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Forthcoming	in	Philosophy	Compass	

	

Causal	Models	and	Metaphysics	–	Part	1:	Using	Causal	Models1	

Jenn	McDonald	

	

We	live	in	exciting	times.	By	‘we’	I	mean	philosophers	studying	the	nature	of	causation.	The	

past	decade	or	so	has	witnessed	a	flurry	of	philosophical	activity	aimed	at	cracking	this	nut,	

and,	surprisingly,	real	progress	has	been	made….	[T]here	has	been	increasing	philosophical	

interest	in	the	techniques	of	causal	modeling	developed	and	employed	within	fields	such	as	

economics,	epidemiology,	and	artificial	intelligence.	 	 (Hitchcock,	2001b,	p.	273)	

	

Abstract	 This	paper	provides	a	general	introduction	to	the	use	of	causal	models	in	the	

metaphysics	 of	 causation,	 specifically	 structural	 equation	 models	 and	 directed	 acyclic	

graphs.	 It	 reviews	 the	 formal	 framework,	 lays	 out	 a	method	 of	 interpretation	 capable	 of	

representing	 different	 underlying	metaphysical	 relations,	 and	 describes	 the	 use	 of	 these	

models	in	analyzing	causation.	

	

§1	 Introduction	

	

Recent	 work	 in	 the	 philosophy	 of	 causation	 invokes	 the	 framework	 of	 causal	 models	 –	

namely,	structural	equation	models	and	directed	acyclic	graphs.	These	models	come	from	

the	special	sciences	(econometrics,	statistics,	computer	science,	etc.),	where	they	have	been	

developed	over	several	decades	to	understand	causal	structure	and	make	predictions	(Pearl,	

2000/2009;	 Spirtes	 et	 al.,	 1993/2000).	 A	 plausible	 explanation	 of	 their	 success	 in	 these	

endeavors	is	that	they	somehow	get	at	the	underlying	nature	of	causation.	If	so,	they	could	

shed	light	on	the	metaphysics	and	epistemology	of	causation.	This	paper	focuses	on	their	

role	 in	 providing	 a	 metaphysical	 analysis	 of	 causation.	 The	 focus	 is	 significant,	 as	 this	

	
1	This	paper	was	greatly	improved	by	discussion	with	and	feedback	from	Justin	Clarke-Doane,	Christopher	

Hitchcock,	David	Papineau,	James	Woodward,	and	Tomasz	Wysocki.	
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particular	application	captures	a	relatively	small	portion	of	the	overall	use	and	discussion	of	

causal	models.		

	

An	analysis	of	causation	in	terms	of	structural	equation	models	(SEMs)	and	corresponding	

directed	 acyclic	 graphs	 (DAGs)	 has	 at	 least	 two	 components.	 The	 first	 is	 a	 definition	 of	

causation	in	terms	of	a	given	model	or	class	of	models	–	a	“recipe”	for	reading	causal	relations	

off	a	model.	After	presenting	the	formalism	and	a	method	of	interpretation,	the	remainder	of	

this	paper	 (Part	1)	 explores	developments	 and	progress	with	 respect	 to	 this	 component.	

Identifying	 the	 right	 recipe	 is	 particularly	 difficult	 for	 actual	 (i.e.,	 token	 or	 singular)	

causation,	which	draws	the	majority	attention	in	the	metaphysics	literature.	In	a	companion	

paper	 (Part	 2),	 I	 address	 the	 second	 component,	 which	 is	 a	 principled	 account	 of	 what	

qualifies	a	model	or	class	of	models	as	given	–	or	“apt”	–	such	that,	in	combination	with	the	

right	recipe,	we	get	a	complete	causal	analysis.		

	

§2	 Causal	Models	

	

I	 begin	by	 surveying	 the	basic	 framework	of	 causal	models	 –	 structural	 equation	models	

(SEMs)	and	directed	acyclic	graphs	(DAGs).	A	couple	notes	by	way	of	prelude:	first,	causal	

models	 are	 versatile	 –	 they	 can	 represent	 token-	 or	 type-level	 structures	 belonging	 to	

deterministic	 or	 probabilistic	 systems.	 Since	 brevity	 precludes	 exhaustive	 coverage,	 I	

restrict	discussion	to	deterministic	systems.2	

	

Second,	 many	 in	 the	 literature	 speak	 in	 the	 same	 breath	 of	 the	 formal	 apparatus	 (aka.	

“model”)	 and	 of	what	 it	 is	 taken	 to	 represent.	 The	 utility	 of	 this	 is	 clear.	 Aside	 from	 the	

obvious	 economy	 of	 expression,	 one	 can	 simultaneously	 pull	 from	both	 formal	 and	 real-

world	causal	considerations	in	developing	a	formal	framework	for	causal	inquiry.	However,	

leaving	 this	 distinction	 implicit	 risks	 confusion,	 and	 anyway	 hobbles	 discussion	 of	 a	 key	

	
2	 For	 probabilistic	models	 and	 applications	 to	 probabilistic	 systems,	 see	 (Fenton-Glynn,	 2021;	 C.	 Glymour,	

2001;	 Glynn,	 2011;	 Pearl,	 2000/2009;	 Sloman,	 2005;	 Spirtes	 et	 al.,	 1993/2000;	Woodward,	 2003),	 among	

others.	
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question:	which	 relationship	 between	 a	model	 and	 its	 target	 is	 of	 the	 right	 kind	 for	 the	

intended	project?	By	distinguishing	clearly	between	the	formal	model	and	what	it	purports	

to	 represent,	 the	 mapping	 (aka.	 “interpretation”)	 that	 underlies	 the	 representation	 is	

brought	into	view.	Which	representational	principles	should	be	met	by	an	apt	interpreted	

model	is	the	principal	subject	of	Part	2.	

	

§2.1	 ‘Nonspecific’	Structural	Equation	Models	

	

On	the	formalization	I	assume,	structural	equation	models	best	suited	to	represent	type-level	

structure	have	two	components,	while	those	suited	to	token-level	supplement	these	with	an	

additional	component:	namely,	an	assignment.3	I	begin	with	the	first	–	a	“nonspecific”	SEM.		

	

A	nonspecific	SEM	is	an	ordered	pair,	ℳ! =	< 𝓢, 𝓛 >,	built	of	a	signature	and	a	linkage.	The	

“signature”	is	a	collection	of	variables.	It	includes	a	set	of	exogenous	variables	(roughly,	the	

independent	variables),	a	set	of	endogenous	variables	(the	dependent	ones),	and	a	function	

that	maps	 to	each	variable	a	 range	of	possible	values,	where	each	range	has	at	 least	 two	

members.	Formally,	𝓢 =	< 𝑼, 𝑽, 𝑹 >,	where	U	is	the	set	of	exogenous	variables,	V	is	the	set	

of	endogenous	variables,	and	R	 is	a	function	mapping	values	to	each	variable,	𝑋: 𝑋 ∈ (𝑼 ∪

𝑽).4	Values	of	variables	represent	causal	relata.	For	example,	a	variable	with	two	values	can	

represent	an	action	being	taken	or	not,	and	a	variable	with	many	values	can	represent	the	

mass	of	a	particular	object.	The	next	section	explores	this	further.	

	

The	second	component	–	the	linkage	–	is	a	set	of	asymmetric	functional	equations	defined	

over	the	signature.	Each	equation,	𝑋 ≔ 𝑓(𝑷𝑨(𝑋)),	indicates	an	endogenous	variable	on	the	

left-hand	side,	X,	and	a	function	on	the	right-hand	side	over	a	subset	of	remaining	variables	

	
3	 So	 as	 to	 focus	 on	 philosophical	 applications,	 I	 survey	 just	 one	 of	 various	 formalizations	 of	 SEMs	 in	 the	

literature,	which	mostly	follows	Halpern	(2000);	but	see	also	(Blanchard	&	Schaffer,	2017;	Gallow,	2023).	
4	 A	 word	 on	 notation:	 an	 uppercase	 bolded	 letter	 (‘U’)	 indicates	 a	 set,	 an	 uppercase	 italicized	 letter	 (‘X’)	

indicates	a	variable,	a	lowercase	italicized	letter	(‘x’)	indicates	a	value	of	a	variable,	and	a	vector	symbol	(‘𝑿""⃗ ’)	

over	the	name	of	a	set	indicates	an	ordered	set.	
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from	the	signature,	𝑷𝑨𝑿 ⊆ (𝑼 ∪ 𝑽)\𝑋.	This	specifies	the	functional	relationship	between	the	

“child”	variable	on	the	left-hand	side,	X,	and	the	“parent”	variables	on	the	right-hand	side,	
PA.	The	function	takes	in	the	values	of	the	parent	variables	and	puts	out	a	value	of	the	child	

variable,	and	can	be	given	in	many	forms.	For	example,	it	might	utilize	arithmetic	(‘𝑌 ≔ #
$
𝑋 +

𝑍’)	 or	 Boolean	 algebra	 (‘𝑌 ≔ 𝑋 ∨𝑊’)	 –	 whatever	 best	 captures	 the	 worldly	 dependence	

relations	that	the	equations	are	taken	to	represent.		

	

Crucially,	 these	 equations	 are	asymmetric.	 Each	 says	 something	 about	 the	 results	 of	 any	

intervention	whose	target	is	a	parent	variable,	but	says	nothing	about	an	intervention	whose	

target	is	the	child.	An	“intervention”	is	a	mathematical	operation	on	a	variable	in	a	model	

that	 forces	 that	 variable	 to	one	of	 its	 values,	 decoupling	 it	 from	 its	parent	 variables,	 and	

leaving	 all	 other	 equations	 untouched.	 More	 precisely,	 an	 intervention	 on	 a	 model,	ℳ,	

targets	a	set	of	variables,	𝑿??⃗ ,	setting	each	variable,	𝑋! ∈ 𝑿??⃗ ,	to	one	of	its	values,	𝑥% ∈ 𝑹(𝑋!).	This	

produces	 a	 sub-model,	ℳ𝑿&&⃗ (𝒙&&⃗ ,	 which	 is	 identical	 to	ℳ	 save	 that	 each	𝑋!-equation	 –	 the	

equation	with	 ‘𝑋! ’	on	 the	 left-hand	side	–	 is	replaced	with	 the	equation	𝑋! = 𝑥% .5	Since	an	

intervention	on	a	child	variable	decouples	it	from	its	parents,	by	definition	an	intervention	

on	the	child	variable	is	silent	on	the	values	of	the	parent	variables.	But	an	intervention	on	a	

parent	variable	results	in	the	child	variable	taking	whatever	value	is	put	out	by	the	specified	

function	 over	 its	 parent	 variables	 in	 light	 of	 the	 intervention.	 In	 fact,	 this	 condition	 is	

definitive	of	the	parenthood	relation.	A	variable,	X,	is	a	“parent”	of	Y	if	and	only	if	there	is	an	

intervention	on	X	that,	while	holding	fixed	by	intervention	all	other	variables	aside	from	Y	at	

some	one	of	their	values,	would	result	in	a	change	in	the	value	of	Y.	Formally,	X	is	a	“parent”	

of	Y	if	and	only	if	for	some	two	values	of	X,	x1	and	x2,	where	x1	≠	x2,	and	some	two	values	of	Y,	

y1	and	y2,	where	y1	≠	y2,	an	intervention	on	X	to	change	it	from	X	=	x1	to	X	=	x2,	while	holding	

each	of	the	remaining	variables,	𝒁??⃗ = (𝑼 ∪ 𝑽) ∖ 𝑋, 𝑌,	fixed	at	some	assignment	of	values,	𝒛?⃗ : 𝑧! 	

∈ 𝑹(𝑍!),	results	in	a	change	in	Y	from	Y	=	y1	to	Y	=	y2.	Note	the	existential	quantifiers	–	all	

that’s	required	for	parenthood	is	that	there	be	one	qualifying	pair	of	values	of	X,	one	pair	of	

	
5	 This	 follows	 Pearl	 (2000/2009,	 sec.	 3.2.1),	 see	 also	 (Briggs,	 2012;	 J.	 Y.	 Halpern,	 2016).	 For	 a	 different	

implementation,	see	(Fenton-Glynn,	2021;	Pearl,	1993,	2000/2009,	sec.	3.2.2;	Woodward,	2003).	
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values	of	Y,	and	one	assignment	to	the	remaining	variables.	Equations	are	minimal	in	that	the	

right-hand	side	includes	only	parent	variables.		

	

It	is	assumed	that	the	semantics	for	any	counterfactual	framed	purely	in	terms	of	a	model	

(e.g.,	‘Had	X	=	x2,	then	Y	=	y3’),	treats	the	antecedent	as	set	by	intervention.	The	counterfactual	

is	true,	then,	only	if	it’s	consequent	holds	in	the	sub-model	produced	by	this	intervention.	So	

far	as	I	have	defined	it,	an	intervention	is	a	purely	formal	operation.	I	discuss	what	it	might	

represent	in	Part	2.	

	

Finally,	 the	metaphysics	 literature	focuses	on	recursive	SEMs.	“Recursive”	means	that	the	

equations	can	be	ordered	such	that	once	a	variable	appears	on	the	right-hand	side	it	does	

not	again	appear	on	the	left-hand	side.	This	rules	out	cycles.6	

	

§2.2	 ‘Specific’	Structural	Equation	Models	

	

To	represent	structure	at	the	token-level,	a	SEM	includes	a	specification	of	value	for	each	

exogenous	 variable,	 X	 ∈	 U.	 This	 is	 either	 treated	 as	 extraneous	 to	 the	 model	 –	 as	 an	

“interpretation”	or	“context,”	or	it	is	incorporated	into	the	model	as	a	third	component	–	as	

an	“assignment.”	I	follow	the	latter,	in	part	to	reserve	“interpretation”	for	reference	to	the	

assignment	of	real-world	content	to	variables	(see	§3.1).	On	this	framework,	a	“specific”	SEM	

is	an	ordered	triple	ℳ! =	< 𝓢, 𝓛,𝓐 >,		with	a	signature,	a	linkage,	and	an	assignment.	The	

assignment	 is	 a	 function,	𝓐,	 that,	 to	 every	 variable	𝑈:𝑈 ∈ 𝑼,	 maps	 a	 value	 𝑢: 𝑢 ∈ 𝑹(𝑈).	

Representing	each	mapping	as	a	constant	equation,	each	included	in	the	model’s	complete	

set	 of	 structural	 equations,	 streamlines	 the	 formalism	 by	 permitting	 interventions	 on	

exogenous	 variables.	 Note	 that	 this	 treatment	 is	 not	 typical.	 Recursivity,	 coupled	with	 a	

requirement	 that	 there	 is	 only	 one	 equation	 for	 each	 variable,	 entails	 that	 endogenous	

variables	receive	a	unique	value	under	any	assignment	as	determined	by	the	linkage.	

	
6	This	simplifies	the	dialectic,	but	rules	out	cycles	by	fiat.	Ideally,	recursive	models	will	follow	from	aptness	

principles	 –	 such	 as	 accuracy	 –	 rather	 than	 needing	 to	 be	 assumed.	 In	 general,	 non-recursive	models	 can	

coherently	represent	causal	structures.	
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§2.3	 Directed	Acyclic	Graphs	

	

Recursive	SEMs	can	be	represented	by	directed	acyclic	graphs	(DAGs).	A	DAG	consists	of	

nodes	 with	 directed	 edges,	 or	 arrows,	 connecting	 them.	 Arrows	 are	 drawn	 from	 parent	

variables	to	child	variables.	A	DAG	represents	the	qualitative	information	contained	in	a	SEM	

and	serve	as	a	useful	visual	aid.7	Here	is	a	sample	specific	SEM	and	corresponding	DAG:	

		

	

§3		 A	Proposed	Method	of	Interpretation	

	

A	causal	model	needs	to	be	interpreted	to	say	something	about	the	world.	There	is	no	agreed	

upon	 method	 of	 interpretation	 in	 the	 literature.	 But	 there	 is	 enough	 overlap	 to	 invite	

systematization.	 I	 here	 focus	 on	 a	 basic	 method	 and	 on	 non-controversial	 principles	 of	

interpretation.	Greater	detail	and	controversy	come	in	Part	2.		

	

§3.1		 Defining	“Interpretation”	

	

	
7	Note	that	DAGs	serve	many	other	useful	functions	in	the	broader	causal	model	literature.	For	example,	under	

certain	assumptions,	one	can	discern	correlational	(in)dependencies	from	a	DAG.	

Signature:	
U	=	{X}		 	 Directed	Acyclic	Graph:	
V	=	{Y,	Z}	 	 	 	 	 	
R	=	f	(Xi)	=	{1,	0}	
	
Assignment:	
(EQ1)		X	=	1	
	
Linkage:	
(EQ2)	Y	:=	1	-	X	
(EQ3)	Z	:=	max(X,	Y)	
	
	

ℳ*	
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Call	an	“interpretation”	of	a	SEM	an	assignment	of	real-world	content	 to	 its	variables.	An	

“interpretation”	maps	each	value	of	each	variable	onto	an	actual	or	possible	factor.	A	factor	

is	 anything	 reasonably	 treated	 as	 causal	 relata	 –	 events,	 properties,	 property	 instances,	

propositions,	etc.	The	causal	model	framework	seems,	and	the	literature	generally	is,	neutral	

on	 the	 nature	 of	 causal	 relata.	 (Part	 2	 shows	 how	 the	 neutrality	 only	 goes	 so	 far.)	 Any	

commitments	 regarding	 causal	 relata	 simply	 generate	 aptness	 principles	 on	 interpreted	

models.	A	commitment	to	relata	as	property	instances,	 for	example,	generates	an	aptness	

principle	whereby	the	interpretation	map	only	property	instances	to	values	of	variables.	Not	

to	 commit,	 but	 to	 simplify	 discussion,	 I	 assume	 relata	 are	 property	 instances	 –	 i.e.,	 a	

particular	object	instantiating	a	specified	property	over	a	particular	time	period.		

	

Given	this,	an	interpretation	will	assign	to	each	variable	a	(possibly	singleton)	set	of	objects	

and	to	each	of	the	variable’s	values	a	property	possibly	instantiated	by	each	object	in	that	

set.8	One	way	to	formalize	this	is	to	treat	an	interpretation	as	assigning	a	range	of	properties	

to	 each	variable,	 on	 the	one	hand,	 and	 a	population	 to	 the	 SEM,	on	 the	other,	where	 the	

“population”	is	a	set	of	n-tuples	of	objects.	Each	n-tuple	maps	one-to-one	onto	the	variables	

of	 the	SEM,	 (so,	𝑛 = |{𝑼 ∪ 𝑽}),	with	 the	 ith	member	of	 each	n-tuple	mapping	 to	 the	 same	

variable.	Of	course,	the	same	object	may	appear	more	than	once	in	a	given	n-tuple.	There	are	

two	 kinds	 of	 interpretation:	 general	 and	 particular.	 A	 “general”	 interpretation	 assigns	 a	

population	of	at	least	two	members.	It	can	therefore	be	used	to	capture	how	many	different	

situations	each	could	go	(or	have	gone)	differently.	A	“particular”	interpretation	assigns	a	

singleton	population.	It	captures	various	ways	a	single	situation	could	go	(or	have	gone).		

	

§3.2	 “Permissible”	Interpretations	

	

Even	 assuming	 the	 above,	 not	 just	 any	 assignment	 of	 content	 will	 do.	 A	 “permissible”	

interpretation	 satisfies,	 at	 least,	 exclusivity,	 exhaustivity,	 and	 distinctness.	 “Exclusivity”	

requires	that	whatever	properties	are	mapped	onto	any	two	values	of	a	given	variable	be	

	
8	While	some	explicitly	incorporate	it	(Beckers	&	Vennekens,	2018),	the	time	parameter	is	almost	universally	

left	implicit.	I	follow	suit,	leaving	the	time	period	largely	implicit.	
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mutually	exclusive.	The	door	being	closed	will	be	mutually	exclusive	with	 the	door	being	

open	(at	the	same	time).	Exclusivity	ensures	that,	in	representing	the	world,	a	variable	will	

never	 take	 more	 than	 one	 value	 at	 a	 time.9	 “Exhaustivity”	 requires	 that	 the	 set	 of	 all	

properties	mapped	onto	the	full	range	of	values	of	a	given	variable	be	jointly	exhaustive.	The	

child	being	under	or	equal	to	the	height	of	36	inches	or	over	36	inches	will	be	exhaustive.	

This	ensures	that	a	variable	will	always	take	at	least	one	value.10	Exclusivity	and	exhaustivity	

are	purely	formal	requirements	on	the	causal	model	framework,	necessitated	by	its	inability	

to	accommodate	a	variable	simultaneously	taking	more	than	one	value	or	one	failing	to	take	

a	value	–	which,	to	be	clear,	 is	a	distinct	matter	from	a	variable	taking	the	value	‘0’.	What	

exactly	counts	as	mutually	exclusive	or	jointly	exhaustive,	on	the	other	hand,	calls	up	a	host	

of	difficult	representational	questions.	These	will	be	addressed	in	Part	2.			

	

“Distinctness”	is	needed	for	theoretical	reasons.	It	requires	that	whatever	property	instances	

are	mapped	onto	any	two	values	of	different	variables	be	“distinct”	on	some	to-be-defined	

notion.11	Roughly,	different	variables	must	represent	property	instances	that	are	logically,	

conceptually,	and	otherwise	metaphysically	independent	from	each	other.	This	ensures	that	

an	 intervention	on	a	model	will	never	 represent	 something	metaphysically	 impossible.	 It	

also	serves	the	same	purpose	as	it	did	for	a	traditional	counterfactual	analysis	–	it	separates	

the	wheat	of	causation	from	the	chaff	of	mere	counterfactual	dependence.	

	

The	need	for	exclusivity,	exhaustivity,	and	distinctness	is	universally	acknowledged.	What	

exactly	 counts	 as	 mutually	 exclusive,	 jointly	 exhaustive,	 or	 distinct,	 on	 the	 other	 hand,	

remains	 unsettled.	 Again,	 this	 will	 be	 taken	 up	 in	 Part	 2,	 alongside	 other	 permissibility	

conditions	to	consider.			

	
9	See	(Blanchard	&	Schaffer,	2017,	p.	182;	Briggs,	2012,	p.	142;	Hitchcock,	2004,	p.	145,	2007b,	p.	76,	2007a,	p.	

502;	Pearl,	2000/2009,	p.	3;	Woodward,	2003,	p.	98).	
10	See	(Blanchard	&	Schaffer,	2017,	p.	182;	Briggs,	2012,	p.	142;	Hitchcock,	2001b,	p.	287;	Pearl,	2000/2009,	p.	

3;	Woodward,	2016,	p.	1064).	
11	Distinctness	is	initially	proposed	and	developed	by	Lewis	in	a	pure	counterfactual	context.	See	especially	

(Lewis,	1986).	For	references	in	a	SEM	context,	see	(Blanchard	&	Schaffer,	2017,	p.	182;	Briggs,	2012,	p.	142;	

Hitchcock,	2004,	p.	146,	2007a,	p.	502;	Paul	&	Hall,	2013,	p.	59).	
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§3.3		 What	Equations	Represent	

	

What	else	an	interpreted	model	says	depends	on	one’s	view	about	the	ontological	nature	of	

the	 relations	 represented	 by	 the	 equations.	 The	 principal	 positions	 are,	 effectively,	 the	

traditional	ones:	regularities	or	counterfactuals	(leaving	open	which	semantics	is	relevant).	

Full	discussion	comes	in	Part	2.12		

	

§4	 The	Common	Form	of	a	SEM	Analysis	of	Causation	

	

Now	that	we	have	interpreted	models,	the	question	is	how	they	might	be	used	to	analyze	

causation.	It	is	convenient	to	treat	any	causal	model	analysis	of	causation	as	having	the	same	

form.	I	mentioned	earlier	two	components	to	any	such	analysis:	a	recipe	and	an	account	of	

aptness.	A	recipe	is	a	set	of	conditions	both	necessary	and	sufficient	for	a	given	variable	in	

the	target	model	to	count	as	a	‘type-level	cause’	of	another	variable,	or	for	a	given	value	of	a	

variable	 to	 count	as	an	 ‘actual	 cause’	of	 some	value	of	 another	variable.	To	 then	procure	

causal	verdicts	about	the	world,	the	model	needs	to	be	interpreted.	To	get	the	right	causal	

verdicts,	though,	we	need	to	say	what	counts	as	an	apt	interpreted	model.	This	is	the	focus	

of	Part	2.	Here,	we	can	recognize	that	a	problem	will	arise	whenever	two	apt	 interpreted	

models	deliver	conflicting	verdicts	about	what	causes	what.	To	handle	this,	a	SEM	analysis	

quantifies	in	some	way	over	the	class	of	apt	interpreted	models.	Thus,	any	analysis	also	has	

a	third	component:	a	quantifier	selection.		

	

Many	analyses	employ	the	existential	quantifier:	c	is	a	cause	of	e	just	in	case	there	is	at	least	

one	 apt	 interpreted	model	 satisfying	 the	 recipe	 (Blanchard	 &	 Schaffer,	 2017;	 Hitchcock,	

2001b,	2007a;	Weslake,	2015,	forthcoming;	Woodward,	2008).	But	any	quantifier	is	logically	

permitted.	Others,	for	example,	employ	a	universal	quantifier	(Hall,	2007).	While	not	exactly	

trivial,	the	choice	of	quantifier	is	less	substantive	than	it	may	first	appear.	It	impacts	what	

	
12	The	SEM	framework	is	surprisingly	neutral	here,	as	well.	This	suggests	that	a	precise	grasp	of	the	underlying	

metaphysics	just	isn’t	needed	for	causal	inference.		
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needs	to	be	said	about	aptness,	and	so	pairs	off	with	an	account	of	aptness.	An	existential	

quantifier	requires	ruling	out	models	which	mistakenly	witness	causation	where	there	isn’t	

any.	A	universal	quantifier	requires	ruling	out	models	which	mistakenly	witness	the	absence	

of	causation	where	there	really	is.	Some	analyses,	however,	talk	not	of	quantifying	over	apt	

interpreted	models	but	of	justifying	their	choice	of	interpreted	model	(Beckers	&	Vennekens,	

2018;	J.	Y.	Halpern,	2016;	J.	Y.	Halpern	&	Hitchcock,	2015;	J.	Y.	Halpern	&	Pearl,	2005).	I	see	

these	as	simply	employing	a	universal	quantifier	with	a	stricter	account	of	aptness	–	one	that	

permits	as	apt	only	a	single	interpreted	model,	or	perhaps	a	single	equivalence	class	of	them	

(Beckers,	2021).	

	

Any	SEM	analysis	therefore	has	the	following	form:	

	

Causation	–	<<	K	>>	SEM		 c	is	a	<<	insert	kind	of	causal	relation	(K)	>>	of	e	just	in	

case	<<	insert	quantifier	>>	interpreted	models	that	satisfy	<<	insert	aptness	principles	>>	

and	according	to	which	<	c,	e	>	satisfies	<<	insert	recipe	>>.	

	

§5	 Causation	at	the	Type-Level	

	

Traditionally,	 the	complement	to	actual	causation	(to	be	discussed	shortly)	 is	 taken	to	be	

“general”	causation	–	a	repeatable	causal	relation	holding	between	types.	General	causation	

is	reflected	in	claims	like:	

	

Erupting	volcanos	cause	ash	clouds	to	form.		

Truancy	causes	poor	performance	in	school.	

Exposing	fragile	objects	to	force	cause	them	to	break.	

	

But	discussion	of	general	causation	 in	 the	SEM	framework	 is	something	of	a	 lacuna	(as	a	

metaphysical	relation,	at	least,	rather	than	a	kind	of	causal	explanation).	Instead,	attention	is	

paid	to	relations	that	hold	between	what	can	be	represented	by	variables.	Call	this	“causal	
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influence.”13	A	variable	represents	a	range	of	properties	 instantiable	by	a	situation	or	set	

thereof.	Either	way,	relations	represented	as	holding	between	variables	are	not	particular	

relations.	Causal	influence,	then,	is	the	natural	complement	to	actual	causation	in	the	SEM	

framework.	An	analysis	of	general	causation	could	be	given,	 in	the	common	form	laid	out	

above,	 that	 invokes	 causal	 influence	 in	 its	 recipe.	 But	 the	 SEM	 framework	 permits	

articulation	of	several	different	ways	two	variables	might	be	related.	Which	to	invoke?	What	

should	 the	 recipe	 otherwise	 look	 like?	 There	 is	 no	 extant	 proposal.	 Instead,	 the	 SEM	

literature	 focuses	on	 identifying	different	causal	 influence	relations	and	considering	 their	

applications.	A	brief	survey	of	these	relations	follows.		

	

§5.1	 Causal	Relevance	and	Causal	Influence	

	

A	variable	can	be	causally	relevant	to	another	in	several	ways:14	X	can	be	a	direct	cause,	a	

total	 cause,	 and/or	 a	 contributing	 cause	 of	 Y.15	 When	 the	 variables	 are	 given	 a	 general	

interpretation,	 the	 represented	 relations	 resemble	 general	 causation.	 When	 given	 a	

particular	interpretation,	they	resemble	contrastive	token-level	causal	relations.	

	

Direct	 causation	 holds	 just	 in	 case	 an	 intervention	 on	 one	 variable	 leads	 to	 a	 change	 in	

another	when	all	others	are	held	fixed	by	intervention.	So,	a	“direct	cause”	is	just	a	parent	

variable.	But	notice	that	X	will	no	longer	count	as	a	direct	cause	of	Y	if	a	variable,	W,	is	fully	

inserted	between	them	(replacing	X	in	the	Y-equation).	Since	W	is	fixed	when	establishing	

parenthood,	any	dependence	of	Y	on	X	is	screened	off.		

	

	
13	The	name	is	inspired	by,	but	the	notion	is	not	identical	to,	that	in	Lewis	(2000).	
14	This	presentation	 follows	Woodward	(2003),	departing	only	 to	 the	extent	 that	he,	 like	most	others,	uses	

‘variable’	loosely	to	refer	simultaneously	to	formal	items	in	a	model	as	well	as	to	the	worldly	properties	these	

items	represent.	As	a	 result,	his	account	of	 causal	 relevance	between	variables	simultaneously	covers	both	

formal	relations	between	variables	and	worldly	relations	between	sets	of	property	instances.	This,	of	course,	

requires	an	implicit	assumption	in	the	background	that	the	models	are	apt.	
15	These	definitions	are	developed	in	part	from	those	offered	by	Pearl	(2000/2009).	See	also	(Hitchcock,	2001a)	

for	the	distinction	between	total	and	contributing	causation	in	different	terms.	
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Total	causation	holds	when	there	is	some	assignment	to	the	exogenous	variables	such	that	

an	intervention	on	one	variable	changes	another	(holding	nothing	else	fixed).	Formally,	X	is	

a	“total	cause”	of	Y	 just	in	case	for	some	two	distinct	values	of	X,	x1	and	x2,	and	some	two	

distinct	values	of	Y,	y1	and	y2,	an	intervention	from	X	=	x1	to	X	=	x2	results	in	a	change	from	Y	

=	y1	to	Y	=	y2.	While	broader	in	some	ways	(by	capturing	many	ancestors),	total	causation	is	

also	narrower	than	direct	causation.	X	from	ℳ*	is	a	direct	cause,	but	not	a	total	cause,	of	Z.	

Additionally,	both	direct	and	total	causation	are	silent	on	the	relation	between	two	variables	

when	the	influence	of	one	sort	(positive,	say)	exactly	cancels	out	the	influence	of	another	

(negative,	say).16		

	

Contributing	causation	captures	nuanced	relations	like	these.17	It	holds	when	there	is	a	chain	

of	variables	between	X	and	Y	such	that	a	change	in	X	leads	to	a	change	in	Y	when	variables	

not	on	that	chain	are	fixed.	Formally,	define	a	“directed	route,”	𝑹+????⃗ ,	between	X	and	Y,	hereafter	

a	“route”,	as	a	sequence	of	variables,	𝑹+????⃗ =	< 𝑋,𝑊*, … ,𝑊! , 𝑌 >,	such	that	X	is	a	parent	of	W1,	

…,	Wi-1	is	a	parent	of	Wi,	and	Wi	is	a	parent	of	Y.	(The	sequence	of	corresponding	nodes	in	a	

DAG	will	be	such	that	the	arrows	between	them	all	point	in	the	same	direction.)	For	a	given	

route,	𝑹+????⃗ ,	between	X	and	Y,	any	member	of	𝑹+????⃗ ,	including	X	and	Y,	is	an	“on-route”	variable,	

while	all	other	variables	in	the	model,	Z	∈ 𝒁 = {(𝑼 ∪ 𝑽)\𝑹𝒊},	is	an	“off-route”	variable.	Then,	

X	is	a	“contributing	cause”	of	Y	just	in	case	there	is	a	route,	𝑹𝟏?????⃗ ,	between	X	and	Y	and	a	setting	

of	off-route	variables,	𝒁??⃗ = 𝒛?⃗ : 𝑧! ∈ 𝑹(𝑍!),	such	that	for	some	two	distinct	values	of	X,	x1	and	x2,	

and	some	two	distinct	values	of	Y,	y1	and	y2,	an	intervention	to	change	X	from	X	=	x1	to	X	=	x2,	

while	𝒁??⃗ = 𝒛?⃗ 	is	held	fixed,	results	in	a	change	in	Y	from	Y	=	y1	to	Y	=	y2.	

	

§6	 Actual	Causation	

	

	
16	Called	‘failures	of	faithfulness’.	See,	for	example,	(Spirtes	et	al.,	1993/2000).	
17	Though	it	will	leave	out	certain	ancestors	due	to	what	Hitchcock	calls	a	“failure	of	composition.”	This	occurs,	

for	 example,	 when	 a	 simple	 chain,	 X	à	 Y	à	 Z,	 is	 such	 that	 while	 an	 intervention	 on	 X	 affects	 Y	 and	 an	

intervention	on	Y	affects	Z,	no	intervention	on	X	alone	affects	Z.	See	especially	Hitchcock’s	“Dog	Bite”	(2001b,	

pp.	290–291).	
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Moving	on	to	the	vexed	task	of	analyzing	actual	causation.	Here,	the	SEM	framework	seems	

to	 have	made	 for	 recent	 progress.	 Actual	 causation,	 aka.	 “token”	or	 “singular”	 causation,	

holds	between	two	particular	property	instances	when	the	first	causes	the	second.	This	is	

reflected	in	claims	like:		

	

Mount	Vesuvius	erupting	in	79	AD	caused	the	city	of	Pompei	to	be	buried	in	ash.		

Cory	skipping	class	on	Wednesday	caused	her	to	miss	the	test.	

The	cat	knocking	the	vase	off	the	table	caused	it	to	break.	

	

As	discussed	above,	a	SEM	analysis	provides	necessary	and	sufficient	conditions	for	when	an	

actual	causal	relation	holds	between	two	particular	things	in	terms	of	properties	of	an	apt	

interpreted	model	or	class	of	them.	Different	proposals	vary	along	two	dimensions.	First,	in	

what	 constitutes	 the	 relevant	 properties	 of	 a	 model,	 or	 “recipe.”	 Second,	 and	 largely	

independently,	in	the	underlying	metaphysical	project	–	specifically	in	reductive	aspirations.	

In	general,	a	SEM	analysis	reduces	actual	causation	to	whatever	the	equations	are	taken	to	

represent.	 But	 this	 can	 be	 different	 things.	 If	 the	 equations	 represent	 complex	

counterfactuals,	then	actual	causation	reduces	to	counterfactual	dependence.	If,	instead,	the	

equations	are	interpreted	as	representing	causal	influence,	then	actual	causation	reduces	to	

causal	 influence.	 (Then,	 if	 causal	 influence	 reduces	 further,	 actual	 causation	 does	 too.)	

Interestingly,	interlocutors	of	either	camp	debate	the	former	dimension	–	the	recipe,	that	is	

–	 seemingly	 unimpeded	by	 divergent	metaphysical	 projects.	 This	 is,	 arguably,	 one	 of	 the	

more	 interesting	 contributions	 of	 causal	 models.	 It	 allows	 the	 discussion	 to	 progress	 in	

purely	formal	terms,	without	having	to	first	resolve	underlying	metaphysical	disagreements.	

The	 remainder	 of	 this	 section	 addresses	 the	 current	 state	 of	 that	 debate,	 relegating	

metaphysics	to	Part	2.	

	

§6.1	 A	Simple	Recipe	and	Redundant	Causation	

	

A	simple	recipe,	to	start,	is	that	c	is	an	actual	cause	of	e	relative	to	an	interpreted	model	just	

in	case	intervening	to	change	the	value	of	the	variable	that	represents	c	leads	to	a	change	in	

the	value	of	the	variable	that	represents	e.	The	eruption	of	Mount	Vesuvius	in	79	AD	is	an	
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actual	cause	of	the	city	of	Pompei	being	buried	in	ash	in	79	AD	relative	to	an	interpreted	

model	just	in	case	intervening	on	the	eruption	variable	to	change	its	value	from	‘erupt’	to	

some	other	value	leads	to	a	change	in	the	value	of	the	buried-in-ash	variable	from	‘buried’	to	

some	one	of	its	other	values.		

	

The	problem	is	that	this	won’t	cover	cases	of	redundant	causation,	when	there	are	at	least	

two	 different	 property	 instances	 serving	 as	 causes	 of	 the	 same	 effect,	 either	 of	which	 is	

sufficient.	 In	overdetermination	cases,	both	property	 instances	are	(intuitively)	causes.	 In	

preemption	cases,	only	one	is	a	cause	while	the	other	stands	in	the	wings,	so	to	speak,	ready	

to	step	in	should	the	first	fail.	Take,	as	an	example,	a	case	of	late	preemption:	

	

Early	Preemption		 Suzy	throws	a	rock	at	a	window,	which	shatters.	Billy	stands	by,	

but	would	have	thrown	instead	had	Suzy	failed	to.	Suzy	and	Billy	have	equal	strength	and	

excellent	aim,	and	their	rocks	are	of	equal	weight.	

	

The	intuition	is	that	Suzy’s	throw	causes	the	window	to	shatter.	But	the	simple	recipe	doesn’t	

deliver	this	result.	The	interpreted	model,	<ℳ*, ℐ(ℳ*) >,	from	before	is	plausibly	apt,	but	

it	doesn’t	deem	Suzy’s	throw	a	cause.	An	intervention	changing	X	from	1	to	0	doesn’t	result	

in	a	change	in	Z.	Regardless	of	whether	the	aim	is	a	conceptual	analysis,	functional	analysis,	

or	providing	a	real	definition,18	the	accommodation	of	vivid	intuitions	like	that	above	is	at	

least	a	defeasible	desideratum	on	a	satisfactory	analysis.	19	

	

§6.2	 De	Facto	Recipes:	Holding	Fixed	“Off-Route”	Variables	

	

	
18	A	“real	definition”	of	x	is	an	account	of	what	x	is	in	the	world,	as	opposed	to	a	semantic	account	of	the	term	

‘the	x’	or	a	conceptual	analysis	of	our	concept	of	x	(Rosen,	2015).	
19	For	conceptual	or	functional	analyses,	this	results	from	the	principal	target	being	a	normative	analysis.	By	

this,	I	mean	an	“explication”	in	Carnap’s	sense	(1962,	1988)	–	a	refinement	on	a	typically	ambiguous	or	opaque	

concept	that	involves	revision,	thus	resulting	in	a	notion	that	will	likely	fail	to	accord	with	all	intuitions	or	pre-

theoretic	uses	of	said	concept.		
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The	 principal	 response	 in	 the	 SEM	 literature	 is	 motivated	 by	 the	 idea	 that	 dependence	

between	 the	 effect	 and	 the	 genuine	 cause	 can	 be	 uncovered	 once	 certain	 factors	 in	 the	

situation	are	held	 fixed	either	as	 they	actually	occur	or	as	 they	might	have	occurred.	The	

dependence	between	the	window	shattering	and	Suzy’s	throw	is	uncovered	if	we	hold	fixed	

the	 fact	 that	 Billy	 doesn’t	 throw.	 This	 is	 the	 idea	 of	 “de	 facto”	 dependence	 (Yablo,	 2002,	

2004).	 To	 implement	 this	 idea	 in	 the	 SEM	 framework,	 we	 invoke	 the	 above	 distinction	

between	“on-route”	and	“off-route”	variables	in	the	following	schema.20	

	

Recipe	–	AC	Schema		X	=	x	is	an	actual	cause	of	Y	=	y	in	ℳ! 	just	in	case…		

	

[1] X	=	x	and	Y	=	y	in	ℳ! .		

[2] There	is	a	directed	route	Ri	in	ℳ! 	from	X	to	Y	and,	for	the	set	of	variables	off	Ri,	

�⃗�,	a	permissible	assignment	of	values,	𝑧,	such	that:	

(a) Had	𝑍	=	𝑧	and	X	=	x,	then	Y	=	y.	

(b) Had	𝑍	=	𝑧	and	X	=	xi,	where	xi	≠	x,	then	Y	=	yi,	where	yi	≠	y.21	

	

[1]	is	the	actuality	condition.	When	coupled	with	the	model’s	aptness,	which	requires	that	

the	model	say	only	true	things,	this	ensures	that	the	cause	(which	would	be	represented	by	

X	=	x)	and	the	effect	(represented	by	Y	=	y)	do	actually	occur.	

	

[2]	is	the	de	facto	causal	condition.	It	says	that	there	must	be	a	route	between	the	putative	

cause	variable,	X,	and	the	effect	variable,	Y,	such	that	when	all	off-route	variables	are	held	

fixed	at	values	that	satisfy	some	to-be-defined	permissibility	condition,	then	intervening	to	

set	 the	putative	 cause	as	occurring	 (X	=	 x)	will	 result	 in	 the	effect	 occurring	 (Y	=	 y),	 and	

	
20	Some	recipes	implement	this	idea	in	terms	of	sets	of	variables,	rather	than	routes	–	replacing	‘directed	routes’	

with	‘sets’	and	‘off-route	variables’	with	‘complement	set’		(J.	Y.	Halpern,	2016;	J.	Y.	Halpern	&	Pearl,	2005).	Note	

that	such	recipes	will	be	roughly	equivalent,	since	a	route	is	simply	an	ordered	set,	with	off-route	variables	

constituting	the	complement	set.	
21	Pearl	(Pearl,	2000/2009,	Chapter	10)	makes	the	first	proposal	of	this	kind,	though	not	in	this	exact	form.	
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intervening	 to	 set	 some	 alternative	 to	 the	 putative	 cause	 (X	 =	 xi)	 will	 result	 in	 some	

alternative	to	the	effect	(Y	=	yi).		

	

§6.2	 Permissibility	of	“Off-Route”	Variable	Assignments	

	

The	open	question	is	what	assignments	of	values	to	off-route	variables	count	as	permissible.	

What	contingencies,	exactly,	are	relevant	to	causation?	An	initial	proposal	is	that	only	actual	

values	be	permitted:	

	

P-0	 �⃗�	=	𝑧	are	the	values	given	by	𝓐ℳ!and	𝓛ℳ! .	

	

This	handles	early	preemption	(Billy	doesn’t	actually	throw),	and	late	preemption,	as	well.	

To	illustrate,	consider:		

	

Late	Preemption		Suzy	and	Billy	are	throwing	rocks	at	a	window.	Suzy	throws	just	before	

Billy.	Both	rocks	fly	straight	to	the	window,	with	Suzy’s	rock	hitting	first	and	shattering	it.	

Billy’s	rock	flies	moments	later	through	the	empty	space	the	window	had	just	occupied.		

	

The	relevant	actual	factor	to	hold	fixed	is	that	Billy’s	rock	doesn’t	hit	the	window.	(After	all,	

there’s	no	window	to	hit!)	Then,	the	dependence	between	the	window	shattering	and	Suzy’s	

throw	is	revealed.22	However,	P-0	doesn’t	handle	overdetermination	cases.	Consider:		

	

Overdetermination	 Suzy	 and	 Billy	 both	 throw	 rocks,	 which	 hit	 the	 window	

simultaneously	 and	 it	 shatters.	Either	 rock	 is	 of	 sufficient	mass	 and	hits	with	 sufficient	

force	that	the	window	would	have	shattered	had	it	been	hit	only	with	one	or	the	other.	

	

The	following	proposal	responds:	

	

	
22	However,	see	(Hall,	2007)	for	reason	to	think	there’s	something	amiss	in	this	solution.	
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P-1	 Had	𝑍	=	𝑧,	then	𝑅/???⃗ = 𝑟/??⃗ ,	where	𝑟/??⃗ 	is	the	set	of	values	given	by	𝓐ℳ!and	𝓛ℳ! .23	

	

P-1	requires	that	the	setting	of	off-route	variables	preserve	the	actual	values	of	the	on-route	

variables.	This	 is	strictly	more	permissive,	 in	 that	anything	permitted	by	P-0	will	also	be	

permitted	by	P-1.	 Since	a	 token-level	 SEM	has	a	unique	 solution	 for	 any	assignment,	 the	

actual	values	of	𝑅/???⃗ 	are	obviously	consistent	with	the	actual	values	of	𝑍.		

	

P-1	allows	consideration	of	the	dependence	of	the	window	shattering	on	Suzy’s	throw	(or	

Billy’s),	 under	 the	 contingency	 that	 Billy	 (or	 Suzy)	 doesn’t	 throw.	 Thus	 revealing	 Suzy’s	

throw	(or	Billy’s)	as	an	actual	cause.	

	

§6.3	 Further	Conditions?	

	

However,	cases	can	be	constructed	wherein	P-1	fails	to	deliver	the	right	results.	In	response,	

other	conditions	have	been	proposed,	either	to	replace	or	supplement.	A	difference-making	

condition,	 for	 example,	 requires	 that	 no	 alternative	 to	 the	 actual	 cause,	 had	 it	 occurred	

instead,	would	have	qualified	as	an	actual	cause	of	the	same	effect	(Beckers	&	Vennekens,	

2017,	2018;	Weslake,	2015).24		

	

Alternatively,	many	have	proposed	incorporating	a	distinction	between	default	values	of	a	

variable	 (i.e.,	normal	or	 typical	values)	and	deviant	ones	 (i.e.,	 abnormal	or	atypical	ones)	

(Andreas	&	Gunther,	forthcoming;	Gallow,	2021;	Hall,	2007;	J.	Y.	Halpern,	2008;	J.	Y.	Halpern	

&	Hitchcock,	2013,	2015;	Hitchcock,	2007a;	Livengood,	2013;	Menzies,	2004a,	2004b;	Paul	

&	 Hall,	 2013).	 This	 is	 principally	 (though	 not	 always25)	 in	 response	 to	 the	 problem	 of	

structural	 isomorphs.	 ‘Structural	 isomorphs’	 are	 different	 situations	 that	 can	 be	 aptly	

represented	by	 the	 same	model,	 under	different	 interpretations.	The	problem	 is	 that	 the	

	
23	 Variations	 on	P-1	 can	 be	 found	 in	 (J.	 Y.	 Halpern,	 2016;	 J.	 Y.	 Halpern	 &	 Pearl,	 2005;	 Hitchcock,	 2001b;	

Woodward,	2003,	pp.	83–84).	
24	Sartorio	(2005)	proposes	this	condition,	as	well,	for	a	traditional	(i.e.	non-SEM)	counterfactual	analysis.	
25	Considerations	regarding	voting	scenarios	have	also	generated	a	normality	parameter.		
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same	 model	 can	 be	 interpreted	 so	 as	 to	 aptly	 represent	 two	 situations	 with	 intuitively	

different	causal	structures.	Insofar	as	a	given	recipe	gets	one	situation	right,	it	ipso	facto	gets	

the	other	wrong.		

	

Proponents	of	a	normality	parameter	point	out	that	in	such	cases,	the	normative	role	played	

by	the	intuitive	cause	in	the	one	situation	and	analogous	non-cause	in	the	other	are	different.	

They	argue	that	this	is	what	explains	the	difference	in	intuition,	and	further	argue	that	this	

justifies	 incorporating	 relativity	 to	 norms	 into	 our	 analysis	 of	 actual	 causation.	 This	

incorporation	may	be	implemented	by	doing	three	things:	(1)	supplementing	the	formalism	

with	a	tag	for	each	value	of	each	variable	indicating	whether	it	is	default	or	deviant	(perhaps	

with	a	formal	requirement	that	only	one	value	of	each	variable	be	tagged	default;	or	perhaps	

permitting	 weighted	 measures	 of	 normality);26	 (2)	 adding	 conditions	 requiring	 that	 the	

normality	claims	made	by	a	permissible	interpretation	be	true	(perhaps	making	explicit	they	

be	true	relative	to	the	same	set	of	norms);	and	(3)	adjusting	the	recipe	so	that	a	variable’s	

value	only	counts	as	a	cause	if	intervening	to	change	it	to	a	more	normal	value	results	in	the	

relevant	change	in	the	effect	variable.	

	

Resistance	to	this	proposal	takes	various	forms:	that	incorporating	a	normality	parameter	is	

untenable	 and	 psychologically	 implausible	 (Blanchard	 &	 Schaffer,	 2017),	 that	 the	 right	

aptness	principles	adequately	respond	to	the	problem	of	structural	isomorphs	(Blanchard	&	

Schaffer,	2017;	McDonald,	forthcoming),	and/or	that	a	normality	parameter	fails,	after	all,	to	

so	respond	(Wysocki,	forthcoming).	

	

§7	 Conclusion	

	

	
26	Alternatively,	the	normality	ordering	might	be	set	over	an	assignment	of	values	to	exogenous	variables	(J.	Y.	

Halpern,	 2016),	 or	 over	 complete	 assignments	 of	 values	 to	 variables	 (J.	 Y.	 Halpern,	 2008;	 J.	 Y.	 Halpern	 &	

Hitchcock,	2015),	though	see	(J.	Y.	Halpern	&	Hitchcock,	2013)	for	a	translation	between	this	and	an	ordering	

over	individual	variables.	
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The	SEM	 framework	has	galvanized	 the	philosophy	 literature	on	causation,	 though	many	

questions	remain.	In	addition,	applications	of	the	SEM	framework	explore	beyond	the	nature	

of	causation,	asking	after	its	character.	For	example,	whether	causation	is	transitive	(Beckers	

&	 Vennekens,	 2017;	 Hitchcock,	 2001b),	 and	 whether	 there	 is	 a	 substantive	 difference	

between	causing	and	preventing	(Kroedel,	2019;	Paul	&	Hall,	2013).	Causal	models	have	also	

been	used	to	calculate	the	cardinality	of	kinds	of	causal	structures,	which	far	exceeds	the	

number	of	those	closely	examined	in	the	literature	(C.	N.	Glymour	et	al.,	2010).	This	poses	a	

challenge	 to	 the	 method	 of	 cases	 in	 evaluating	 analyses	 of	 causation.27	 However,	 such	

methodology	arguably	retains	merit	(Paul	&	Hall,	2013,	Chapter	6).		
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