
Basic Semantic Integration
Christopher Menzel

Texas A&M University
Department of Philosophy

College Station, Texas 77843-4237
cmenzel@tamu.edu

Abstract

The use of highly abstract mathematical frameworks is essential for building the sort of
theoretical foundation for semantic integration needed to bring it to the level of a genuine
engineering discipline. At the same time, much of the work that has been done by means
of these frameworks assumes a certain amount of background knowledge in mathematics
that a lot of people working in ontology, even at a fairly high theoretical level, lack. The
major purpose of this short paper is provide a (comparatively) simple model of semantic
integration that remains within the friendlier confines of first-order languages and their
usual classical semantics and logic.

Keywords: ontology, semantic integration, first-order logic, model theory, SCL

1 Introduction
The important work of Joseph Goguen ([6], [7]), Robert Kent ([9]), Marco Schorlemmer
and Yiannis Kalfoglou ([12], [13]), and others points the way toward a very promising
general framework for characterizing a variety of concepts of ontology integration. Such
high-level frameworks are essential for the sort of theoretical foundation for semantic
integration needed to bring it to the level of a genuine engineering discipline. At the same
time, this work is done in the rarefied theoretical air of category theory and channel
theory, and therefore assumes a certain amount of background knowledge that a lot of
people working in ontology, even at a fairly high theoretical level, lack. In fact, however,
while this work is far more abstract and, concomitantly, far more general and far-reaching
in its implications and applicability, I believe some of the most basic insights beneath the
idea of semantic integration can be expressed in terms of basic first-order logic and model
theory. Moreover, I believe it is important to do so to provide relatively simple,
comparatively concrete accounts of integration that can help to fix the basic ideas of the
emerging theory for the broader community of ontological engineers. The major purpose
of this brief paper, then, is to provide a simple model of integration that remains within
the friendlier confines of first-order languages and their usual classical semantics and
logic. The model might also serve as a sort of “bidirectional” test-bed for the higher-level
theoreticians as well — any virtues of the approach that are not reflected in the higher-
level theories can be appropriated by them, and any infelicities in the approach can be
corrected on general grounds provided by the theories.

The approach I’ll discuss is quite similar in certain respects to the one outlined by Ciocoiu
and Nau in their short paper [2]. I have myself in the past been somewhat critical of the
approach for being a bit too model theoretic in orientation (see [9]), and that may still well

2

be for some of the applied purposes that Ciocoiu and Nau have in mind. Once again,
however, the point here, is theoretical — to fix the ideas needed to provide a proper
conceptual ground for building the actual infrastructure to support integration, much as
the [epsilon]-d definition of a derivative provided a conceptual foundation for the
mathematics actually used to build bridges and fly spacecraft to distant planets. And on
this count, a model theoretic approach serves admirably well.

2 Ontologies
As with about everything having to do with semantic integration, there are many different
definitions of what an ontology is. Perhaps the best known is one of the earliest, from
Tom Gruber: An ontology is a “specification of a conceptualization” [8]. There is a
certain appeal to this proposal — an ontology begins with a certain way of
conceptualizing the world, or some prominent piece of it, and this conceptualization is
made concrete — specified — in some fashion. The question remains exactly what a
specification is, of course, but a natural understanding is that a specification is some sort
of concrete representation, e.g., an ER diagram or a set of axioms in a given language.
This understanding, in turn, suggests that ontologies can in fact be identified with their
representations. There is reason to hesitate at this idea, as there is also an intuition that
the same ontology can be expressed in different languages; and indeed one could take this
intuition as a starting point (see, e.g., [10]). Here, however, we will individuate ontologies
by their representations and, to capture the intuition noted, develop instead the idea that
two distinct ontologies can have the same content.

At the same time, we have to acknowledge that, intuitively, ontologies are more than sets
of sentences. The primitive terms of an ontology also have intended meanings. However,
in general, for applied languages, the notion of an intended model is essentially
unformalizable and as such, though critically important, it is not a matter for theory but
for methodology and practice. A formalization of semantic integration can only provide
an answer to the question what it means to integrate disparate ontologies. While we can
hope to write programs that render aid and comfort to the task, the hard work of
determining intended meanings will always ultimately require human intervention.

3 Languages: SCL and Abstract Syntax
Developing an account of semantic integration, even at the more concrete level presented
here, still requires some level of generality. It won’t be much of a general theory if it
restricts its attention just to, say, OWL and RDF. Rather, we need an account of what a
language is that provides an abstract structural characterization of any possible, or at
least any reasonable, Knowledge Representation (KR) / Semantic Web (SW) language
without specifying any of the concrete details of the language. This permits a variety of
languages that differ in the concrete details to flourish without engendering a “Tower of
Babel” problem — insofar as each language comports in some fashion with the general
characterization of a language.

Providing such a characterization has been a large part of the motivation of the
(Simplified) Common Logic project (http: //cl.tamu.edu), where a very general, very
abstract notion of a syntax is defined, one designed to encompass the needs, choices, and

3

preferences of any possible concrete language. (See [14] for a reasonably friendly
version, and [15] for a hostile formal version.) I will use a very compressed and hand-
waving version of SCL here.

Of course, as noted, for such a framework for integration to be effective, KR/SW
languages must be comport with the general characterization. Thus, another goal of SCL
is to serve as a clear standard with which KR/SW languages can demonstrably comport. I
will illustrate briefly how this is done below.

3.1 Syntax

A language consists of a signature and a grammar.

Signatures The signature of a language L consists of a set of syntactic classes. These
must divide into a class of variables and two (not necessarily disjoint) classes: individual
constants, predicate constants. and function symbols. (That individual and predicate
constants can overlap comes from earlier versions of KIF, but also reflects an important
syntactic feature of RDF; see [17].) An element of a syntactic class is an atom —
typically, a string consisting of elements from some set of basic characters (e.g., unicode
characters). We will assume a countable number of atoms in each class. (This is an
innocuous assumption that will smooth the approach to integration below.)

Grammars Informally, a grammar is a set of rules (typically recursive) that specify how
to construct well-formed expressions from atoms and other, less complex, well-formed
expressions. We can formalize the notion of a grammar in terms of a set of one-one
functions with pairwise disjoint ranges. More specifically, every grammar will include a
function APP that forms terms from function symbols some terms, and a function PRED
that forms atomic sentences from a constant and some terms. (Arity for predicates can be
introduced as a separate notion.) NEG forms a new sentence from a given sentence.
CONJ and DISJ form sentences from any finite number of sentences; COND and
BICOND form sentences from pairs of sentences; EXQUANT and UNIVQUANT form
sentences from a sequence of pairwise distinct variables and a given sentence. Notions of
bondage and freedom for variable occurrences can be defined straightforwardly.

Example 1: KIF

As examples I will choose use (a simplified version of) KIF and a standard sort of first-
order language. Although the latter is not a language for the Semantic Web, that is beside
the point here — we are concerned to nail down some notions of integration between
ontologies in different languages, and techniques will apply regardless of choice of
language. So for purposes here, languages have been chosen that are efficient, easy to
work with, and (not least) with which the author is particularly familiar. Future work will
explicitly encompass RDF, OWL, and other more explicitly Web-oriented languages.

Signature KIF’s syntactic classes consist of constants, variables, and sent-ops.
Constants are strings of alphanumeric characters, dashes, and underscores. Variables are
simply constants prefixed by ‘?’. The sent-ops are: not, and, or, implies, iff,
forall, and exists.

4

Grammar KIF’s grammar is as follows; I will use corner quotes , to indicate quasi-
quotation that allows to use metalanguage variables ranging over linguistic objects to
indicate general classes of expressions;1

• Every constant is both an individual constant and a predicate constant.
• Constants and variables are terms
• (π τ1 … τn) is an (atomic) sentence, for constants π and terms τ1, …,, τn.
• (not ϕ) is a sentence if ϕ is.
• (and ϕ1 … ϕn) and (or ϕ1 … ϕn) are sentences if the ϕi are.
• (implies ϕ ψ) and (iff ϕ ψ) are sentences if ϕ and ψ are.
• (exists (ν1 … νn) ϕ) and (forall (ν1 … νn) ϕ) are sentences

if ϕ is, for any variables ν1, …,, νn.

Example 2: A Typical First-order Language

SCL is designed to allow for languages with maximal (first-order) expressiveness, a
feature that is particularly desirable for languages designed chiefly for purposes of
representation rather than automated reasoning. Not all languages, of course, will want to
make use of all of those features. Some will also wish to impose more structure than SCL
requires, e.g., by the assignment of arities to predicates. SW languages in particular will
put restrictions on permissible sentences. Nonetheless, all such languages can be
considered conformant “as far as they go” insofar as their sentences constitute a recursive
subset of a fully compliant SCL language; such conformance is not hard to show for most
any SW language. Here the point will be illustrated simply with a more traditional first-
order language L.

Signature The syntactic classes of L are individual constants, variables, predicate
constants, and sentence operators. Individual constants are lower case letters a-t, possibly
with numerical subscripts. Variables are lower case letters u-z, possibly with numerical
subscripts. Predicate constants are upper case letters A-Z with numerical superscripts and
possible with numerical subscripts. A predicate with numerical superscript n is an n-
place predicate. Sentence operators are ¬, ∧, ∨, →, ↔, ∀, and ∃.

Grammar The grammar for L is as follows:

• Constants and variables are terms
• is an (atomic) sentence, for n-place predicates p and terms .
• ¬ϕ is a sentence if ϕ is.
• (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), and (ϕ ↔ ψ) are sentences if ϕ and ψ are.
• ∃νϕ and ∀νϕ are sentences if ϕ is, for any variable ν.

Obviously this is a recursive sublanguage of a fully compliant SCL language — extracted
by the assignment of arities to predicates and the elimination of non-binary conjunctions
and disjunctions and the binding of multiple variables. So this language can be
considered conformant “as far as it goes”.

1 C and Perl programmers might consider by analogy the difference between single quotes and
double quotes.

5

3.2 Semantics

We will assume a fairly standard model theory, albeit one that has a bit more flexibility to
it to accommodate possible overlap between the individual and predicate constants.
Specifically, an interpretation for a language consists of two sets of objects — individual
and relations; relations are assigned sets of n-tuples as their extensions. Each individual
constant k is assigned an individual den(κ) as its denotation and each predicate constant
and function symbol π a relation den(π) — with the added stipulation that the extension of
the relation assigned to a function symbol must be functional.2 For an interpretation M
with individuals M, relations R, extension function ext and denotation function den, then
we have that an atomic sentence PRED(π, τ1, …, τn) is true in M just in case 〈den(τ1), …,
den(τn)〉 ∈ ext(den(π)).

The remaining clauses are just as one would expect, notably:

• A quantified sentence EXQUANT(ν,ϕ) [UNIVQUANT(ν,ϕ)] is true in M just in
case, for some [every] individual e ∈ I, ϕ is true in M[ν/e], where M[ν/e] is just
like M except that the denotation function for M assigns e to the variable ν.

An interpretation M of a language L is a model of a set of sentences O of L just in case
every member of O is true in M. O entails a sentence ϕ just in case ϕ is true in every
model of O.

4 Ontologies Defined
We noted above that we will be taking ontologies to be identified with their
representations. In this context, this means that we identify ontologies with their axioms,
as expressed in some language. Specifically: An ontology O in a language L is a class of
sentences of L. The members of O are called the axioms of O. We stipulate without any
loss of generality that, for any ontology O in a language L, there must always be
countably many atoms of L that do not occur in any of the sentences of O. This smooths
the definition of semantic integration below. Given simple facts about infinite
cardinalities, this too is an innocuous assumption.

5 Semantic Mapping as Meaning Preserving
Translation

This basic framework already provides a fairly robust formal notion of semantic mapping
on which to build. Intuitively, a semantic mapping is (as far as possible) a meaning
preserving translation from the language of one ontology into that of another. Here’s one
way to cash this out using standard concepts from first-order model theory. (I draw
heavily upon [3] and [5] in what follows.) Let O2 be an ontology in a language L2. (For
the sake of familiarity, I will let L2 be the standard language of first-order logic.) Let Φ

2 That is, if a (e.g., 1-place) function symbol σ is assigned relation r as its denotation, then if 〈e1,e2〉
∈ ext(r) and 〈e1,e3〉 ∈ ext(r) , then e2 = e3.

6

be a sentence of L2 with a single free variable ν such that O2 entails ∃νΦ. Let
Φ[ν/ν1] be the result of replacing every free occurrence of ν in Φ with ν1.

Let ‘∃1’ be the quantifier “there exists exactly one”. Define a Φ-map from a language L1
into O2 to be a function a from the individual constants, function symbols, and predicate
constants of L1 into sentences of L2 such that:

• For each individual constant κ of L1:
o Only the variable ν occurs free in α(κ), and
o O2 entails ∃1ν(Φ ∧ α(κ)).

When α(κ) is of the form ν = λ for some constant λ of L2, let α°(κ) be λ.
• For each n-place function symbol σ of L1:

o Exactly the (distinct) variables ν1,…,νn occur free in α(σ),
o None of the variables ν1,…,νn occurs in Φ, and
o O2 entails ∀ν1…νn(Φ[ν/ν1] ∧ … ∧ Φ[ν/νn] → ∃1ν(Φ ∧ α(σ))).

When α(σ) is of the form ν = β(ν1,…,νn), for some function symbol β of L2,
let α°(σ) be β.

• For each n-place predicate symbol π of L1:
o Exactly the (distinct) variables ν1,…,νn occur free in α(π).

The idea here is straightforward. A Φ-map is designed to take the non-logical elements of
the lexicon of a language L1 of a given ontology O1 into sentences of the language L2 of
a target ontology O2 that, in a certain intuitive sense, preserve their meaning. Thus, first
of all, Φ is intended to carve out the intended domain of O1 from that of O2. Thus,
intuitively, the Φ-map of a constant κ in L1 is a sentence of L2 with a free variable that is
true of the same object that κ denotes. (In the simplest case, there is a constant λ in L2
that intuitively denotes the same thing that κ does in L1. In this case the Φ-map of κ is
simply the sentence ν = λ.) Similarly, the Φ-map of an n-place function symbol σ will,
intuitively, be a sentence in n+1 variables that expresses a (functional) relation that is
definable in O2 and which is true of n+1 things e1, …, en, en+1 (all satisfying Φ) if and
only if the function that σ denotes maps the objects e1, …, en to en+1. (Again, if there is a
single function symbol β of L2 that intuitively expresses the same function as σ, then the
Φ-map of σ will simply be ν = β(ν1,…,νn). And, finally, the Φ-map of an n-place
predicate constant π should be a sentence in n variables that, in O2, expresses the n-place
relation relation denoted in L1 by π.

Given any model M2 of O2, then, a Φ-map α induces an interpretation M1 of L1 whose
domain consists of the things in the domain of M2 that satisfy Φ, and which interprets a
constant κ by the thing satisfying α(κ), an n-place function symbol σ by the set of n+1-
tuples satisfying α(σ), and n-place predicate symbol π by the set of n-tuples satisfying
α(π). Intuitively, then, a Φ-map from a language L1 to an ontology O2 preserves the
meaning of the non-logical vocabulary of L1 as circumscribed by an ontology O1 if,
given any model of O2, the interpretation of L1 induced by α is a model of O1. We make
this precise as follows; for simplicity we assume that individual constants, function
symbols, and predicate symbols are pairwise disjoint classes.

7

Let α be a Φ-map from L1 to O2, let M2 = 〈D2,R2,ext,den〉 be a model of O2, and let
M2[ν/e] be the interpretation that is just like M2 except that it maps ν to e. Define the
interpretation M1 = 〈D1,R1,ext1,den1〉 of L1 induced by α as follows:

• D1 = {e ∈ D2 : Φ is true in M2[ν/e]}.
• R1 = {{〈e1, …, en〉 ∈ D1

n : n > 0 and ϕ is true in M2[ν/e,…,νn/en]} : ϕ is a
sentence in which the (distinct) variables ν, …, νn occur free}.

• ext(r) = r, for r ∈ R1.
• den(κ) = the unique e ∈ D1 such that α(κ) is true in M2, for constants κ of L1.
• den(σ) = {〈e1, …, en, en+1〉 ∈ D1

n+1 : α(σ) is true in M2[ν/e,…,νn/en,νn+1/en+1].
• den(π) = {〈e1, …, en〉 ∈ D1

n : α(σ) is true in M2[ν/e,…,νn/en].

We can now define a Φ-map of L1 into O2 to be meaning preserving for an ontology O1
in L1 iff, for any model M2 of O2, the interpretation M1 of L1 induced by α is a model of
O1.

A Φ-map a yields a natural, fully-fledged translation function α* from the sentences of
L1 into those of L2 that enables us to define meaning preservation relative to the
translation of one ontology O1 into another O2:

• α*(ν) = ν, for variables ν of L1. (We assume for simplicity that L1 and L2 share
the same variables.)

• α*(κ) = α°(κ), for constants κ of L1.
• If τ is a function term σ(ω1,…,ωn), α(τ) = α°(σ)(α*(ω1),…,α*(ωn)).
• If ϕ is an atomic sentence PRED(π,τ1,…,τn), α*(ϕ) = α(π)(α*(τ1,…,α(τn)).
• As expected for the boolean cases.
• If ϕ is EXQUANT(ν,ψ), then α*(ϕ) = ∃ν(Φ ∧ α*(ψ)).
• If ϕ is UNIVQUANT(ν,ψ), then α*(ϕ) = ∀ν(Φ → α*(ψ)).

The axioms of an ontology infuse its basic lexicon with meaning by putting constraints on
how the atoms in the lexicon can be jointly interpreted. A translation function (relative to
some Φ-map α) of those axioms into the language of another ontology will be meaning
preserving, relative to the given ontologies, just in case those constraints are respected,
i.e., just in case the axioms of the source ontology — upon translation under — are all
entailed by the target ontology. This can happen only if the constraints on the lexicon of
L1 expressed by the axioms of O1 are respected — upon translation — by O2. More
formally then:

Definition 1: Let O1 and O2 be ontologies in languages L1 and L2, respectively, and let
α* be the translation function from L1 into L2 generated by a given Φ-map. Then α* is
meaning preserving with respect to O1 and O2 if, for any axiom ϕ of O1, O2 entails ϕ.

It should be obvious that, if a F-map from L1 to O2 is meaning preserving for O1, then its
corresponding translation function will be as well. Given this, we can formulate a
simple, initial notion of semantic mapping:

8

Definition 2: A semantic mapping from one ontology O1 in a language L1 into an
ontology O2 in a language L2 is a translation function α*, relative to a given Φ-map α
from L1 to language L2 that is meaning preserving with respect to O1 and O2.

5.1 A Vivid Formal Example

A well known mapping from number theory into set theory provides a particularly vivid
example of semantic mapping so defined. Examples of this kind, because of their
formality, can often be misleading, as they abstract away from exactly all of the messy
real world problems of ontology integration. However, bear in mind once again that at
this point we are only trying to fix ideas — we need a clear notion of the concepts we are
striving for, ideally, even if, in practice, we can only approximate it. For this purpose,
mathematical examples like this one that filter out real world “noise” can be helpful and
effective.

The usual language of arithmetic LPA is a first-order language containing binary function
symbols ‘+’ and ‘•’, a unary function symbol ‘s’ for the successor function, and the
numeral ‘0’. The usual axioms of Peano Arithmetic (PA) — the most familiar number
theory — are the following. First, basic axioms for ‘0’ and ‘s’:

• ∀x(s(x) ≠ 0) (0 is not the successor of any number.)
• ∀x∀y(s(x) = s(y) → x = y) (Successor is 1-to-1.)
• ∀x(x+0 = x)
• ∀x∀y(x+s(y)) = s(x+y))
• ∀x(x•0 = 0)
• ∀x∀y(x•s(y) = (x•y)+x

Finally, the induction schema. Let ϕ[ν/σ] be the sentence that results from replacing all
free occurrences of the variable ν in ϕ with occurrences of σ.

• (ϕ[ν,0] ∧ ∀ν(ϕ → ϕ[ν/s(ν)]) → ∀νϕ, for any sentence ϕ in which ‘x’ occurs
free.

The usual language LZF of Zermelo-Fraenkel set theory is a first-order language whose
lexicon contains only the one binary predicate ‘∈’. For simplicity we will also assume
that the language contains the one individual constant ‘∅’ and the binary function
symbols ‘∪’ (“union”) and ‘×’ (“Cartesian product”), axiomatized by their usual
definitions. We will also make use of the usual bracket notation {...} for defining finite
sets, which can also be defined in familiar ways. Now, first, define the “successor” sc(A)
of a set A to be A∪{A}. Beginning with the empty set ∅ and iterating the successor
operation yields the set of so-called finite von Neumann ordinals:
{∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}},...}, the standard representation of the natural
numbers in modern set theory. We can therefore take our sentence Φ to be the sentence
expressing property of being in every set that contains ∅ and is closed under sc. (Φ, then,
will be true of exactly the finite von Neumann ordinals.). Lset’s give Φ the more concrete
name ‘Num’ in this context:

Num =df ∀y((∅ ∈ y ∧ ∀z(z ∈ y → sc(z) ∈ y)) → x ∈ y)

9

Now, taking “equal in size to” as usual to mean “can be put into one-to-one
correspondence with”, for finite sets A and B:

• sum(A,B)= the Num that is equal in size to (A × {∅}) ∪ (B × {sc(∅)}).3
• prod(A,B)= the Num that is equal in size to A × B.

(For our purposes we don’t care what sum and prod do with infinite sets.) Given these
definitions, we can define a Num-map a from L into ZF. We note first that ZF entails
‘∃xNum’, as required.

Next, we let α(‘+’) = ‘sum(x,y) = z’ and α(‘•’) = ‘prod(x,y) = z’. We note again that ZF
entails ‘∀xy(Num ∧ Num[x/y] → ∃z(Num[x/z] ∧ sum(x,y) = z)’; similarly for ‘prod’. It is a
well-known fact that, given a model of ZF, the interpretation that this Num-map induces
on LPA is a model of PA. Notably, when M is the “intended” standard model of ZF, the
induced interpretation of LPA has the set of von Neumann ordinals as its domain, sc as the
interpretation of ‘s’, and sum and prod, restricted to the von Neumann ordinals, as the
interpretations of ‘+’ and ‘•’, respectively.

This Num-map α yields an obvious corresponding, meaning preserving semantic mapping
α* from the language LPA into O2. (We will assume that the two languages have identical
variables.)

• α*(τ) = τ, if τ is a variable of LPA
• α*(‘0’) = ‘∅’
• α*(s(τ)) = sc(α*(τ))
• α*(τ = σ) = α*(τ) = α*(σ)
• α*(τ+σ) = sum(α*(τ),α*(σ))
• α*(τ•σ) = prod(α*(τ),α*(σ))
• α*(¬φ) = ¬α(φ);
• α*((φ ∧ ψ)) = (α*(φ) ∧ α*(ψ); similarly for the other binary connectives.
• α*(∃νφ) = ∃ν(Num[x,ν] ∧ α*(φ))
• α*(∀νφ) = ∀ν(Num[x,ν] → α*(φ))

It follows almost trivially that if a is a meaning preserving Num-map, then is a semantic
mapping from PA to ZF; anything that the number theoretic ontology PA can say about
numbers is something ZF says about them in their set theoretic guise. ZF, however, says a
lot more besides; in particular, for definiteness, ZF chooses to identify the numbers with a
particular set that exemplifies the structure described by PA, and, more significantly, it
generalizes the notion of number into the transfinite.4,5

3 We can’t define addition in terms of ∪ alone, of course, because every member of Num is a subset
of every larger member. Hence, for any two Nums A and B, A∪B will just be the larger of the two.
The trick here is simply that we “paint” the members of A and B, respectively, “different colors” by
pairing the members of A with ∅ and the members of B with its singleton {∅}. The union of these
“painted” sets will then be the right size to represent addition.
4 [1] is still about as good an introduction to transfinite arithmetic as there is. For its modern
development in ZF, see, e.g., [4].

10

It is worth re-emphasizing that what we are after here is a definition of what semantic
mapping is. Such a definition does not of itself yield any immediate insight into how to
map one ontology into another; it does not generate the translation from the source
ontology to the target. That requires insight into the intended meanings of the axioms of
both ontologies. The definition only tells us what it is for such a translation to be
semantically correct.

6 Semantic Integration: Bridge Axioms and
Merging

In actuality, of course, it will rarely be the case that a one ontology can be mapped
entirely into another the way that PA can be mapped into ZF. Much more likely is that
neither ontology will contain all of the content of the other. Rather, when one O1 is
mapped into the other O2, O1 will bring new information that is not implicit in O2. It is
not enough for genuine integration, however, simply to take the union of the two
ontologies. For in general, the information in O1, while not strictly contained in O2
(under an appropriate translation function) will have many logical connections to the
information in O2 that are explicit in neither ontology. Fully-fledged semantic
integration, then, will require identifying these logical connections and making them
explicit. Axioms introduced to make these connections are called bridge axioms,
formulated in the language of O2. (Recall that we have required there always to be
countably more n-place predicates in the language of an ontology than actually occur in
the axioms of the ontology.) True integration between two ontologies, then, will involve a
semantic mapping from O1 in O2 plus a set of bridge axioms. The result of such a
“merge”, then, will be a new ontology incorporating the information from both and their
salient logical connections. We might begin, then, with the following definition, where,
in general, for a function f : A → B, where C ⊆ A, f[C] = {f(a) : a ∈ C}:

Definition 3: A merge of ontology O1 into O2 is a triple 〈Φ,α,B〉, where Φ is a formula of
L2, B is a set of bridge axioms in the language L2 of O2, and α is a meaning-preserving
Φ-map from L1 into α*[O1] ∪ O2 ∪ B.6

5 It might be argued that our formal example is perhaps a bit misleading in that it involves not
simply a semantic mapping but what philosophers sometimes call an ontological “reduction” (see
[11] — talk of numbers is “reduced” to talk of a certain class of sets. But this is actually a bit
inaccurate, as what ZF provides is not so much a different ontology than PA but simply a higher
degree of specification. For Peano Arithmetic is not really an ontology of a certain well-defined set
— the natural numbers. It actually makes no claim about, and doesn’t concern itself with, what the
numbers are really. Rather, it is about a certain type of structure, one that can be exhibited by
infinitely many different sets. ZF simply provides one particularly convenient set to play this role.
In real world contexts however, typically, more than structure is at issue; rather, there is some
definite ontology in question that distinct ontologies share in common, at least in part. In these
cases, what a meaning preserving translation with respect to ontologies O1 and O2 will show is, not
that a certain class of entities can be “seen as” another class, the way numbers can be seen as sets in
ZF, but rather that the target ontology O2 talks about the very same things as O1, and perhaps more
besides.
6 Thus, α*[O1] is simply the image of the ontology O1 in O2 under the semantic mapping from L1
into L2 generated by α.

11

This needs refinement, however, as the notion of a bridge axiom is undefined; and,
indeed, if we allow any sentence of L2 to count as a bridge axiom, then the above
definition allows for “trivial” merges in which the bridge axioms are the result of simply
translating the axioms of O1 into L2 in such a way that every atomic sentence of L1 is
mapped to sentence of L2 that involves no constants or predicates that occur in O2. The
result would be a “merge” of O1 and O2 in which the information expressed in each
ontology was completely isolated from the information in the other; though merged into
one, the two ontologies would in effect remain entirely unintegrated.

What’s missing here is the idea of bridging that a bridge axiom should embody: A bridge
axiom should connect the objects and concepts of O1 logically to those of O2. This can
happen in two ways. First, and perhaps most typically, a bridge axiom will involve at
least one (translation of a) constant of O1 and at least one nonlogical constant occurring in
the axioms of O2. This motivates the following definition:

Definition 4: Let 〈Φ,α,B〉 be a merge of ontologies O1 and O2. The bridge axiom β ∈ B
is a connecting axiom if it contains at least one constant (individual or predicate) or
function symbol of L2 and is such that, for some constant or function symbol χ of L1,
α(χ) contains at least one constant or function symbol of L2 not occurring in any axiom of
O2.

This gets us closer, but the definition still allows for the possibility that particular
connecting axioms could be trivial in a certain sense — notably, we could construct
tautologies that satisfy the definition of a connecting axiom; or the axiom could add
nothing to the work already done by the translation scheme T. While ensuring that all of
the bridge axioms in a merge are doing some heavy lifting is perhaps more a pragmatic,
even aesthetic, issue than a theoretical one, it might still be useful to have a rigorous
notion of nontrivial to serve as an ideal for bridge axioms to meet. We do this by
formalizing the insight that a nontrivial connecting axiom should impose a (consistent)
constraint on the interpretation of the “union” of the two ontologies:

Definition 5: Let 〈Φ,α,B〉 be a merge of ontologies O1 and O2. A connecting axiom β ∈
B is nontrivial if α*[O1] ∪ O2 is consistent with, but does not entail, β, i.e., if β is true
in some models of α*[O1] ∪ O2 and false in others.

As intimated above, not all conceivable bridge axioms are connecting axioms. A second
possibility is that an axiom of O1, when translated, might nontrivially extend O2, but add
no new vocabulary. For example, suppose in a given automobile manufacturing ontology
O2 there are only cars with two doors. Suppose now this ontology is merged with a
different automobile ontology O1 in which there are in fact cars with four doors. The
concept “sedan” is therefore definable using concepts available in O2, but the axiom
“There are sedans” is not provable from O2. Call this sort of axiom an augmentation
axiom:

Definition 6: Let 〈Φ,α,B〉 be a merge of ontologies O1 and O2. An bridge axiom β ∈ B is
an augmentation axiom if every constant and function symbol of β occurs in some axiom
of O2 but O2 does not entail β.

12

Given these definitions, we can define a merge 〈Φ,α,B〉 to be nontrivial just in case B
contains at least one augmentation axiom or one nontrivial bridge axiom.7

7 Semantic Mapping and Practical Integration
A final word about practical semantic integration that reflects the ideas worked out here.
Given two ontologies O1 and O2 to be merged, one can at the outset, typically, make no
assumptions whatever about the logical relations between the constants in those
ontologies, even — or perhaps better, especially — when the constants are similar or
identical. Rather the logical connections between the constants of the two ontologies is
something that must, in general, be stipulated later in the integration process, either
through the addition of bridge axioms or through the subsequent development of a
translation scheme that, to some extent at least, identifies the concepts and objects in one
ontology with those of another. Typically, though, it will be useful to defer the question of
logical connections and simply form an initial “union” of the two ontologies in which the
information in each is sequestered from the information in the other. The easiest way to
accomplish this is simply by means of a sort of quasi-merge that is in fact trivial in the
sense above. In such a merge, the translation function that maps the atomic sentences of
one ontology O1 to sentences of L2 that share no constants in common with any of the
axioms of O2. One can then incrementally identify logical connections explicitly by
means of bridge axioms, or by refining the translation function in such a way that some
sentences of O1 are translated entiredly into sentences of L2 that are theorems of O2. One
then moves incrementally toward a lean and robust ontology by the addition of genuine,
nontrivial bridge axioms.

8 Conclusions
In this brief paper, I’ve drawn upon basic, familiar notions of first-order logic to make
some initial steps toward a rigorous theory of semantic integration. Drawing on SCL, we
introduced an abstract, structural notion of a language. Such a treatment of languages is
necessary for a general account of integration between languages that differ considerably
in their concrete features. One must in these cases describe integration in terms of more
general, abstract structural features of the languages in question. Using this framework, a
general notion of semantic mapping was defined as meaning preservation, where this is
spelled out model theoretically in terms of the notion of a Φ-map: a mapping from the
basic lexicon of a given ontology into (hopefully) equivalent concepts of another
ontology. Φ-maps, in turn, yield translation functions that, under proper conditions, can
be considered semantic mappings between ontologies. This simple notion of semantic
mapping is rather limited, as it only applies to cases where one ontology subsumes
another in a certain well-defined sense. In the penultimate section, therefore, the notion
of a semantic mapping was broadened to that of a merge that gives us a notion of a
semantic mapping for two ontologies that only overlap in meaning. We closed with a
final reflection on the relation between these formal notions and the methodology of real
world integration. It is hoped that the notions introduced here make some progress — in

7 As a final touch, one could also require that one’s bridge axioms are nonredundant, i.e., that for no
ϕ ∈ B is it the case that α*[O1] ∪ O2 ∪ (B - {φ}) entails ϕ.

13

approach, at least, if not in actual content — toward a rigorous, well-defined engineering
discipline of ontology integration.

References

[1] Cantor, G., Contributions to the Founding of the Theory of Transfinite Numbers, New
York, Dover Publications 1955. Translation of “Beiträge zur Begrundung der transfiniten
Mengenlehre,” Mathematische Annalen 46 (1895) 481-512 and 49 (1897) 207-246.

[2] Ciocoiu, Mihai and Nau, Dana S., “Ontology-based semantics” in A. G. Cohn, F.
Giunchiglia, B. Selman (eds.), Principles of Knowledge Representation and Reasoning,
Proceedings of the Seventh International Conference, Morgan Kaufmann, 539-546,
URL=http: //citeseer.ist.psu.edu/ciocoiu00ontologybased.html.

[3] Ebbinghouse, H.-D., Flum, J., and Thomas, W., Mathematical Logic, 2nd edition,
New York, Springer, 1994.

[4] Enderton, H., Elements of Set Theory, New York, Academic Press, 1977.

[5] Enderton, H., A Mathematical Introduction to Logic, New York, Academic Press,
1972.

[6] Goguen, J., “A Categorical Manifesto,” Mathematical Structures in Computer
Science, 1 (1991) 49-67.

[7] Goguen, J. and Burstall, R., “Institutions: Abstract Model Theory for Specification
and Programming.” Journal of the Association for Computing Machinery, 39(1) (1992)
95-146.

[8] T. R. Gruber, “A Translation Approach to Portable Ontologies,” Knowledge
Acquisition, 5(2):199-220, 1993.

[9] Kent, Robert, “The IFF Foundation for Ontological Knowledge Organization,” in
Knowledge Organization and Classification in International Information Retrieval
(Haworth, 2003).

[10] Menzel, Christopher, “Ontology Theory,” in J. Euzenat, A. Gomez-Perez, N.
Guarino, and H. Stuckenschmidt (eds.), Ontologies and Semantic Interoperability, CEUR
Workshop Proceedings, 64 (2002), URL=http://CEUR-WS.org/Vol-64/menzel.pdf.

[11] Quine, W. V. O., “Ontological Relativity.” Journal of Philosophy 65 (1968) 185-212.
Reprinted in his Ontological Relativity and Other Essays, New York, Columbia
University Press, 1977.

[12] Schorlemmer, M. and Kalfoglou, Y., “On Semantic Interoperability and the Flow of
Information,” in ISWC ’03 Semantic Integration Workshop, Sanibel Island, Florida, USA,
October 2003. URL=http: //citeseer.ist.psu.edu/schorlemmer03semantic.html

14

[13] Schorlemmer, M. and Kalfoglou Y., “Using Information-flow Theory to Enable
Semantic Interoperability,” in 6e Congres Catala en Intelligencia Artificial, Palma de
Mallorca, Spain, Oct. 2003. Also available as Informatics Report EDI-INF-RR-0161, The
University of Edinburgh. URL=http: //citeseer.ist.psu.edu/schorlemmer03using.html.

[14] Common Logic Working Group, “SCL: Simple Common Logic,” URL=http:
//www.ihmc.us/users/phayes/SCLJune2004.html.

[15] Common Logic Working Group, “Abstract Syntax and Semantics for SCL,”
URL=http: //cl.tamu.edu/docs/scl/scl-latest.html.

[16] World Wide Web Consortium (P. Hayes, ed.), “RDF Semantics,” URL=http:
//www.w3.org/TR/rdf-mt.

