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1. Three Flavours of Reverse Engineering 

The notion of “reverse engineering” has long been embraced by 

philosophy of science. For example, Daniel Dennett defended his claim 

that biology is engineering by pointing to some methods of investigation 

that bear close resemblance to a specific way of understanding artefacts, 

namely reverse engineering (Dennett 1995, 212-20). Focus on methods of 

investigation, in general, is a distinctive feature of naturalistic philosophy 

of science: it is not interested solely in questions of rational reconstruction 

and justification of scientific theories. It also reflects upon discovery as 

part of the way science works. Thus, by saying that sciences use reverse 

engineering, one commits oneself to investigation of strategies that 

scientists use in discovering true and important invariant generalizations. 

Also, by stressing that technology and science both use engineering, 

philosophers of science target regularities that help them unify the worlds 

of disparate disciplines in a single theoretical framework. This kind of 

theoretical unification may be illuminating for both science and technology 

(even if it is not fully explanatory as unification in Kitcher’s 1989 sense of 

the term). 

But what exactly is reverse engineering? 

Reverse engineering is just what the term implies: the interpretation of an 

already existing artifact by an analysis of the design considerations that 

must have governed its creation (Dennett 1994, 683) 

A similar notion of reverse engineering was used by Robert 

Richardson who defines it as “inferring adaptive function from structure” 

(Richardson 2003, 1277). Note the addition of “adaptive”: the design 
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considerations are linked with considerations of adaptation. Is this a 

necessary feature of reverse engineering, or maybe there is a special kind 

of it, which is prevalent in evolutionary biology, as Richardson seems to 

suggest? 

To answer this question, we might be tempted to look at the usage of 

the notion in computer science and information technology, the original 

source of the expression. Alas, the usage is far from consistent. In its most 

frequent uses, as found in thousands of software licences, it is used to refer 

to deriving source code (which is explicitly banned). But for some, it is not 

only deriving the code but doing something with it, for example to 

circumvent copying restrictions, the latter being also called “reengineering”. 

I will follow the practice of many authors that write about reverse 

engineering (for example, Eilam & Chikofsky 2005) and use the influential 

paper from IEEE Software that legislated conceptual distinctions between 

the notions. Reverse engineering was defined there as “the process of 

analyzing a subject system to identify the system’s components and their 

interrelationships and create representations of the system in another form 

or at a higher level of abstraction” (Chikofsky & Cross 1990, 15). 

It is immediately clear that this is a very broad notion indeed. All it 

takes for a process to qualify as reverse engineering is to create 

representations at higher level of abstraction, a task that some understand 

as the very essence of science, and to analyse the structure of a complex 

system this way. 

Consequently, any mechanistic explanation (Machamer, Darden and 

Craver 2000) will be supported by reverse engineering in this sense. Even 

the admittedly broad notion of the mechanism, usually understood as a 

system that has some system-level functional capacity constituted by the 

orchestrated activity of component parts of the mechanism, is more 

stringent than the notion of the system implied by the original definition, 

as no system-level capacity is ever mentioned. Moreover, there is no 

mention of function either. 

With such a broad notion of reverse engineering, which is conflated, as 

it seems, with any kind of theorizing about complex systems, it is hardly a 

surprise that many disciplines of science will turn out to be engaged in 

reverse engineering. Only if you do not focus on complex systems, say in 

certain branches of physics, might you be doing something else. But then 

the claim is not really interesting. If cognitive science is reverse engineering, 

probably just like any special science, so what? 

So maybe the notion of reengineering will be more telling: 

Reengineering, also known as both renovation and reclamation, is the 

examination and alteration of a subject system to reconstitute it in a new 
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form and the subsequent implementation of the new form (Chikofsky & 

Cross 1990, 15). 

This notion is definitely narrower: you need to reconstitute a system in 

a new form, or replicate it somehow. While many sciences replicate 

phenomena in various models, this is at least not universal, so the claim 

that cognitive science uses reengineering is far more substantial. 

Where does this leave us? We have now three renderings of the claim 

that cognitive science is reverse engineering (actually, even more if you 

care about quantification). First, that cognitive science infers function 

from structure (or even adaptive function). This is a substantial claim, but 

one can easily point to numerous examples from evolutionary psychology 

(see Richardson 2007, chapter 2, on reverse engineering in this sense). 

Second, that cognitive science uses decomposition strategies to 

understand cognitive systems, as many other sciences do (Bechtel & 

Richardson 1993). This is on the verge of being trivial, and not really 

worth mentioning, as functionalist decomposition is a methodological 

strategy prescribed by the mainstream philosophy of cognitive science 

since its very beginnings. Yet some think that these strategies are invalid 

as cognitive systems are too complex: their evolved biological complexity 

is to escape the reductionist strategies of reverse engineering (Schierwagen 

2012). Alas, arguments that support this bold claim are pretty weak. 

Schierwagen draws inductive inference from methodologically unsound 

attempts to computationally simulate the cortical column to the strong 

conclusion that all reverse engineering will fail. Also, he appeals to 

Rosen’s (1991) claim that biological complexity cannot be analyzed 

reductively. He supposes however that reverse engineering requires that 

the capacities of the whole mechanism be identified with capacities of the 

parts, and that the mechanisms be aggregative in Wimsatt’s (2002) sense. 

This premise is definitely false, and Bechtel and Richardson explicitly 

deny it by stressing that aggregative systems are an extreme case (1993, 

25). 

Third, that cognitive science uses reverse engineering and reengineering 

to replicate the structure of cognitive systems and understand their 

function in this way. This is what I will focus on the rest of this paper, as 

there are specific virtues of reengineering in cognitive science. 

I already mentioned that the claim regarding the role of reverse 

engineering might be quantified in different ways: is all cognitive science 

reverse engineering or just some? It transpires that on the trivial reading of 

reverse engineering, as functional decomposition, all or almost all 

cognitive science would refer to cognitive systems as complex (you do not 

need to believe in modularity to say that cognitive systems have at least 
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two component parts). But on more substantial readings, not all research 

methodologies used in cognitive science will resemble reverse engineering. 

In particular, traditional information-processing psychology (such as Miller 

1956) was not interested in reengineering: replicating or simulating 

cognition. Simulation is a specific tool in cognitive science, and I do not 

claim that it is required for or used in all cognitive research. 

A simulation in cognitive science is a model which serves as an 

idealization of the phenomenon under consideration. Simulations have 

finite precision and cannot be used to predict all the attributes of the 

modelled phenomenon, yet they must be predictive about some. This 

means that they are products of reverse engineering in the Chikofsky and 

Cross sense: they are representations in another form or at a higher level of 

abstraction, even if they are reimplemented physically in another medium. 

They are not straightforward copies of the phenomena that they describe. 

Otherwise, using simulations instead of original phenomena would make 

no sense: there must be some advantage in building a simulation in the 

first place. One of these advantages is that simulations involve reduction 

of information–some of it is discarded as noise. The information however 

must still be there, and this is why simulation remains representational 

while idealizing. 

In what follows, I discuss whether there are some lessons for 

philosophical inquiry over the nature of simulation to be learnt from the 

practical methodology of reengineering. I will argue that reengineering 

serves a similar purpose as simulations in theoretical science, and that the 

procedures and heuristics of reengineering help to develop solutions to 

outstanding problems of simulation. 

2. Organizational Invariance 

For reengineering to work, it must be possible to replicate the system 

in question, or the phenomenon to be reconstituted. If replication uses a 

different medium, the phenomenon must be organizationally invariant 

(Chalmers 2011) so that the copies can be substrate-neutral (Dennett 

1995, 50). Otherwise, the causal structure of the physical system could not 

be replicated in another medium, using some other substrate. But 

organizational invariance or substrate neutrality is not to be confounded 

with multiple realization. The latter notion is used in different ways, and 

there are plausible reasons to remain sceptical of many claims traditionally 

connected with multiple realization, especially when it is used to argue for 

antireductionism (for such criticism, see Polger 2004 or Shapiro 2000, 

2004, 2008). 
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To see the difference between substrate-neutrality and multiple 

realization, we need to note that multiple realization requires that a single 

capacity be realized in multiple ways. But not all physical differences 

make any difference for realization: the colour of paint on the wind tunnel 

cannot be used to differentiate realizations. Likewise, who made the 

mouse trap is irrelevant for its capacity to catch mice. What is crucial is 

that the functional organization that contributes to the capacity being 

realized is different. Functional organization is basically the causal 

structure of the system that has some capacity. When reengineering a 

capacity, we want to replicate it in a new or different form. But we can 

speak of replication only when the causal structure, or a causal model of a 

capacity is the same or very similar. 

To explain the differences between organizational invariance, which is 

basically retaining the same causal structure or topology in different 

substrates, and multiple realization, it is useful to introduce a simple 

example of two different physical implementations of similar computers. 

We will also see that in an essential way the talk of multiple realization is 

interest-relative. Let us then look at two very similar computers: IBM 709 

and IBM 7090. The latter one was a transistorized version of the first one 

(this example is taken from Wimsatt 2002). Logically, these computers 

were equivalent, so one could run the same software on both. In other 

words, these computers are input-output equivalent on every level of detail 

of their software: any routine in any program you take will be performed 

in an equivalent way by IBM 709 and 7090. But they are not completely 

equivalent, as they perform their functions in a different way, so the causal 

pathway between the input data and output data is not the same at the 

electronic level. For example, one machine is slower than another, and 

transistors break in different ways than tubes. The question is whether 

IBM 709 and 7090 are different realizations of the same capacity. While it 

is quite clear that the capacity to execute the software of IBM 709 is 

substrate neutral (it might be emulated on any modern machine as well), it 

is not so obvious that its realization is different in the two machines in 

question. For one, the relevant causal organization must be the same for 

them to run the same software. If we conceive the capacity as executing-

the-machine-code-and-interfacing-the-peripherals, then causal models of it 

in both machines will be the same: the differences of speed and breakdown 

patterns are as inessential as the paint on the wind tunnel. They make no 

difference to this capacity. The organization stays invariant. Yet if we 

include the speed and breakdown patterns, say, in the specification of the 

capacity, then the model of the causal structure will include information 

about electronic elements as well. Otherwise, we could not account for 
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differences in speed. Both computers, however, have then different 

capacities, so it is no longer true that it is the same capacity realized in 

different ways. 

A traditional proponent of multiple realization might reply that I need 

not distinguish between substrate-neutrality or organizational invariance 

and multiple realization at all. Obviously, one is free to define any notion 

in whatever way one likes. But the classical functionalist examples of 

multiple realization, at least the ones that were supposed to support the 

autonomy of special sciences (Fodor 1974) cited phenomena that had the 

same capacities but different causal properties. Interestingly, Fodor (1968) 

did acknowledge an important distinction between two kinds of 

equivalence of simulations with the phenomena being simulated; weak 

equivalence, which is restricted to input-output relationships, and strong 

equivalence, which involves the equivalent causal process as well. The rub 

is that only strongly equivalent simulations are really explanatory of 

empirical phenomena. A weakly equivalent simulation only proves that it 

is possible to implement the capacity in some other way, but that is not the 

point of simulation at all. Reengineering is not about proving that some 

other way of bringing about a capacity is possible; reengineering is about 

replicating the organizational structure in a new form. 

There is an important similarity between the relationship that holds 

among instances of the same logical structure in IBM 709(0) computers 

and cognitive simulations. If cognitive reengineering succeeds, then a 

cognitive simulation will actually have the capacity, not merely describe it. 

If the simulation is strongly equivalent, then the capacity will be present in 

virtue of the same (or very similar) causal structure; if it is only weakly 

equivalent, then the capacity might be produced in some other way–but 

using the same input data, it will yield the same output data as the strongly 

equivalent simulation. If you think of computation of IBM machines in a 

mechanistic way, namely in terms of levels of constitution (Craver 2007), 

then you might talk of equivalences at different levels of organization of a 

mechanism. The two computers are strongly equivalent at the computational 

level but not at the constitutive, electronic level of organization. 

A capacity that is not substrate-neural cannot be simulated by building 

its replica in another medium at all. Reengineering makes no sense in such 

a case, as you cannot instantiate the capacity in a new form of another 

kind. For example, being-made-of-Swiss-cheese is not a substrate-neutral 

property, even if there are multiple kinds of Swiss cheese. You cannot 

make Swiss cheese out of apples or transistors. 

All information-processing relies on such organizationally invariant 

properties. Whenever information-processing is causally relevant for 
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functioning of a physical system, the system may be fruitfully simulated. 

This is not to be read as saying that cognitive science may always use 

simulation for all cognitive capacities; I am not saying that information-

processing is all there is to cognition. In particular, the physical properties 

of sensory apparatus are less organizationally invariant than the 

information-processing properties, and that may limit the scope of the 

possible physical realizations of the apparatus. It may turn out to be the 

case that only a single physical way of realizing some sensing process is 

viable physically or technologically, even if it is logically possible to 

realize it in many ways. 

To summarize this part of the discussion, both computer and robotic 

models of cognition rely on its substrate-neutrality. Simulation makes 

sense only for capacities that can be instantiated using the same causal 

topology in different physical ways, especially if it can be simplified when 

instantiated (to make the simulation more understandable than the 

simulandum). 

Let’s now turn to computer and robotic simulations in cognitive science. 

3. Simulation as Cognitive Reengineering 

It is not at all controversial to say that cognitive simulation is used in 

cognitive science. Herbert Simon and Allen Newell (1958) even went so 

far as to predict that in ten years, most psychological theories will be 

presented as computer programs, and some ten years later, when one looks 

at methodological papers, computer simulation is indeed classified as a 

standard tool in this field (Frijda 1967, Fodor 1968). While it would be 

certainly hard to defend the view that in 1960s most papers in psychology 

were presented as computer programs or as statements about programs, as 

experimental psychology or personality theories remained unaffected, 

there was a considerable body of substantial research that followed this 

path. 

Similarly, that computer simulation is a kind of reengineering hardly 

needs any special justification. With this research methodology, cognitive 

capacity is reverse engineered, or decomposed into its component parts. 

For example, Newell and Simon (1972) decomposed human problem 

solving into individual operations that corresponded to statements of 

subjects in their verbal reports (and to their eye movements). Then, the 

operations were analyzed as a sequence of steps included in the search for 

the solution in the problem space, and replicated correspondingly as a 

computer program. The performance of the computer program was then 
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empirically validated by comparing it with verbal reports from the human 

subjects or with eye tracking data. 

One could argue that there is not so much gain in understanding 

models in cognitive science in terms of reengineering, as we already know 

that these models are complex, that they represent capacities, and that they 

are idealizations rather than mere abstractions. However, my point 

regarding the notions of “reverse engineering” and “reengineering” is not 

that the definitions themselves are informative. It is the practice that can 

be used to discover heuristics, or even normative principles if we are 

lucky, for simulation. By focusing on actual simulation in cognitive 

science and on reengineering, we can bring forth some of its criteria for 

the adequacy of modelling success, which will be a step forward to 

understanding epistemology of simulation as such.  

Understanding the goal of simulation as reengineering, or replication 

of cognitive capacity in a new form, has a philosophically important 

consequence. Replication of the capacity guarantees that the model is 

really complete, which is required by the norms of mechanistic explanation. 

Incomplete representations of mechanisms, called “mechanism sketches” 

are not satisfactory (Craver 2007) as they may ignore causal factors that 

are relevant for the functioning of the mechanism. The only way to make 

sure that we understand a mechanism and have its complete causal model 

is to replicate the mechanism in a different medium. Note: I am not 

claiming that understanding of the mechanism is guaranteed by 

reengineering it. But it helps to see whether the model is complete or not. 

As Dretske (1994) once said, if you can’t make it, you don’t know how it 

works: this is just a negative test. (Obviously, there might be technological 

problems with making something that we understand but we could still 

know why we cannot build it anyway; for example, current technologies 

do not permit modelling biological organisms using the models of the 

same scale as original biological entities.) 

The existence of the working simulation is also proof of the 

completeness of the mechanism, even if the mechanism is simulated only 

as a rough approximation. How it is possible to have complete models and 

to make them incrementally more precise is the topic of the next section. 
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4. Robotic Reengineering 

Computer programs are not the only way to reengineer cognitive 

capacities, however. An alternative that is also interesting from the 

mechanistic point of view is to use robots to simulate animal behaviour 

(Webb 2001, 2008). In particular, these robots might be physically 

instantiated, not just simulated as virtual entities in silico (to use the 

simulationist jargon), which makes them physical models, just like wind 

tunnels whose purpose is to explore aerodynamic properties. 

The distinction between virtual entities and robots can be understood 

as a difference between representational and immediate simulations. The 

representational simulations are the ones where a complex representation 

of a phenomenon is created, e.g. a digital simulation in a computer. There 

are only a finite number of features being represented: a computer 

simulation of weather, for example, does not represent all the physical 

features of rain, and those features cannot be found in the simulation (see 

Krohs 2008). Immediate simulations are used to directly model the 

phenomena using some physical resources, but it is not to say that all the 

physical properties of the simulator are relevant for the simulated 

phenomenon; the colour of the paint on the outer part of the wind tunnel is 

irrelevant, for example. Only some physical properties are crucial; others 

are not. Also, the immediate simulation, for technological reasons, is 

usually of limited resolution, as our measurements and technological 

manipulations are of limited precision. 

Note that it may be hard to decide empirically what kind of simulation 

we deal with: immediate or representational; it’s because immediate 

simulations are also representational, so it’s not a simple dichotomy. Also, 

one may treat Newell and Simon’s simulation of human problem solving 

as reengineering, which implies that it’s immediate, but a weaker 

interpretation is of course also admissible. Of course, Newell and Simon, 

as defenders of artificial intelligence, intended their simulations to be 

immediate; their systems were supposed to think just like humans. But 

intentions of the researchers notwithstanding, one could still doubt 

whether their simulations are not only representational. 

Some robots aren’t even representational. Not all robotic models in 

cognitive science serve the purpose of explaining empirical targets that 

they represent: for example, animats are supposed to be models of possible 

imaginary creatures. For some, this makes them harder to evaluate (Webb, 

2009); other localize them in a different place in the modelling ecosystem 

(Barandiaran & Chemero 2009). More importantly, some of these animat 

models might not be intended as explanatory at all, so they are not instance 
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of reengineering at all. I leave such models for another occasion; note that 

they might be rather instances of forward engineering in cognitive theory. 

Let’s return to reengineering. Both for behavioral and biological 

sciences, robotics offers a way to explain the capacities of a mechanism by 

building robotic models. As in other cases of simulation research, they are 

representations of the phenomena that are under study. In addition to their 

representational role, however, they are immediate simulations. This is 

possible only because they share the relevant relational structure with what 

they represent. In other words, the simulated phenomenon must be 

organizationally invariant. 

Robots are especially useful where purely computational models are 

not sufficient. This can be vividly illustrated with the explanation of 

phonotaxis in crickets (Webb 2008). Barbara Webb and her collaborators 

built a robotic simulation of a female cricket that is sensitive to male 

chirps and moves accordingly to the auditory information it receives. The 

crucial part of the simulation was a physical replica of cricket ears: the 

ears of this insect are especially well-designed for the task of mate-finding. 

Namely, they have four eardrums, one pair located on the fore knees, and 

the other at the back of the cricket. They are connected to a tracheal tube 

in a way that engineers call a “pressure-difference receiver”, which makes 

it much easier to achieve good directionality of hearing. Were the cricket 

simulated only in a computational way, the researchers could have to 

stipulate much more computational power in the insect as it would have to 

process more information to achieve good directionality. However, it is the 

physical embodiment that makes the task easier. In other words, 

simulation of sensory stimulation is a special virtue of the robotic models. 

The neural processing is simulated computationally, just like in traditional 

cognitive simulations, but this is not a necessary requirement of robotic 

modeling: 

While a variety of new and yet to be developed technologies are needed to 

replicate the physical interface of animals to their environment, it is 

generally assumed that the internal neural processes connecting sensors to 

actuators can be adequately replicated with electronic computation. This 

may turn out not to be true. Perhaps there are explicit properties and 

capabilities that can only be obtained by chemically identical processes 

(Webb 2008, 23) 

Webb’s robotic simulation of a cricket is clearly a Galilean idealization 

(Weisberg 2007, Nowak 2000): the neural system is simplified, and the 

motor commands were initially sent to wheels rather than legs as that was 

not a critical part of the simulation, so it could have been simulated in a 

much simplified–in engineering terms–form. What is important is that 
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relevant organizational properties are sufficiently similar to the ones in the 

biological cricket, so that we may describe, explain and predict the 

capacity to move towards the source of chirps when we know the activity 

of the component parts of the insect. The strategy that Webb uses is 

incremental: she started from a fairly crude model, only to add more and 

more biologically faithful details in subsequent simulations. They were all 

complete working models but the grain of simulation was finer and finer. 

The model is considered to be explanatorily satisfactory when it goes 

beyond existing behavioral or neural data; but to build a working 

simulation, one needs to perform studies that were never performed by 

biologists before because they were not building a faithful complete model 

of the mechanism. For this reason, incrementally more faithful models 

suggest new experiments on crickets, and new experiments lead to more 

faithful models. In other words, the development of the model should be 

considered as a cyclical activity rather than a one-shot performance. The 

first models are sure to fail empirical validation. But instead of throwing 

them away, which would be recommended by a (caricature of) Popperian 

methodology, it is useful to tweak the model and to further reengineer it. 

The interplay between behavioral and physiological studies and 

biorobotics is also the answer to the worry raised by Frijda (1967): 

complete simulations go beyond existing knowledge, and multiple ad hoc 

additions are needed to make them work. By validating these additions 

with new experimental data, we can legitimize their role in a model as 

working hypotheses. Ad hoc additions are then no longer hidden kludges 

that make validation of the theory harder; instead they should be tested 

independently–and thereby stop being purely ad hoc. 

As inspiring and interesting as biorobotics is, it is not a universal tool. 

Technological limitations of a purely engineering nature make it 

impossible to build complete models of complex animals. Moreover, for 

some uses, a biorobotic model might be less faithful than a pure 

computational simulation. A robotic model of rat navigation (Burgess et 

al. 1998) is a case in point. Rats are capable of dead reckoning, that is, 

they are able to return to their starting position by constantly updating their 

cognitive map of the environment. The way they do it relies only on the 

signals from the vestibular system and their own motor commands; they 

need no further sensory stimulation. Now, the model build by Burgess, 

impressive as it is, does not offer any particular advantage over faithful 

computational models of rat navigation, such as the one offered by 

Conklin and Eliasmith (2005). 

Biorobotics can indeed be considered an exercise in reverse engineering 

and reengineering: it explains the cognitive or behavioral capacities in a 
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mechanistic way, and replicates the mechanisms it hypothesizes in a new 

form. It shows both the advantages–building complete explanations, 

asking new questions from the perspective of the whole system–and 

limitations of this approach, related mainly to what we can achieve 

technologically. Simply put, some things are easier to simulate on a 

computer than to replicate physically; some are easier to do physically. It 

was hard for Gaudi to compute the structure of Sagrada Familia, so he 

used a physical model. The wind tunnel is easier to build than to simulate; 

but it is easier to simulate the weather on a computer than to simulate the 

Earth’s atmosphere physically. 

5. Reengineering and Dealing with Complexity 

I hope that it is now sufficiently plausible to say that biorobotics is 

engaged in reengineering when it builds robotic models of animals. But is 

there anything to be gained from adopting this perspective on model-

building in biorobotics? I claimed that in this way, two philosophically 

relevant issues may be resolved: you can substantiate the assertion that 

simulation, including embodied simulation, relies on substrate-neutrality 

rather than on multiple realization; and building immediate computer and 

robotic models is a way to guarantee satisfaction of a relevant 

methodological norm of mechanistic explanation, namely completeness of 

the description of the mechanism (modulo various idealizations, as models 

can be built incrementally, as Webb clearly shows). These are important 

points; nonetheless, a researcher in biorobotics may be unimpressed. Is 

there anything intrinsically important to reengineering that biorobotics 

itself would find illuminating, new or important? 

On the one hand, biorobotics seems to be quite aware of the fact that it 

uses current engineering methods to build robots, and no illumination on 

this point seems to be forthcoming from reengineering. Yet there are some 

general points on reverse engineering that Chikofsky and Cross (1990) 

make which seem to be important for building models. They list six 

objectives that need to be taken care of with increasing complexity of 

software. The list applies to models in cognitive science as well. I will go 

step by step. 

1. Cope with complexity. It is quite obvious that we need to develop 

tools that facilitate dealing with the “sheer volume and complexity of 

systems”. Developing auxiliary tools to analyze architectures of biological 

systems and build robots by matching ready-made designs with anatomic 

parts might be an example. 
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2. Generate alternate views. It is important to create different 

representations of the simulated system; these representations need not, in 

contrast to the resulting model, be complete. This practice is legitimized in 

multiple models idealization as advocated by Levins (1966). Building 

multiple views is also recommended as a way to deal with confirmation 

bias, or the psychological tendency to ignore evidence that does not 

support one’s hypotheses (see Farell & Lewandowsky 2010). 

3. Recover lost information. Chikofsky and Cross point out that 

documentation of software systems usually becomes outdated in the long 

run. This is true also of all simulation efforts themselves, by the way; yet 

the analogy here is with evolution. The products of biological evolution 

tend to be very complex and their complexity cannot be directly related to 

adaptive pressures of environments. Reverse engineering helps to recover 

the information about possible environments where functioning of animals 

was adaptive. This is not necessarily linked with any optimality 

assumptions at all; we may as well presuppose that evolution merely 

satisfices, to use Simon’s term (for a defense of the satisficing view of 

reverse engineering, see Gilman (1996)). 

4. Detect side effects. “Both haphazard initial design and successive 

modifications can lead to unintended ramifications and side effects that 

impede a system’s performance in subtle ways” (Chikofsky & Cross 1990, 

16). In other words, we may discover true invariant generalizations about 

good designs by detecting certain side effects; this way we would know 

what is constitutive of cognitive capacities, and what simply co-occurs 

with them. 

5. Synthesize higher abstractions. Developing generalizations at a 

highly abstract level is important both for engineering and theory; 

ultimately, we build models not only for their own sake but to discover 

certain general principles of cognition that apply to the broadest class of 

cognitive systems possible while remaining informative at the same time. 

6. Facilitate reuse. Reverse engineering in computer science may 

facilitate reuse of old software; in biorobotics and simulation, it may 

facilitate reuse of ideas in modeling. Development of public repositories of 

software models and standard physical baseline frameworks (they may be 

as simple as LEGO Mindstorms) is a step towards replicability of results. 

Without it, reports about experiments on robots may remain anecdotal 

evidence. 
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6. Conclusions 

In this paper, I argued that there is a close affinity between 

reengineering and simulation techniques used in cognitive science, and 

because of this, the same theoretical framework – or at least metaphor – of 

“reverse engineering” may be applied fruitfully to cognitive research. In 

particular, embodied biorobotics is a vivid example of the analogies 

between the two disciplines. There is a unifying framework of methods of 

discovery that is used by both of them. 

By focusing on the similarity between reengineering and simulation, I 

showed that they both rely on the presupposition that what you can 

engineer is what is organizationally invariant. Moreover, both lead to the 

development of working models of systems, and working models satisfy 

the requirement of completeness of mechanistic models. In particular, 

when one adopts the incremental methodology advocated by Webb, it is 

possible to empirically validate the additional assumptions, needed for the 

models to work. They are no longer problematic ad hoc additions but 

preliminary empirical hypotheses to be tested in due time. 

I also argued that the objectives of reverse engineering as such may be 

used to guide simulation research as well. They may be starting points for 

developing philosophical accounts of simulation science, especially of the 

practices of long-term validation and the relationships between the theory 

and simulations. I agree with Winsberg (2010) that there are important 

lessons for philosophy of science from computer (and robotic!) simulation. 

A reengineering view on cognitive simulation is not quite so 

revolutionary, however. It seems to be consistent with the mainstream 

views on explanation in cognitive science, even if it goes beyond them. 

Let me elaborate. 

Reverse engineering as the practice of decomposing a system in order 

to gain understanding about its function has been philosophically vindicated 

by functionalism in 1960s, in various versions and under different labels, 

be it functional analysis (Cummins 1975), homuncular functionalism 

(Lycan 1987, Dennett 1987), or neo-mechanism (Bechtel, 2008). The early 

flavours claimed that computer programs provide explanations of how it is 

possible to have a cognitive capacity (for example, Newell & Simon 1972, 

Cummins 1983), and in time, the focus moved to explaining how cognitive 

systems actually operate (Craver 2007, Bechtel 2008). 

The crucial distinction between the classical functionalism and the neo-

mechanism can be spelled out in terms of the difference between weak and 

strong equivalence (Fodor 1968): the explanatory value of the latter can be 

vindicated only in a mechanistic framework (for more detail, see 
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Miłkowski, forthcoming, chapter 3, Piccinini & Craver 2011). The 

perspective of reengineering fits naturally into the latter, and cannot be 

understood in full according to the first: namely, under classical 

functionalism, all that is important is that the systems are functionally 

isomorphic but functional isomorphism is usually so liberal that any kind 

of decomposition is fine. This is why Cummins talks of functional 

analysis: the hypothesis of the functional structure is a result of logical or 

formal analysis only, and it is not corroborated (and not verifiable) 

empirically at all. But researchers such as Webb or Burgess care about 

empirical evidence about the structure of the animals they investigate. 

They rely on experimental results concerning the structure of the neural 

system, for example; and they take pains to simulate it in a biologically 

faithful way. Reverse engineering as such recommends this strategy rather 

than engineering a new system that has the same capacity as the extant 

one. In computer science, reverse engineering is not about seeing how it is 

possible to create algorithms that perform some function but about 

understanding how existing structures implement some algorithms. 

At the same time, the reverse engineering approach–and the 

mechanistic approach in general–might be seen as detrimental for the 

search of the general principles governing cognitive processes (Chater and 

Brown 2008, 38). Namely, if one is busy replicating mechanisms, one also 

may not see the forest for the trees. This is not an inherent danger, 

especially if the methodology involves the search for invariant principles–

and cognitive robotics, contrary to appearances, might be used to integrate 

and unify different theories of cognition by requiring decisions about the 

cognitive architecture to be made (D’Mello and Franklin 2011, Morse et 

al. 2011). 

Reverse engineering – and especially reengineering – sheds light on 

the nature of cognitive simulations, including biorobotic ones. This topic 

is especially important for philosophy of cognitive science in its 

mechanistic version, even if these engineering perspectives offer relatively 

minor insights–we still have to deal with problematic relationships 

between the theory and the simulation, problems of empirical verification 

and theory-ladeness of simulations: for example, multiple simulation 

models can be built based on the same general theory, and they may be 

mutually inconsistent because of necessary additions; if one fails, but 

contains empirically valid additions (not ad hoc ones), it does not need to 

imply that the original theory was incorrect. Using these insights, 

however, we can hope for incremental progress in the philosophical 

account of explanation in cognitive science. 
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