traveling at before and
after the jump. The limit of position is thus a neighborhood property here, and the example demon-
strates that the limit of position does not necessarily agree with the instantaneous position at time
t. Similarly, instantaneous velocity is a neighborhood property. Since this is a case of non-classical
motion, it is not clear what to say about the object’s “actual” state of motion at its “jump” location,
except perhaps that it is moving “discontinuously” (which, observe, still requires reference to its
behavior at other times) (Cf. (Jackson & Pargetter, 1988)).

Now suppose, as a second case, that the object jumped to another position M 6= L. In both of
these cases the instantaneous positions of the two objects at time t differ but their “neighborhood
positions” are identical. While it may sound strange to say that the object is at one place (in the
usual sense) and, in another sense, not there, once one recognizes that neighborhood position is just
a way of describing the continuity of some object’s position development (in the neighborhood of
an instant), it is clear that instantaneous velocity too is a way of describing an aspect of the object’s
position development, namely, how fast it is changing (in the neighborhood of an instant).

Before turning to Arntzenius’s critique of the at-at theory, I mention that other authors have
frequently made use of examples like these just mentioned, where motion is discontinuous (or
not differentiable), in order to conjure intuitions about the nature of motion (Jackson & Pargetter,
1988; Tooley, 1988; Carroll, 2002). In general I will mostly restrict attention in the following to
classical motion, i.e. the kind of motion described by classical mechanics. In classical mechanics,
as I noted above, motion is conventionally understood to be continuous. This assumption also
permits one to take motion to be smooth (infinitely differentiable), since, according to the (Stone-
)Weierstrass theorem, any continuous function can be approximated as closely as one likes by a
smooth one over some closed interval (here, of time). I will make essential use of this assumption
of smoothness later, although for certain specific purposes I will occasionally consider cases where
discontinuous motion is permitted.
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2.2 Determinism and Motion
Albert and Arntzenius take it to be an objectionable consequence of a theory of motion if by def-
inition and logic alone determinism is rendered impossible. Their objection depends on the main
conclusion of the previous section, namely that instantaneous velocity is not a a truly instantaneous
property. Let us see first how this objection is raised against the at-at theory of motion. I will then
show that Arntzenius and Albert are mistaken: the preclusion of determinism, properly understood,
is not at all a consequence of the at-at theory of motion.

The type of determinism Arntzenius and Albert have in mind is usually called Laplacian de-
terminism, as it is evoked by Laplace in this oft-quoted passage:

Given for one instant an intelligence which could comprehend all the forces by which
nature is animated and the respective situation of the beings who compose it...it would
embrace in the same formula the movements of the greatest bodies of the universe and
those of the lightest atom; for it, nothing would be uncertain and the future, as the past,
would be present to its eyes. (Laplace, 1840/1902)

Albert (2000, 10) describes the present state of the world as the instantaneous states of every
object in the world at the present instant, a description that accords with Laplace’s. It is also
the one that Arntzenius adopts. These instantaneous states, along with the appropriate dynamical
law (determined by the various classical forces at work), are the things one needs to know in
classical mechanics to deduce the trajectories of all the objects in the world, if classical mechanics
is deterministic in the Laplacian sense. If it is, then this is the sense in which Laplace’s intelligence
could know the movements of all objects for all times, past and future.

If, however, the at-at theory is correct and instantaneous velocity is not an instantaneous quan-
tity in classical mechanics, as shown above, then classical mechanics is not deterministic in the
Laplacian sense. In classical mechanics both position and velocity are required to determine future
and past evolution. If velocity is not truly instantaneous, then the present state of the world only
includes the positions of all the objects in it. Thus Laplace’s intelligence would be left scratching
its head looking at its impoverished situational report, unable to determine anything whatsoever
about the future or the past on its basis—all this, according to Arntzenius, because instantaneous
velocity was simply defined in the way recently shown, and therefore determinism is said to be
rendered impossible by definition (and logic) alone.

The obvious rejoinder to Arntzenius’s objection is to say that our definition of determinism (or
alternately, present state of the world) is mistaken. So, if one is unperturbed by giving up Laplacian
determinism, then a simple solution is obviously at hand. Just allow the Laplacian intelligence to
have access to neighborhood properties as well as the truly instantaneous state of all objects. In
so doing we modify the notion of “present state of the universe” to include the neighborhood of
the present, i.e. determinism comes to depend on both neighborhood and properly instantaneous
properties.

If we say this, though, then we may seem to find ourselves in an uncomfortable dilemma over
definitions. On the one hand, we can insist that the definition of instantaneous velocity is correct
and, on the other, that Laplacian determinism (or present state of the world) is defined correctly.
Why prefer one definition to the other?

I say that it is a mistake to characterize the issue in this way, as a matter of definitional prefer-
ence, since it is not the case that definitions alone are at issue. As Earman observes, for example,
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“we cannot begin to discuss the implications of physics for the truth of the doctrine of determinism
until we know what determinism is; on the other hand, no precise definition can be fashioned with-
out making substantive assumptions about the nature of physical reality” (Earman, 1986). As he
rightly notes here, we have to make some substantive assumptions about the world even to begin
evaluating the notion of determinism. So long as we are making substantive assumptions about
the nature of physical reality, then, the issue at hand is not simply a matter of logic and definition
alone.

What are the “substantive assumptions” underlying the definitions employed here then? On
the face of it, they appear to depend on interpretive matters concerning laws of nature. One who
believes that the laws produce new physical situations from old ones may find any relaxation of the
definition of determinism from the Laplacian version objectionable. If one thinks instead that laws
are merely a description of regularities that can be gleaned from the physical facts, however, then
relaxing the definition of determinism is unproblematic. The state of the world does not have to be
instantaneous on this view; it may be whatever the most physically salient notion of determinism
requires. In the case of classical mechanics, the relevant state of the world is then naturally taken
to be the neighborhood state of an instant.

That Arntzenius has the former point of view in mind follows from a related objection to the
at-at theory he makes. That objection is that assuming the standard definition of instantaneous
velocity imposes non-dynamical constraints on evolution (to be described below). This is objec-
tionable, as he says, because

...surely our notion of a physical state is such that being in a particular physical state at
some time does not by definition and logic alone put any constraints on what physical
states the system can be in at other times. Physics may impose constraints on the
possible developments of the physical states of systems, but surely logic and definition
by itself should not do so. And that implies that neighborhood properties and neighbor
hood states are not physical states, they are features of finite developments of physical
states. (Arntzenius, 2000, 195)

If one has the idea that laws act on truly instantaneous states of affairs to produce new states
of affairs, this concern might be quite reasonable. For this objection to be sustainable, though,
(accepting this view of laws for the moment) it must be that Arntzenius is right about two things:
that only physics can impose such constraints, and that physics does not impose the constraints that
instantaneous velocity places on position developments. I claim that he is wrong on both counts.

What exactly are these constraints to which he objects? Arntzenius’s explication is again com-
pact, and it is worth providing a detailed exposition in order to rebut his objections. To clarify what
he has in mind, consider for simplicity the case of some object constrained to move on a surface Σ.
At some time let the position of the particle be p. If position is the only instantaneous property of
the object at that time, then any trajectory on the surface is kinematically possible (see Fig. 2.1),
i.e. possible in advance of consideration of the constraints imposed by forces and the dynamical
laws. If one allows the instantaneous velocity to be part of the state of the particle (not necessar-
ily presupposing that this velocity is the time derivative of position ẋ), then the possession of a
particular velocity, say u, restricts the possible position developments to the past and to the future
(see Fig. 2.2). Only those developments which have u as their derivative at p are kinematically
possible when both p and u are part of the state. Note that velocity imposes this constraint only in
the neighborhood of p—for any point q in the neighborhood of p there exists some kinematically
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p

Σ

Figure 1: Some trajectories compatible with an object on surface Σ located at position p.

possible trajectory that passes through q from p—so it is in some sense a weak constraint but a
constraint nonetheless (Butterfield, 2006, 724-5).

p

Σ

u

Figure 2: Trajectories compatible with an object on surface Σ located at position p with velocity~u.

There are, as I see it, two reasonable ways to respond to Arntzenius’s charges.
First, we may suppose that the kinematical constraint imposed by instantaneous velocity is

actually a kind of metaphysical constraint. This constraint need not be imposed in such a way that
instantaneous velocity becomes truly instantaneous. Rather it may be imposed in much the same
way that dynamical constraints are imposed, namely via laws. For example, the requirement that
trajectories be smooth, which classical mechanics generally presupposes, might be considered a
metaphysical law, one that is understood to be prior to any physical law. Similarly, the kinematical
constraint imposed by instantaneous velocity might be considered a metaphysical law in this way.

Why think that this constraint is a metaphysical law rather than a physical law? Perhaps because
it expresses “what we mean” by velocity, or maybe because it is merely a pre-condition on any
physics that would describe what we call classical motion. At the very least, the possibility of this
view challenges the notion that only physics can constrain position developments as Arntzenius
assumes. Either one accepts this possibility—physics is, after all, obviously committed to many
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metaphysical presuppositions already—or one has the burden of showing why there cannot be
constraints like this.

One objection to taking this course might be based on the popular view of metaphysics where
only metaphysical necessity could potentially ground a metaphysical law of the kind I suggest. On
this view the exhibition of a possible world where that law does not hold is sufficient to undermine
its lawhood. Then one only has to consider worlds where there is discontinuous motion, such as
Tooley (1988) and Carroll (2002) do, to see that the metaphysical constraint imposed by instanta-
neous velocity does not hold. If one allows that metaphysical laws, like special science laws, do
not need to constrain all metaphysical possibilities, then such thought experiments do not militate
against this suggestion however.

Nevertheless, there is a second way to respond that to some extent obviates the former, so I
will not argue further for the first. That way is to recognize that the kinematical constraint imposed
by instantaneous velocity already follows from the dynamical constraints imposed by the laws
(in which case it ought to be actually considered a dynamical constraint). The general form of
dynamical constraints in classical mechanics is given by Newton’s Second Law:

∑F = ma;

that is to say, the instantaneous sum of forces on an object is equal to the mass of the object times
its acceleration. The acceleration a is usually defined as the time derivative of the instantaneous
velocity ẋ; in other words, Newton’s Second Law is equivalently expressed as

∑F = ẍ =
d
dt

(
dx(t)

dt

)
,

where the acceleration ẍ is the second time derivative of position. To make acceleration the second
time derivative of position, one must obviously have a first time derivative of position, i.e. an
instantaneous velocity, to differentiate. Given that Newton’s Second Law is a dynamical constraint
of the kind that Arntzenius accepts as a physical constraint, it would seem to follow as a matter of
course that the kinematical constraint imposed by instantaneous velocity is a physical constraint as
well—it is, from this point of view, a constraint that simply follows from Newton’s Second Law.
The point is even more transparent when one re-writes Newton’s Second Law as two first order
differential equations:

∑F = u̇;

u = ẋ,

where u is the instantaneous velocity. Here the “kinematical” constraint that is part of Newton’s
Second Law is made explicit.

Let me summarize this section. I have argued that the objections raised by Arntzenius against
the at-at theory of motion are unfounded. Although I agree with Arntzenius that instantaneous
velocity is not truly instantaneous according to the at-at theory and is better understood as a neigh-
borhood property, I disagree with the claim that instantaneous velocity threatens the determinism
of classical mechanics. If one does insist on holding onto the idea that only truly instantaneous
properties can figure into the physical state of the world (or a system), then it is true that one
must give up on the idea that the laws produce future states on this basis alone (in keeping with
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Laplacian determinism). It is, in short, a basic fact of classical physics that the world cannot be
deterministic in this sense. But it is not true that this is a matter of logic and definition alone, as
Arntzenius insists. If one allows that the state of the world include neighborhood properties (and
arguably one may do this however one chooses to interpret laws of nature), then there is a clear and
substantive sense in which classical mechanics is deterministic. This idea is motivated by attend-
ing to the kinematical constraints imposed by instantaneous velocities. If they are seen as either
falling under a metaphysical law or following simply from the definition of Newton’s Second Law,
as I claim they should, then they should be considered a part of the physically relevant state of
the world. Therefore I conclude that the at-at theory is not threatened by the objections raised by
Arntzenius.

3 Impetus Theory of Motion
The impetus theory of motion holds that what it is to be in motion is possessing a non-zero quan-
tity of motion, i.e. a non-zero velocity. In the context of classical mechanics this velocity should
be a truly instantaneous velocity in the same way as position is taken to be truly instantaneous.
Hence it should be a component of an object’s physical state. However, since it is customary in
classical dynamics to call the time rate of change of position, i.e. ẋ, the instantaneous velocity, I
will henceforth call the truly instantaneous quantity of motion of an object its impetus and denote
it v. To further avoid confusion I will also refer to ẋ as the kinematical velocity. In this section I
investigate the prospects of the impetus theory of motion in the context of classical motion. First,
in agreement with Arntzenius (2000), I reject rescuing Laplacian determinism by simply supple-
menting classical dynamics with impetuses and quickly rehearse the basic argument to provide
some useful context. I then raise a new challenge to the at-at theory of motion by re-conceiving
classical mechanics in a way that takes velocity rather than position as basic and makes position a
derived quantity.

3.1 Super-addition of Impetus to At-At Theory of Motion
I showed in the previous section that the Laplacian picture of determinism—a state of the universe
at an instant being evolved deterministically forward by the laws of motion—is untenable on the
at-at theory of motion. The issue was that velocities are non-instantaneous on the at-at theory of
motion while the laws of motion require truly instantaneous velocities in order to be deterministic
in the Laplacian sense. An obvious solution to this problem is to supplement the instantaneous
properties of objects with a truly instantaneous velocity, i.e. an impetus. Then one may ostensibly
maintain the intuitive definitions of determinism and physical state preferred, among others, by
Albert and Arntzenius.

This kind of impetus theory, which superadds impetuses to the account of motion given by the
at-at theory, is an unacceptable theory of motion however. Insofar as objects follow continuous
trajectories in classical mechanics, the kinematical velocity ẋ exists and correctly describes the
time rate of change of position; hence it is a velocity. If the impetus is to play a role in describing
actual motion, then it must necessarily be equated with the kinematical velocity, i.e. it must be
the case that v = ẋ. As the kinematical velocity and the impetus are both meant to be velocities
describing motion, such a relation introduces a necessary kinematical constraint. Such constraints
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are to be considered, following the discussion in the previous section, as either metaphysically or
physically necessary in classical mechanics. Yet, given the necessity of this kinematical constraint,
impetuses appear to be incapable of doing any additional “work” in the theory over and above
kinematical velocity (which, again, is given in the theory since position is taken as given). They are
physically idle—one cannot say anything more with them than what can already say with position
developments. It will simply not do to add physically superfluous properties and constraints solely
in order to preserve a particular metaphysics of laws. To do so would make metaphysics frivolous.
Therefore, one ought to preclude impetuses from classical ontology along with their associated
kinematical constraints.

Although impetus is necessarily constrained to equal kinematical velocity for differentiable
trajectories, perhaps one might think that the conceptual independence of the two velocities be-
comes manifest in a wider context, viz. one where trajectories are not continuous. This is not so. If
position is not a differentiable function of time at some instants, then the impetuses must likewise
be undefined at these instants, else they would be irrelevant to the description of actual motion.
Suppose, for the sake of argument, that impetuses could disagree with the kinematical velocities.
In the case of differentiable position functions the impetuses would not function as quantities of
motion as intended, since they would give the wrong dynamical evolution of the objects’ posi-
tions. In cases where the position functions results in undefined kinematical velocities at some
instants, if impetuses were to possess a defined value, then they would also give the wrong dy-
namical evolution, as they would indicate a future motion that does not occur. Impetus is therefore
entirely expendable in this wider context. Both velocities must agree when kinematical velocity is
well-defined, whereas the kinematical velocity is not beholden to impetus in any way.

3.2 Position Reduced to Velocity Developments
Insofar as one makes the usual assumption that position is included in an object’s instantaneous
physical state, impetuses are superfluous and instantaneous velocity is not really instantaneous. If
the arguments in §2 that the at-at theory of motion does not preclude determinism are correct, then
one has reason to believe that the at-at theory should be our preferred theory of classical motion.
Although I do believe that the at-at theory gives us a fine way of understanding the metaphysics
of motion, I also believe that there exists an unappreciated impetus alternative to the at-at theory.
Moreover, I claim that this alternative seriously underdetermines our interpretation of classical
motion, for only epistemically inaccessible facts could decide between them.

The incipient idea is to take velocity as a quantity of an object’s instantaneous state and position
as a quantity derived from velocity by integration: x(t) =

∫
v(t)dt. Thus, whereas the at-at theory

considered above reduces velocity developments to position developments, this theory reduces
position developments to velocity developments. It gives rise naturally to a kind of impetus theory,
since velocity is now taken as a truly instantaneous quantity, although in this case v= ẋ not because
they are equal by a kinematical constraint, but because the fundamental theorem of calculus applied
to the definition of position just given informs us that the terms on both sides simply refer to
precisely the same property.

Arntzenius in fact briefly raises the inchoate thought behind this theory of motion in his re-
sponse to (Smith, 2003) but quickly overrules it because there are “velocity developments that are
incompatible with calculus”—in particular the “calculus definition of velocity” (Arntzenius, 2003,
282). In essence, he claims that one cannot allow arbitrary velocity functions (as one allows ar-
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bitrary position functions in the at-at view) because time derivatives of position functions cannot
recover a (very) large class of these arbitrary velocity functions, viz. those functions which are not
the derivatives of any function. Since the definition of velocity (as time derivatives of position)
would limit which functions could be used to describe velocity,“logic and definition alone would
still imply constraints between instantaneous states at different times ”(Arntzenius, 2003, 282).1

Arntzenius again does not spell out the details of his objection, so to see how his objection is
supposed to work let us consider his example, the pathological function known as the Dirichlet
function. It is defined as follows: let v(t) be defined such that v(t) = 1 for rational t and v(t) = 0
for irrational t. The particular details of this function are not visualizable at any scale—if one
tries to plot it, it just looks like two lines at v = 1 and v = 0. (The Thomae function is a similar
alternative function that is better able to be visualized.)

Now suppose that there is a position development x(t), the derivative ẋ(t) of which is this
just defined velocity development v(t). Then, recalling the definition of instantaneous velocity
in §2, it must be the case that v̄(t,∆t), i.e. (x(t + ∆t)− x(t − ∆t))/2 ∗ ∆t, approaches the limit
v near t. This cannot be the case, however, since for any ε such that 1 > ε > 0 the inequality
|v̄(t,∆t)− ẋ(t)| < ε will not hold. This is because as one moves closer to t the Dirichlet function
repeatedly jumps between 0 and 1 as t goes from rational to irrational numbers, etc. Thus no
limit point is ever approached. Since velocity functions with characteristics similar to the Dirichlet
function cannot be recovered by differentiating position functions in this way, Arntzenius intimates
that this definition of velocity imposes constraints on possible velocity developments merely by
“logic and definition”.

I say this is a bad argument. Before explaining in full why it is, though, some preliminaries
are needed. Suppose that we do take pathological functions like the Dirichlet function seriously
(for the moment) as physically possible velocity developments. In the impetus view presently
under consideration, position is a derived property, as it is defined via integration. Here, though, it
becomes quite important precisely which notion of integration we use. The notion of integration
familiar from basic calculus, Riemann integration, cannot be applied to the Dirichlet function. The
function has no integral in this sense of integration. Thus it would seem that an object with the
Dirichlet velocity development has no position development when position is defined via Riemann
integration.

Surely, one might think, this is the problem with the proposed account of motion: the potential
absence of well-defined positions. Yet this is not so. Suppose that we allow everywhere con-
tinuous but nowhere differentiable position developments in the at-at theory of motion. Then an
object whose position development is described by the Weierstrass function, the most well-known
function of this kind, has no velocity development. This is because the position development is
nowhere differentiable; hence the object with this position development nowhere has a velocity.
Such a case, I submit, is no more strange than the previous. In short, if pathological functions are
a problem for the impetus theory, then equally they are for the at-at theory as well.

One might object to the cases being treated equally, saying that it is possible to imagine an
object moving along a trajectory with the functional form of the Weierstrass function, but it is not
possible to imagine an object failing to have a position. This objection begs the question against

1Understanding and meeting this objection leads into somewhat technical terrain; the reader who finds the al-
ternative impetus theory plausible and does not care for mathematical niceties should skip ahead to below the long
quotation.
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the impetus view under consideration here. We are used to thinking of objects moving in space.
We should not allow a mere prejudice to preclude an alternative theory of motion. Only if the
theory suffers from legitimate defects, for example an inability to recover empirical content or to
provide a coherent account of classical motion, should it be disfavored.

In any case, Arntzenius’s own objection is not that the mere lack of a position development is
problematic. Rather it is that there exist velocity developments which are not the derivatives of any
position development according to the previously given definition of derivative. But why should
we assume this definition of velocity in the present impetus theory of motion? Velocity is not and
should not be defined in the impetus theory as it is taken as basic. Rather it is position which
is derived and hence must be defined. Arntzenius’s objection depends on duplicitously treating
velocity as both basic and derived.

If one were to do the same in the context of the at-at theory, i.e. treat position as both fundamen-
tal and derived, then one would have precisely the same problem: there exist position developments
which are not the integrals of any velocity development. A position development following the
Weierstrass function would be precisely such a case. Thus there would be position developments
that are incompatible with calculus, namely the calculus definition of position (via integration).
Arntzenius’s objection cuts both ways.

Nevertheless, there are alternative definitions of integration according to which functions like
the Dirichlet function are in fact integrable. The well-known Lebesgue integral, for example, gen-
eralizes the notion of Riemann integration by utilizing a measure with respect to which integration
is performed. Given a set X and a measure µ on the measurable subsets of X , the Lebesgue integral
of a function f over the set A⊂ X is written

∫
A f dµ . If we take the f to be the Dirichlet function,

X as the set of real numbers R, A = [0,1], and µ the standard Lebesgue measure associated with
the real numbers, then ∫

A
f dµ = 1.

Thus, when one makes use of the Lebesgue integral, one finds that the integral of the Dirichlet
function over this finite interval is just a constant.

If we adopt this alternative definition of integration, then it appears we have a new problem
though: the usual calculus derivative of a constant is zero, which is obviously not the same as
the Dirichlet function. When previously we used Riemannian integration we had the fundamental
theorem of calculus to guarantee a certain duality between differentiation and integration, so that
integrating a derivative or differentiating an integral returns the original function. To restore this
kind of duality we need to do is modify our definition of derivative to regain an analog of the
fundamental theorem. The simplest way to do this is just to define differentiation in terms of
Lebesgue integration, namely as

lim
A→0

1
µ(A)

∫
A

f dµ.

The Lebesgue differentiation theorem guarantees that this derivative exists and, more importantly,
equals f at almost every point in X . Thus if we take f to be the Dirichlet function, one of the
possible derivatives of its integral is the Dirichlet function. While it is true that other derivatives
are possible, viz. functions that differ in their values on a set of measure zero, this is no problem
for an impetus theory of motion based on Lebesgue integration, since the velocity developments
are basic and only positions are derived. Thus it is only necessary that we can recover the Dirichlet
function by differentiation, not that the derivative is unique.
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Still, recalling some concerns raised earlier, it should remain puzzling why an object moving
along a constant position development (derived via integration of the Dirichlet function) would
have such a complicated velocity development (the Dirichlet function), as the non-zero velocity
deviations in that velocity development appear to have no physical effect on the object’s position.
Thus it would seem that this lengthy excursion into complicated mathematical analysis is rather
strained and has not further clarified motion at all. (I would insist that it was not pointless, however,
since it does address several spurious objections that might be raised against the impetus theory
under consideration.) Indeed, I think the discussion of pathological functions is rather strained in
the context of classical motion. For the purposes of mechanics and motion, we would do well to
heed the words of Poincaré from 1899:

Logic sometimes makes monsters. For half a century we have seen a mass of bizarre
functions which appear to be forced to resemble as little as possible honest functions
which serve some purpose. More of continuity, or less of continuity, more derivatives,
and so forth. Indeed, from the point of view of logic, these strange functions are the
most general; on the other hand those which one meets without searching for them,
and which follow simple laws appear as a particular case which does not amount to
more than a small corner.

In former times when one invented a new function it was for a practical purpose; today
one invents them purposely to show up defects in the reasoning of our fathers and one
will deduce from them only that.

If logic were the sole guide of the teacher, it would be necessary to begin with the
most general functions, that is to say with the most bizarre. It is the beginner that
would have to be set grappling with this teratologic museum. (as quoted in (Kline,
1972, 973))

The lesson of the tortuous course I have taken is, and what I think this quotation suggests, is
that logical and mathematical possibility by no means correspond to metaphysical and physical
possibility. When one reasonably restricts attention to suitably well-behaved functions to describe
the motion of objects, one is able to keep the relevant physical notions before oneself in plain view.
Restricting attention in this way allows that the usual classical physics fully permits the reductive
impetus theory of motion proposed here just as much as it permits the reductive at-at theory of
motion discussed in the previous section. The wider context of functions in mathematical analysis
is from the point of view of (meta)physics a distracting teratology—for the at-at theory as much as
for the impetus theory. Perhaps one might find the foregoing discussion belaboring, but it seems
necessary given that many arguments in this literature, including Arntzenius’s dismissal of this
approach, have been based on the dishonest possibility of objects following bizarre paths.

It is now time to turn then to honest questions of ontology as a way of distinguishing this new
impetus theory from the at-at theory, since logic and definition do not trouble the former any more
than the latter (that is, not at all). The at-at theory of motion takes position as basic and therefore
is naturally bound up with the existence of space and time. Objects have a position in virtue of
their embedding in space (substantivalism) or in virtue of their spatial relations with other objects
(relationalism). It is important to recognize, however, that objects only have an absolute position
in virtue of the existence of absolute space, as is supposed in the doctrine of substantivalism. I
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stress that this supposition is, strictly speaking, an additional metaphysical posit above and beyond
the metaphysics required for the at-at theory of motion.

What then does the reductive impetus theory under discussion suggest? The impetus theory
of motion takes velocity as basic, so, in analogy to the at-at theory, it is naturally understood
as depending on the existence of some sort of “velocity space” (whether understood in a way
analogous to relationist or substantivalist space). Objects have a velocity, one would say, in virtue
of their embedding in velocity space or in virtue of their velocity differences with other objects.
Although one could also posit absolute “locational” space in addition to the assumed velocity
space, it would seem to go against the idea of taking velocities as basic. Thus “locational space”
is naturally a derivative concept (and perhaps in some sense emergent) according to this theory of
motion.

Granted, as spatial reasoning is so familiar, this velocital view is perhaps quite strange and
unintuitive. It is not thereby implausible, however. A simple imaginative illustration may be
helpful. Suppose that we are down at the links watching a golf ball in flight and furthermore that
we were able to perceive its instantaneous physical situation (from our point of view). Look at the
ball. Is it moving? On the at-at theory we would certainly be able to say where it is (in relation
to ourselves) but not whether it is moving (in relation to ourselves), since it has no instantaneous
property of velocity. If we only knew the positional facts about the temporal neighborhood of that
instant, though, then we could say whether it is moving or not.

On the impetus theory the situation is just the opposite. In this case we would certainly be
able to say whether the ball is moving (with respect to ourselves) or not but we could not say
where it is (with respect to ourselves). Similarly, if we knew the velocital facts about the temporal
neighborhood of that instant, then we could say well enough where the ball is (with respect to
us). Indeed, we are, I submit, usually in possession of such facts (whereas we of course never
perceive instantaneous physical situations!). Nevertheless, we should accept that the two views
are distinct, since they are not metaphysically intertranslatable given their different verdicts in
this example—they say different things about the world at instants of time, even if they do not in
ordinary circumstances.

Despite commonplace intuitions to the contrary, there is really nothing metaphysically awry
with the reductive impetus theory, since it only differs from the usual way of thinking at instants. I
suspect it will have already occurred to some readers, however, that there is at least one salient dif-
ference which distinguishes it from the at-at theory. That difference is the one secondary students
learn between derivatives and integrals: the derivatives of well-behaved functions are determined,
whereas (indefinite) integrals are determined only up to an additive constant, the constant of inte-
gration. Thus, on the at-at theory, given a temporal neighborhood, the velocities would be fully
determined, whereas on the impetus theory, by contrast, given a temporal neighborhood, the posi-
tions would be determined only up to a constant.

The difference between derivatives and integrals is sufficiently well known that something must
be said about this. Does this circumstance militate against the impetus theory? The reader will not
be surprised that my answer to the question is ”no”, but it is quite instructive to see why any ob-
jection along these lines is misguided. The first thing to note is that the fundamental dynamical
law in Newtonian mechanics, Newton’s Second Law, does not by itself force the problem upon
us. Re-expressing F = ma in the impetus theory’s basic terms yields F = mv̇, which makes no
necessary reference to position, so no reference to derived quantities, so no reference to integrals
which could give rise to undetermined integration constants. It is therefore only when the forces

15



themselves depend on positions, i.e. F = F(x), that the Second Law necessarily becomes a sec-
ond order ordinary differential equation. Then, since x =

∫
vdt, there will be derived quantities

determined by integrals and, hence, constants of integration which potentially become physically
significant.

Let us consider a few examples to see what comes of these constants of integration. Suppose
first that there is but a single inertially moving particle in the universe. In this case v is constant
and mv̇ = 0 = F. What is the position of the particle? Since the particle experiences no forces, one
is not forced to say anything at all about space and position. If we like, however, we can integrate
the velocity to yield a position function, i.e.

∫
vdt = x(t)+X, where X is a constant. What is X?

If there were absolute space, then X would be the difference between the relative position x and
the absolute position of the object. But it would be contrary to reason to suppose that there are
absolute positions from the point of view of the reductive impetus theory of motion. So in this case
the constant of integration should be neglected, just as it would be in the relationist version of the
at-at theory of motion.

Suppose next that there are two free particles in the universe. In this case the velocities of both
particles are constants and both particles experience no forces. Again, we are not forced to say
anything about space and position, but we can integrate the two independent velocities to yield
two position functions with two constants of integration. Now you might think that there is now a
problem, since even if we rid ourselves of one spurious constant of integration due to the absence
of absolute positions there still remains one, which ought to represent the relative positions of
the two particles. But our assumptions do not indicate any spatial relation at all between the two
particles, as they are free particles which experience no forces. The only facts in such a universe
are the velocity developments, from which we can infer the “distances” they travel, understanding
that these distances should be measured out in independent positional spaces. This circumstance is
somewhat analogous to the tangent (velocity) spaces of curved manifolds (spaces), which cannot
be automatically identified as they are in Euclidean space without the addition of some way to
parallel transport tangent vectors, i.e. a connection. It is of course natural to think that there is
only one unified “locational” space in which motion takes place, but that intuition is unsupported
in this case since the particles are free. Fortunately for our intuitions, the weirdness of independent
locational spaces of motion depends on the unrealistic idealization of force free motion.

So consider the more realistic example of motion within the scope of Newton’s Law of Univer-
sal Gravitation, which depends on relative positions to determine motion. For simplicity, consider
the gravitational system of two objects and Newton’s Law applied to one:

F12 = Gm1m2
x2−x1

|x2−x1|3
,

where Fi j is the force on object i due to object j, G is Newton’s gravitational constant, mi is
the mass of the object, and xi is the position of the object i. In the impetus theory of motion
the positions are derived quantities, so we would want to re-express Newton’s Law of Universal
Gravitation as follows:

F12 = Gm1m2

∫
(v2−v1)dt +X

|
∫
(v2−v1)dt +X|3

,

where X is a constant equal to the sum of the two constants of integration introduced by re-
expressing the relative positions as indefinite integrals. What the gravitational force at a partic-
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ular instant is clearly depends on what X is. Presumably this is the circumstance that the impetus
theory’s detractor envisions as fatal for the view.

Plainly, if one were to have the view that laws act on instantaneous states, then the integration
constants would apparently be essential for securing determinism, since different choices of X—
essentially different choices of relative distance between the two particles—would entail different
forces, accelerations, and future motions. The reductive impetus theory of motion, however, like
the at-at theory of motion, does not rescue Laplacian determinism. Instantaneous velocities in
concert with Newton’s Second Law cannot fully determine future and past states alone, just as
instantaneous positions in concert with Newton’s Second Law cannot, as I argued at length in the
previous section. So, while the desire to save this kind of determinism motivates some to consider
super-added impetuses, it is certainly not a motivation to consider the reductionist impetus theory.

If one does not expect the impetus theory to rescue Laplacian determinism, then there is in
fact no underdetermination of the physically relevant integration constants. An extended example
would perhaps usefully illustrate why, but the following general argument is much more straight-
forward.

Consider that classical mechanics in the abstract is a theory of possible motions, where a mo-
tion is a specification of each object’s position and velocity at each instant. One begins with the
set of kinematically possible motions; a motion in this set is a collection of smooth trajectories
of the objects in the system. What dynamical laws do is select from this set the dynamically
possible motions—dynamical laws are constraints on the set of kinematically possible motions.
In physically reasonable cases dynamical evolution is deterministic in the specific sense that these
dynamically possible motions never “cross” (do not ever share all the same positions and velocities
for all trajectories).

It is not enough to pick out a particular motion to specify just the velocities of each object
at a particular instant, since many motions have the same velocities at an instant but different
position specifications. This is why there is the constant in the gravitational force function above:
specifying the velocities at a time alone is insufficient for picking out the forces at that time. Now
it is well known that it is enough to specify the positions of each object at two instants to pick out a
particular motion. This is essentially because Newton’s Second Law is a second order differential
equation. But there is nothing special about positions here: it is just as well to specify the velocities
of each object at two instants to pick out a particular motion. It is also enough to specify the
positions and velocities of all the objects at a single instant. But to do this one needs neighborhood
properties on both the at-at and impetus theory, since velocities and positions, respectively, are
reduced to position and velocity developments (respectively).

Thus, returning to the example of Newtonian gravitation, if we express Newton’s Law of Uni-
versal Gravitation with definite integrals (which represent position displacements by integrating
velocity developments), i.e.

F12 = Gm1m2

∫ t+∆t
t−∆t (v2−v1)dt

|
∫ t+∆t

t−∆t (v2−v1)dt|3
,

then the constants of integration disappear and the gravitational forces are fully determined by the
given velocity developments.

Since the physically significant integration constants are required to fully specify the position
developments, it might appear that some additional information is somehow yet required in the
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impetus theory in comparison with the at-at theory. But again, this is so only at a single instant.
Since picking out a particular motion (by, for example, specifying velocities at two instants or even
some small initial interval of the velocity development) determines an entire position development,
whatever physically relevant integration constants are included automatically in those determined
position developments. Thus, despite initial appearances, there is no conceptual problem created
by the presence of integration constants at all. Indeed, only persisting in believing the myth that
classical motion is Laplacian deterministic will lead one to find a problem with the at-at theory or
the present impetus theory of motion.

Therefore there are sufficient grounds to claim that the reductive impetus view is coherent and
sufficiently dual to the at-at theory of motion to metaphysically underdetermine theory choice.
The at-at theorist denies that kinematical velocity is truly instantaneous, giving a reductive account
of kinematical velocity in terms of position developments. One adds impetuses at the cost of
ontological redundancy. In the reductive impetus theory the roles of position and velocity are
exactly reversed. By the same arguments one finds that velocities are truly instantaneous and that
positions are not; the latter are instead reduced to velocity developments. One could add truly
instantaneous positions back to try to regain Laplacian determinism, but the argument against
them would mirror the argument against truly instantaneous velocities being added to the at-at
theory of motion. Thus we are left with two reasonable alternatives: the at-at theory of motion and
the reductive impetus theory of motion (where, note, the reduction mentioned here is of position
developments to velocity developments, not motion).

Furthermore, I claim that there is no evident reason to prefer one over the other as an account
of classical motion. Indeed, Carroll has argued that the at-at theory is irreproachable because of
our epistemological limitations. As he says, knowing that the at-at theory is false would “require
powers of discrimination well beyond us” (Carroll, 2002, 64), since any counter-example concerns
goings-on at infinitesimal temporal intervals. If he is right, and it certainly seems to be hard
to dispute it, then the impetus theory of motion that I have presented is similarly irreproachable.
There is at bottom nothing askew with the impetus version of reality; it describes a classical motion
of the same kind as the at-at theory would, differing only on what is happening in epistemically
inaccessible infinitesimal temporal intervals. So far as I can see, due to the symmetry of the
two views there are no obvious reasons to favor one theory over the other, just long custom and
convenience on which to base a preference for the at-at theory. Recognizing that there are actually
two dual, viable interpretations of classical motion is, it seems, of considerable interest for what it
suggests about the possibilities for the metaphysical grounds of motion (particularly vis-à-vis the
spaces in which motion occurs).

4 Analytical Mechanics
Although classical mechanics continues to be understood most familiarly through Newton’s Laws,
most physicists understand the subject in terms of the more sophisticated Hamiltonian or La-
grangian approaches. As philosophers have become acquainted with these approaches through
some recent work that makes use of them, e.g. (North, 2009; Curiel, 2014), I offer some further
remarks in this section on the preceding arguments by discussing motion in these frameworks.2

2It would also be worth including some remarks on the Hamilton-Jacobi approach, as it provides a distinctive
picture of mechanics (Butterfield, 2005). Indeed, it even strongly suggests the equivalent defensibility of the two
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Although the frameworks are suggestive of different interpretations, I claim that the issues raised
in the previous sections nevertheless remain entirely the same.

First, Hamiltonian mechanics. The basic quantities in Hamiltonian mechanics are (generalized)
positions q and (generalized) momenta p. These quantities (for each object) are taken to compose
the state of the system. The equations of motion are given by solving the following two first order
ordinary differential equations, Hamilton’s equations:

ṗ =−dH
dq

q̇ =
dH
dp

, (1)

where H is the Hamiltonian, a function defined on the phase space (the space of states) of a system.
The phase space of Hamiltonian mechanics is 6n-dimensional, where n is the number of objects
in the system (3 for the spatial degrees of freedom and 3 for the momentum of each object). On
the face of it, the quantities q and p are on a par: they are both basic quantities in the framework,
Hamilton’s equations are nearly identical for each (they differ only by a minus sign), and there are
no apparent kinematical constraints that break the equal footing on which they stand.

How then, one might ask, can Hamiltonian mechanics give the same classical motions as the
simpler Newtonian approach, since it seemingly allows non-classical possibilities, i.e. motions that
do not satisfy the kinematical constraint q̇ = p/m, which links momentum and change in position?
The only place where constraints like this can be imposed in the framework is in the Hamiltonian.
Indeed, only Hamiltonians that satisfy a couple requirements will result in classical motions: H
must be a function that is second order in the momenta and otherwise solely a function of the
positions. In systems treated by classical mechanics the Hamiltonian can then be understood as the
total energy of the system.

Arntzenius (2000) mentions Hamiltonian mechanics as a modern example of an impetus the-
ory. Given appearances alone this would be the natural classification, since both position and
momentum are taken as basic quantities. Yet one should not be too easily taken in by formalism—
supposing that the Hamiltonian respects the requirements mentioned in the previous paragraph,
the second of Hamilton’s equations above is actually just q̇ = p/m, i.e. merely equates the product
of mass and velocity with momentum. It is in essence just a physically-motivated definition of
momentum, not a dynamical law per se.

Now one should be able to see that the interpretive situation is not so simple. One may in-
sist that the Hamiltonian framework affords the possibility of a complete instantaneous state, one
including both position and momentum (velocity). The second of Hamilton’s equation, however,
suggests two interpretations. One is that it imposes a kinematical constraint, in which case we have
once more the problems of the super-additive impetus theory of motion of §3.1. The other is that it
merely reveals momentum as velocity in disguise, i.e. merely as a neighborhood property, in which
case we have once more the at-at theory of motion. Integrating Hamilton’s equations leads one to
the dual possibility of the impetus theory of motion of §3.2. Thus Hamiltonian mechanics in fact
affords precisely the same two possibilities discussed in the previous sections: the at-at theory of
motion and the reductive impetus theory of motion.

Second, Lagrangian mechanics. Here the relevant quantities are called the generalized coor-
dinates (positions) and generalized velocities, commonly labeled q and q̇. The Lagrangian, L, is

theories, as it furnishes a neat demonstration that only one half of the kinematical quantities (position, velocity) are
actually required to completely describe motion in classical mechanics.
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a function defined as the difference between kinetic energy and potential energy of the system.
Now, it may seem as if Lagrangian mechanics builds in the usual kinematical connection between
position and velocity at the start, since notationally at least q̇ is the time derivative of q. There is a
slight subtlety however. The two different classes of variables (the velocities and positions) are ac-
tually on a par in how they are initially treated in the Lagrangian framework. When one derives the
equations of motion from the Lagrangian analog of Newton’s Second Law, i.e. the Euler-Lagrange
equation—

d
dt

dL
dq̇
− dL

dq
= 0 (2)

—one takes an independent derivative of the Lagrangian with respect to each of q and q̇. In the
derivation of the equations of motion of a particular system they are treated as if they had no
dependence at all on one another (whereas normally the chain rule of calculus would have to be
applied). It is only after the equations of motion are derived that q̇ becomes understood as the
time derivative of q. Thus, as with Hamiltonian mechanics, the Lagrangian framework ostensibly
allows non-classical motions, i.e. ones which do not satisfy the kinematical constraint between
time derivatives of position and velocity. Only those motions that do satisfy the Euler-Lagrange
equation end up satisfying this constraint, which is why the constraint is understood to be enforced
after the derivation of the equations of motion. So one has, once more, an at-at theory of motion.
Naturally, one could re-interpret that constraint in terms of integration rather than differentiation,
in which case one has, once more, the reductive impetus theory of motion.

Although there is therefore no novelty in these frameworks vis-á-vis a theory of motion, there is
perhaps a novel issue to be found here with respect to the status of the non-classical motions which
is worth mentioning. These motions, to repeat, are those that do not enforce the relation v = ẋ,
i.e. the relation that velocity is the time rate of change of position (or the impetus theory analog).
Are these mathematical fictions, introduced merely for the purpose of formulating the powerful
analytic techniques of Hamiltonian and Lagrangian mechanics? Or should we countenance these
as genuine metaphysical possibilities? My inclination is towards the former, since it is difficult to
understand what v is meant to represent, if it is not representing the velocity determined by the
object’s trajectory. Could it perhaps be, though, some sort of unactualized “causal power”? It
just so happens, of course, that in our world—insofar as it is classical—all such powers are fully
actualized. One would like to know why that would be so. That they should be is enshrined in the
principle of least action (or Hamilton’s principle), but little philosophical work has been done to
explain why the principle should be true.3

5 Conclusion
I have defended two theories of motion, the well-known at-at theory and a novel impetus theory
of motion. I claim that the choice between these two theories is epistemically underdetermined.
It may indeed simply be a matter of convention whether one understands motion in one way or
the other given the epistemic irreproachability of each theory. Assuming that there is some funda-
mental “space” that grounds the basic properties of the two theories, it would also perhaps then be

3Although there has been some debate about the metaphysical role of such a principle, in particular its implications
for dispositional essentialism: (Katzav, 2004; Ellis, 2005; Smart & Thébault, 2015).
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a matter of convention whether one sees the world as fundamentally spatial or as fundamentally
velocital, as they differ only in their instantaneous ontologies.

To review the argument, in the first part of the paper I defended the at-at theory of motion
against the criticism that it makes determinism impossible by fiat. The impossibility of the Lapla-
cian version of determinism is indeed a feature of classical mechanics, but it is not so merely by
how velocity is defined. While I agree with the critics that velocities should not be thought of as
really instantaneous in the at-at theory of motion, that they are still reasonably considered part of
the physical state of a system follows from the nature of the laws, whether these laws be metaphys-
ical laws or physical laws. The kind of determinism relevant to mechanics is thus not Laplacian
determinism, but determinism based on states including instantaneous and neighborhood proper-
ties.

In the second part of the paper I considered two impetus theories of motion. I rehearsed the
argument against an impetus theory of motion that makes velocity truly instantaneous by fiat.
Kinematical velocity is a derived quantity in the at-at theory of motion, but one that fully accounts
for motion without reference to some super-added impetus. Thus we are led to conclude that this
impetus theory should be discarded. The second, novel impetus theory of motion turns the at-at
theory on its head by assuming that velocity is basic and truly instantaneous and position is derived
(reduced to velocity developments). I defended this view from two major criticisms, namely that
it is at odds with the definition of velocity, and that integration introduces undetermined constants
of integration. I concluded that the this impetus theory of motion and the at-at theory are dual
theories of motion, sufficiently symmetric so that there is no evident way to decide between them
as accounts of motion, at least on any epistemic grounds.

Finally, I wish to note that, although we are quite used to thinking of the world in spatial
terms, it is not inconceivable that people could have thought of motion in the velocital way which
I suggest. Indeed, Borges provides an intriguing report of the people of Tlön which may readily
be interpreted in such terms (although his favored analysis of their culture is in terms of a kind of
idealism):

It is no exaggeration to state that the classic culture of Tlön comprises only one disci-
pline: psychology. All others are subordinated to it. I have said that the men of this
planet conceive the universe as a series of mental processes which do not develop in
space but successively in time. Spinoza ascribes to his inexhaustible divinity the at-
tributes of extension and thought; no one in Tlön would understand the juxtaposition
of the first (which is typical only of certain states) and the second—which is a perfect
synonym of the cosmos. In other words, they do not conceive that the spatial persists
in time. The perception of a cloud of smoke on the horizon and then of the burning
field and then of the half-extinguished cigarette that produced the blaze is considered
an example of association of ideas. (Borges, 1961, 116)

Indeed, the perception of motion is direct and foremost from the point of view of psychology. It
might seem only natural that one has recourse to the concept of space only by specifying forces of
interaction that give rise to a unified spatial description, and thus only in certain, specified states.
It is, I submit, a conceptually coherent way of proceeding in theorizing about the world, albeit one
that has so far not found favor, neither in physics nor in everyday life.
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