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Abstract
The predictive processing (PP) account of action, cognition, and perception is one 
of the most influential approaches to unifying research in cognitive science. How-
ever, its promises of grand unification will remain unfulfilled unless the account 
becomes theoretically robust. In this paper, we focus on empirical commitments 
of PP, since they are necessary both for its theoretical status to be established and 
for explanations of individual phenomena to be falsifiable. First, we argue that PP 
is a varied research tradition, which may employ various kinds of scientific repre-
sentations (from theories to frameworks and toolboxes), differing in the scope of 
empirical commitments they entail. Two major perspectives on PP qua cognitive 
theory may then be distinguished: generalized vs. hierarchical. The first one fails 
to provide empirical detail, and the latter constrains possible physical implementa-
tions. However, we show that even hierarchical PP is insufficiently restrictive to 
disallow incorrect models and may be adjusted to explain any neurocognitive phe-
nomenon–including non-existent or impossible ones–through flexible adjustments. 
This renders PP a universal modeling tool with an unrestricted number of degrees of 
freedom. Therefore, in contrast with declarations of its proponents, it should not be 
understood as a unifying theoretical perspective, but as a computational framework, 
possibly informing further theory development in cognitive science.
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1 Introduction

The predictive processing (henceforth: PP) approach to cognition (Clark, 2013) 
understands cognitive systems–either biological or artificial–as systems which con-
tinuously infer external causes of their sensory inputs. For this purpose, they imple-
ment prediction error minimization schemes in the form of internal hierarchical 
models streaming down predictions of sensory activations. Each time predictions 
and inputs do not overlap, the models either re-parametrize to accommodate predic-
tion errors (which enhances their predictive accuracy in the long run) or, in a more 
active form of inference, prescribe action policies that make sensory data fit initial 
predictions (for recent primers on PP, see Hohwy 2020a; Wiese & Metzinger, 2017).

Initially a successful approach in the perception science (Clark, 2013), PP was 
recently extrapolated to a wide array of psychological and cognitive domains, such 
as interoception and emotion (Barrett, 2017; Seth, 2013), self and consciousness 
(Dołęga & Dewhurst, 2021; Seth & Hohwy, 2021; Woźniak, 2018), higher-order 
cognition (Pickering & Clark, 2014), psychopathology (Corlett et al., 2019; Sterzer 
et al., 2018), and many others (for a comprehensive list of philosophically-oriented 
research on PP, see Table S1 in Hohwy 2020a). As a result, PP became one of the 
most influential approaches to unifying research in cognitive science: The rapidly 
growing number of models classified as PP gives one the impression that it could be 
the theory in cognitive science (Clark, 2016). At the same time, the exact claims of 
PP remain unclear, as do the methods of testing PP empirically, and even whether that 
is possible at all (see, e.g., Cao 2020; Sun & Firestone, 2020).

The focus of this paper is on the empirical contents of PP. Importantly, the pres-
ent inquiry does not stem from doubts about the scientific credentials of PP. We are 
not interested in the demarcation of science from pseudoscience, as Popper (1959) 
famously was. We assume that PP is scientific at the outset. Moreover, we are not 
worried that PP might comprise principles that are considered non-empirical, or a 
priori.1 In the paper, we understand PP as a broad research tradition and discuss the 
whole spectrum of scientific representations under the PP label. Then we analyze 
them to identify those which can be assessed for falsifiability or testability. For the 
purpose of such assessment, we complement the Popperian understanding of fal-
sifiability with the perspective of Taatgen (2003); that is, we expand the received 
notion of falsifiability centered on counterexamples to include the restrictive ability 
of theories that disallow incorrect models. Then, we argue why PP currently falls 
short on meeting requirements for a well-founded theory. In essence, the promises of 
theoretical unification, which are associated with PP, will remain unfulfilled unless 
the account provides a rich theoretical understanding. We consider falsifiability as a 
proxy for the ability of theories to provide an understanding of empirical phenomena.

The paper proceeds as follows. In the first section, we argue that PP is best under-
stood in terms of a fairly large and varied research tradition, which includes several 

1  For example, some propose that the Free Energy Principle (FEP) is an a priori principle (Hohwy, 2020b). 
Be as it may, we do not discuss the status of the FEP, its falsifiability, contents, or implications for PP, 
because PP does not logically imply the acceptance of the FEP, and the discussion of complex issues sur-
rounding it requires a separate treatment.
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distinct theories and a number of distinct computational implementations. We show 
that scientific claims of PP are testable on various scales of abstraction, from general 
assumptions of this tradition to models of individual phenomena. In the subsequent 
section, we distinguish two major perspectives on PP qua cognitive theory: the gener-
alized PP, which fails to provide crucial empirical detail, and hierarchical PP theories, 
which constrain possible physical implementations. Next, we argue that if hierarchi-
cal PP is tasked with providing a unified theory of cognition, it cannot be treated as a 
computational framework–a universal modeling tool with an unbounded number of 
degrees of freedom. We embrace Niels Taatgen’s insight that cognitive theories may 
have two problems: They can generate incorrect models, which actually describe 
what is empirically impossible, and they can have counterexamples, or phenomena 
which are not predicted by a theory. The latter category is easier to address by ad hoc 
extensions in contrast to the first one: If a theory is so flexible that it can predict just 
anything, it carries no empirical information. As we show, this is currently the case 
with PP, which therefore remains a mere computational framework, easily confused 
with a unifying theory. This framework may turn out unproductive for providing a 
deeper understanding of phenomena, unless current modeling practices are revised.

2 PP and various kinds of scientific representations

In this paper, we view PP as a research tradition. The term research tradition was 
introduced by Larry Laudan, who refined the notion of a scientific program coined 
by Lakatos (1970). As Lakatos (1970) observed, research programs are difficult to 
falsify, but they can be assessed as progressive or degenerate. However, his account 
of research programs requires that they be clearly divided into their immutable hard 
core, which defines their identity, and the “protective belt” of easily adaptable auxil-
iary hypotheses. But even for research programs studied by Lakatos, the existence of 
their immutable hard core is hardly plausible (Laudan, 1977). This is why we follow 
Laudan’s proposal to analyze historical dynamics of research in terms of research tra-
ditions, and we see PP as a research tradition. Some bet that it is progressive (Clark, 
2013, 2016; Hohwy, 2020a; Seth & Hohwy, 2021), yet there are symptoms of stagna-
tion (Cao, 2020; Litwin & Miłkowski, 2020; Sun & Firestone, 2020).

Research traditions are characterized by three features: (a) “Every research tradi-
tion has a number of specific theories which exemplify and partially constitute it” 
(Laudan, 1977, p. 78); (b) they exhibit “certain metaphysical and methodological 
commitments which, as an ensemble, individuate the research tradition and distin-
guish it from others” (ibid.); (c) lastly, traditions go through a number of formula-
tions and usually have a long history (ibid., p. 79). Let us apply this definition to 
PP: There are several distinct specific theories that constitute this tradition. Clark 
(2016) defended the view that, even though PP originated from classical represen-
tational cognitive science, it embraces crucial insights of extended and embodied 
approaches since cognitive control is largely realized through active inference. In 
contrast, Hohwy (2013, 2016) defended a fairly internalist, neurocentric, and repre-
sentationalist version of PP. Finally, there is a FEP-based version, dubbed Hierarchi-
cally Mechanistic Mind, defended by Karl Friston and his collaborators as a proper 
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model of neural architecture (Badcock et al., 2019). These three theories are quite 
distinct and sometimes even mutually exclusive: Hohwy’s internalism may be dif-
ficult to reconcile with Clark’s externalism, and is utterly incompatible with radical 
externalist versions of PP (Bruineberg et al., 2016; Kirchhoff & Robertson, 2018). 
At the same time, all these theories may be considered part of the broader research 
tradition, that of Bayesian accounts of cognition (Chater et al., 2010). Multiple tradi-
tions may cross in multiple ways, conspiring to create multiple variants of similar 
approaches.

Proponents of PP refer to it in various ways, interchangeably calling it a theory 
(Clark, 2013, p. 186), a framework (Clark, 2013, p. 201), but also a model (Clark, 
2013, p. 181). Hence, it remains difficult to understand exactly what is meant when 
one talks of testability or falsifiability of PP simpliciter. Let us distinguish several 
kinds of scientific representations in computational (neuro)cognitive science to 
clarify this issue. First, there are computational toolboxes that come almost without 
theoretical glosses: Think of a MATLAB module. These can include various imple-
mentations of distinct predictive coding algorithms (Spratling, 2017). Second, there 
are computational frameworks, which can be used to produce particular models: 
Think of dedicated programming languages or generic cognitive architectures. Third, 
there are theories that can be stated in more or less abstract fashion, in terms of ver-
bal descriptions, flowcharts, equations, axioms etc. These usually embody general 
principles used to systematically understand a domain of phenomena, which are then 
explained by producing particular models.

There are multiple many-to-many mappings between these entities: There could 
be various PP algorithms, different implementations of the same PP algorithm for 
particular computational platforms, and the same algorithm or its implementation 
could be used by researchers who subscribe to conflicting theories. Alas, this implies 
that the proliferation of PP models cannot be easily understood as the growing promi-
nence of a single theory. The sheer number of combinations of these various kinds of 
PP representations may contribute to a combinatorial explosion of diverse approaches 
within a research tradition. For example, the PP algorithm known as “active infer-
ence” may underlie models developed under divergent assumptions, e.g., (1) in the 
internalist take on PP, active inference is just yet another part of a wider inferential 
process carried out by the brain (Hohwy, 2016), whereas (2) in the enactive approach 
to PP, active inference is all that the generative model–as a control system–ever does 
(Ramstead et al., 2020). Active inference is also (3) the main ingredient of a separate 
process theory that aims to explain neural dynamics as well as learning and behavior 
of living organisms (Friston et al., 2017). In addition, active inference comes in sev-
eral mathematical formulations because the framework is constantly evolving (Da 
Costa et al., 2020).

Importantly, these various kinds of scientific representations in computational 
cognitive (neuro)science may have different empirical commitments. While tool-
boxes may carry little to no theoretical interpretation, the tool development may 
influence theory development (Gigerenzer, 1991, 1992). In the case of PP, there are 
several ways that tools impact theories: Cognitive processes are easily modeled in 
terms of top-down inferential processes that depend on generative models and pre-
diction errors. Consider a modeler’s idea that it might be useful to model a given 
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mental disorder with the use of a PP algorithm. The modeler must only “fill in the 
blanks” (i.e., define the nodes and the ways to perturb the inferential process) to get 
a preliminary understanding of the cognitive phenomenon in question: The task of 
the researcher is to re-describe a phenomenon (e.g., a psychiatric disorder) in terms 
of the toolbox (e.g., a generic PP algorithm). As such, however, toolboxes need not 
be realistically understood and are not directly testable; only individual models can 
be tested. Moreover, tools may be used in a non-standard fashion and need not con-
form to theoretical constraints. For example, one could use original predictive coding 
algorithms (Cutler, 1952) to compress video files and ignore the neuroscientific uses 
of their later incarnations.

Frameworks carry a bit more theoretical burden. Consider that Allen Newell char-
acterized them as “conceptual structures (often computer systems) that are reputed 
to be relatively content free, but that permit specific cognitive theories to be inserted 
in them in some fashion” (Newell, 1990, pp. 16–17). The relative lack of content 
implies also that they are theoretically thin. However, in contrast to tools, there are 
certain research exemplars one could follow to produce standard cognitive theories. 
For example, nosological descriptions of psychopathologies may be formalized as 
various forms of computational failures within the generic PP scheme (Friston et al., 
2014), which creates a PP framework that may be used to generate computational 
models of individual mental disorders or psychopathological phenomena (e.g., Pow-
ers et al., 2017). Such a computational framework is not restricting its uses, and it’s 
up to the modelers’ choice to interpret parts of the model in theoretical (e.g., neuro-
biological or functional) predictive coding terms. Thus, what is empirically tested, 
again, are particular cognitive models rather than frameworks, which can be treated 
instrumentally and interpreted in various ways. The elbow room for such interpreta-
tions is relatively large and by itself, the PP framework may have little significance 
for empirical testing. However, it may be still assessed for computational theoretical 
constraints such as computational tractability (Kwisthout & van Rooij, 2020), even if 
its interpretations are ambiguous.

In contrast, theories wear their commitments on their sleeves. While any theory 
goes beyond mere empirical content and remains empirically indeterminate, it should 
be at least partially falsifiable. The issue of falsifiability and testing in general is fur-
ther complicated by the Duhem-Quine thesis, which states that no single theoretical 
proposition can be separately verified or falsified empirically. This is because theo-
ries are considered to be structures that are tested as complete wholes.

In the case of cognitive (neuro)science, the problem is even more grave because 
it is not at all clear what cognitive theories are and how they are represented. Only 
some are stated in natural language (e.g., the theory of thinking through metaphors: 
Lakoff & Johnson, 1980), and others are better represented by flow-charts or dia-
grams with verbal comments (e.g., the filter model of attention, Broadbent, 1958), by 
mathematical descriptions (e.g., the account of vision, Marr, 1982) or in terms of for-
mal specification languages (for an extended analysis, see: Cooper & Guest, 2014). 
Devoid of clear identity, they easily mesh with background assumptions of other 
theories. Flowcharts or diagrams make their interpretation in simple propositional 
terms difficult. And what is yet more problematic is that it is virtually impossible to 
distinguish theoretical assumptions from implementation details. This is a notori-
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ous problem for computational models in cognitive (neuro)science (Cooper & Guest, 
2014; Cooper & Shallice, 1995). Mere implementations of computer code are not 
cognitive theories. These implementations leave theories highly underspecified: It is 
unclear which parts of code should one include and which are just helper modules or 
ad hoc additions (Frijda, 1967). This underspecification is particularly true of predic-
tive coding, which has several extant implementations. For example, only some of 
them presume that neurons encode Gaussian probability distributions. But is this a 
theoretical assumption or simply part of the implementation of predictive coding? 
Even proponents of PP differ in their treatment of some such cases (Spratling, 2013).

As we observed elsewhere (Litwin & Miłkowski, 2020), all this contributes to 
unclear theoretical fundamentals of PP. Not only there are many distinct versions of 
PP theory, but even a single version may be difficult to interpret in non-mathematical 
terms. For example, it remains unclear what psychological process or property is sup-
posed to correspond to the mathematical property dubbed “precision” (ibid.). These 
difficulties notwithstanding, these theories do have empirical commitments (as we 
show below) and, in spite of all their indeterminacies and ambiguities, they feature 
several assumptions that are empirically falsifiable.

Finally, PP models address individual phenomena. These models are computa-
tional (even if only verbally sketched), and as such, they may play explanatory or 
predictive roles, which is typical for cognitive (neuro)science (Miłkowski, 2013; Pic-
cinini, 2020). As Morrison & Morgan (1999) noted in their analysis of models in 
science, these could function and be constructed autonomously from theories. This is 
typical for PP models that cannot be derived entirely from the underspecified theory. 
One could even doubt whether the growth of the PP research tradition is theory-
driven, and suggest that the whole tradition should be understood as an organically 
growing collection of particular models. This doubt could go hand in hand with the 
rejection of unificatory ambitions of some PP defenders: One could embrace par-
ticular PP models without assuming that these could become the unified theory of 
cognition any time soon.

In our view, the development of particular models and refining of theoretical 
principles are best intertwined, creating a creative tension that could spark further 
scientific progress. As is usually the case, theoretical underpinnings are difficult to 
establish and revise, while pragmatic considerations drive modelers towards repur-
posing the theoretical instruments toward their new ends. This may, however, lead to 
ambiguities in how the fundamental theoretical constructs are understood and what 
the theory actually states. Unfortunately, this may contribute to the demise of the 
whole theoretical edifice in the flurry of modeling work.

3 The protean nature of PP

The core issue for falsifying a given theory is to establish its empirical commitments. 
This is not at all easy for PP. “Predictive processing” is used to refer both to a broad 
class of “top-down” theories of cognition and to more specific theories based on 
hierarchical predictive processing posited to occur in the cortex of the brain, which is 
supposed to implement or approximate some form of Bayesian inference.
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The first class was characterized as “generalized predictive coding” (Bastos et al., 
2012). In a nutshell, “generalized predictive coding” refers to any learning scheme 
that updates the way it generates its output values in response to observed errors in the 
previously generated values. This happens if and only if expected values generated 
from the extant data model (usually dubbed “generative model”) can be compared 
against some ground truth, and then drive corrections in the model (in the Appendix, 
we provide more mathematical details about this procedure). For example, this is the 
case for any kind of gradient descent learning in AI, but also for symbolic machine 
learning methods. Indeed, the notion of generalized predictive coding is broad: As 
Bastos et al. note, “It grandfathers nearly every known statistical estimation scheme, 
under parametric assumptions about additive noise” (Bastos et al., 2012, p. 703). As 
such, it covers emulation models based on Kalman filters, proposed by Grush (2003), 
but also any model-driven cognitive capacity modulated by feedback errors, includ-
ing, for example, model-based reinforcement learning (Dayan & Berridge, 2014). In 
this, PP simply cannibalizes most top-down accounts of cognition, because they are 
predominantly model-based and require error corrections. But by itself, this version 
of PP also brings little, if any, new theoretical insights about cognition.

But is this version falsifiable? Let us take generalized PP to be a unified theory 
of cognition: This theory can be falsified by a single counterexample to the claim 
that cognition requires generative models that are adapted over time by applying 
corrections. Take animal taxes as driven by the increasing magnitude of tracked sen-
sory stimuli, but devoid of any generative models. For example, crickets follow the 
sounds made by their conspecifics, but it is unlikely that they use generative models 
in their phonotaxis, even if their sensory processing is generally modulated by for-
ward models (Webb, 2004). All that sensory registration requires is that the cricket is 
differentially sensitive to sound (Burge, 2010), which implies the cricket’s sensitivity 
to the information about the stimulus. Under the received interpretation, bottom-up 
signals are stimulus-related, for example, indicating the position of a chirping male to 
a female cricket. As they are acquired by the female nervous system, they make some 
specific difference to the downstream neural firing (i.e., Shannon information carried 
by sensory signals must make some causal difference if the stimulus is received). 
Additionally, the received interpretation includes the existence of feedback top-down 
modulation, which is necessary, for example, for the usual perceptual phenomena, 
such as habituation, to occur. Thus, there must be both bottom-up and top-down 
signal pathways in the cricket auditory system. A defender of the PP account of this 
perceptual architecture might, however, switch the labels on pathways, by saying 
that the bottom-up pathway carries error information related to the predicted cause 
of the sound, i.e., the position of a male chirping cricket, and the top-down pathway 
provides predictions of future error input based on previously received error infor-
mation. Then, the empirical evidence that allows us to ascribe cricket neurons the 
function to carry information about the sound is also evidence for the generalized PP 
reinterpretation. This move allows a PP theorist to cast their net very wide, unfortu-
nately at the risk of trivializing the theory (Cao, 2020).

But there is a second way to think of PP. To understand that it is much more con-
strained, one can simply supplement generalized predictive coding with a formal 
specification of hierarchical message passing and stipulate that PP formal constructs 
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correspond to (roughly) Bayesian concepts such as precision and conditional expec-
tation about (hidden) causes. Hierarchical PP cannot specify one particular algo-
rithm, as there are many (Spratling, 2017). Importantly, the predictive coding scheme 
as envisioned by PP necessarily entails hierarchical organization of the inferential 
machinery, as nicely summarized by the defenders of the Hierarchically Mechanistic 
Mind (HMM) hypothesis:

In particular, the HMM relies on the directly testable second-order hypothesis 
that the brain minimises prediction error via hierarchical message passing in the 
brain (i.e., predictive coding …), which has already been demonstrated experi-
mentally by studies of visual processing (Badcock et al., 2019, p. 115).

While there are non-hierarchical predictive coding algorithms, as with linear predic-
tive coding in signal processing, these are not normally considered to be part of the 
core PP theory of cognition (e.g., Clark 2016). Thus, the overall idea of the hierarchi-
cal PP theory is that the brain implements one of the predictive coding algorithms in 
a bidirectional hierarchical manner, where top-down signals represent predictions, 
bottom-up signals represent prediction errors, and two functionally distinct units rep-
resent predictions and prediction errors at each level of the inferential hierarchy. In 
other words, this definition does not include all top-down accounts of cognitive pro-
cesses. There remain relevant explanatory alternatives to be considered when assess-
ing PP explanations.

This flavor of the PP theory is more empirically informative, but it also comes at 
a cost. To see this, it is instructive to compare it to other theories that hypothesize 
propagation of error information in the brain. Initially, the proposed mathematical 
formalism of PP could not be mapped onto concrete neural mechanisms (Kogo & 
Trengove, 2015). This problem was later addressed (Keller & Mrsic-Flogel, 2018), 
but the proposed solution imposes additional commitments upon the architecture of 
canonical microcircuits (the existence of type I and type II prediction error neurons 
encoding, respectively, positive and negative prediction errors) while maintaining 
certain biologically implausible features (Spratling, 2019). Similarly, in some (but 
not all!) respects, hierarchical PP is less biologically plausible than other approxi-
mations of the back-propagation algorithm: Predictive coding implies implausible 
neuronal connectivity, such as one-to-one connections of error nodes to their cor-
responding value notes, which is “inconsistent with diffused patterns of neuronal 
connectivity in the cortex” (Whittington & Bogacz, 2019, p. 240). Finally, extant PP 
algorithms assume that direct communication occurs only between adjacent levels in 
the inferential hierarchy (Litwin & Miłkowski, 2020), and top-down connections are 
necessarily inhibitory (Denève & Jardri, 2016), which also seems questionable given 
existing knowledge on heterarchical functional anatomy of the brain (Bechtel, 2019; 
Pessoa, 2017, 2019).

We do not refer to the above examples to pronounce the verdict that PP is thereby 
disproved. What we want to stress here is that hierarchical PP is not devoid of empiri-
cal content, and, as such, may be a subject to theoretical debate, cross-model compar-
isons, and empirically-informed revisions generating novel predictions. For example, 
one may argue that top-down connections can exert excitatory influences through the 
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suppression of inhibitory interneurons at the lower level (Kanai et al., 2015; Keller 
& Mrsic-Flogel, 2018). The upshot is that, while as yet we have no unequivocal neu-
rophysiological evidence for or against hierarchical PP (Walsh et al., 2020), there are 
possible counterexamples that it should face, which in principle renders it a falsifi-
able theory.

4 Explaining just the right thing

If hierarchical PP has essential empirical commitments, it should be understood as a 
theory rather than a computational framework. Then, the question is whether PP has 
the required virtues of the theory, one of which is empirical testability. In particular, 
PP may be assessed for falsifiability, which we understand in the Taatgenian (2003) 
sense:

The problems of a theory can be found in two categories: counterexamples, 
phenomena that are possible in reality but are not predicted by the theory, and 
incorrect models, predictions of the theory that are not possible in reality. The 
issue of incorrect models is especially important, because an unrestricted Tur-
ing Machine is potentially capable of predicting any conceivable cognitive phe-
nomenon (Taatgen, 2003, p. 622).

The traditional (“Popperian”) approach to falsifiability is to give counterexamples, 
that is, phenomena that a theory cannot easily explain. Accordingly, existing criti-
cal positions focus on individual cognitive phenomena problematic for PP, such as 
motivation a.k.a. “the dark room problem” (Klein, 2018; Sun & Firestone, 2020), 
thought (Williams, 2020) or delusional beliefs (Williams, 2018). However, even if 
PP is incorrect in particular cases, such incorrectness is not exactly telltale. After all, 
no other cognitive theory can explain everything–defenders of PP can readily admit 
that this also applies to PP (see, e.g., Seth et al., 2020), and respond that the coverage 
of phenomena explained grows dramatically over time. While we argued elsewhere 
that the growth in question is only apparent (Litwin & Miłkowski, 2020), we do not 
claim that there is absolutely no growth in coverage; it is only much slower than usu-
ally touted.

Incorrect models, even though they have been out of the spotlight in the context 
of falsifiability, are much more important than counterexamples, because they show 
that a theory is insufficiently restrictive to disallow false models. Such an overly 
expressive theory shares the fate of an unrestricted universal Turing machine, since 
it can produce any model – also for cognitively impossible phenomena. There is also 
a danger in overfitting already obtained data: A theory which merely accommodates 
any possible result, and morphs as soon as we gather new information, has little-to-no 
predictive value. Consider the following example from the literature:

The statistical independence between the identity and location of objects in 
the visual world suggests an anatomical dissociation between models or rep-
resentations of the “what” and “where” attributes of (hidden) causes of visual 
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input (i.e., knowing what an object is does not tell you where it is). This is pre-
cisely what we see in the distinction between the ventral (“what”) and dorsal 
(“where”) streams in the cortical hierarchy (Badcock, Friston, Ramstead, et al. 
2019, p. 1330)

The dissociation between ventral and dorsal streams is frequently cited as an example 
of adaptive functional segregation that mirrors the causal structure of the environ-
ment, as envisioned by PP (Friston, 2013; Friston & Buzsáki, 2016). It is also argued 
that this neuroanatomical solution improves the computational efficiency of the 
inferential hierarchy. The explanation has an immediate intuitive charm; however, 
to mitigate the risk of its being incorrect, PP should also impose in advance clear 
theoretical constraints on the number, reducibility, and degree of independence of 
factors present in the sensory input. The number of specialized sensory pathways or 
areas is possibly smaller than the number of orthogonal factors in the sensory stream. 
If theoretical claims are tailored to the evidence post hoc, a remarkable fit between 
what the theory would expect and data can easily disappear as soon as new empirical 
evidence arrives.

In their recent paper, Pitcher & Ungerleider (2021) provide neuroanatomical 
evidence that the two-pathways model of visual processing is outdated, and they 
call for its revision. They describe another anatomically segregated pathway whose 
functional properties distinctively pertain to dynamic aspects of social perception, 
such as the recognition of bodily movement and facial expressions. This is obvi-
ously problematic for the original PP claim. Hindsight is 20/20, and, certainly, the 
existence of three visual pathways, dedicated separately to statistically independent 
“what,” “where,” and “[social] who,” is perfectly reasonable. However, even though 
the list of independent factors in the visual input may always be supplemented by 
new additions, this process reveals incorrect models along the way and exposes the 
unidirectional revision dynamics (post-hoc fitting without new predictions or a priori 
constraints) of PP.

There are also reasons to believe that the “statistical independence” hypothesis is in 
general incorrect. The third visual pathway shares input properties (representations) 
with the ventral (“what”) pathway as it also processes bodies, faces, and motion. 
And it does so independently: Pitcher & Ungerleider (2021) provide an example of 
prosopagnosic patients whose superior temporal sulci (STS) exhibited regular face-
selective responses despite lesions in face-selective areas in the ventral pathway. The 
existence of two decoupled yet co-selective areas in distinct visual pathways breaks 
the link between statistical independence and functional specialization. It also ques-
tions whether simple factorization aptly captures functional nuances:

It is clear that while ‘what’, ‘where’, and ‘how’ can describe the many facets of 
visual object recognition, these terms are wholly inadequate when it comes to 
describing the complexity and nuances of even basic social interactions. There 
is no simple one-word description that can encompass the functions of the third 
visual pathway. Rather, it appears that the visual input into the STS is integrated 
with other sensory inputs to enable primates to understand and interpret the 
actions of others (Pitcher and Ungerleider 2021, p. 9)
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Finally, the identity and location of an object are statistically independent irrespective 
of the way they are detected, but this functional segregation does not seem to be true 
of all sensory modalities. Two existing olfactory pathways are not those of “what” 
and “where,” but of sensing the environment and of finding a receptive mate (Fires-
tein, 2001). Three distinct processing streams have been also proposed in the somato-
sensory domain, although their functions remain to be defined (Saadon-Grosman et 
al., 2020).

The two visual pathways “hypothesis” leads astray irrespective of the angle we 
scrutinize it from, and illustrates a more general PP propensity for the virtually unre-
stricted generation of incorrect models. This propensity is not limited to the domain 
of neural implementation: While PP specifies a universal algorithm of unsupervised 
learning, applicable to a wide variety of cognitive systems, it does not put meaning-
ful constraints on the behavioral and cognitive patterns that can evolve. According to 
the complete class theorem, any decision can be cast as Bayesian given a proper loss 
function and a set of prior beliefs, at least for finite probability spaces (Robert, 2007). 
The complete class theorem was repeatedly argued (e.g., Friston et al., 2016; Friston, 
2017; Parr et al., 2018) to be a foundation for countless PP insights into abnormal 
behaviors as “idiosyncratic rationalities”:

(...) there is always a set of prior preferences that renders any behaviour 
(approximately) Bayes optimal. At first glance, this may seem disappointing; 
however, turning the argument on its head, the complete class theorem means 
that we can always characterise behaviour in terms of prior preferences (Friston 
et al. 2016, p. 876)2

However, by turning the argument on its head, we may render it invalid, which seems 
to be the case here. The complete class theorem is a recipe for an unrestricted mod-
eling tool rather than informative theoretical contributions (Jones & Love, 2011; 
Bowers & Davis, 2012). Deriving models from individual datasets may result in 
non-generalizable models, biased estimates, and erroneous conclusions, especially 
if there can exist multiple distinct prior-cost function pairs yielding equally optimal 
fits (Friston, 2011). Flagging all (possible) behaviors as rational under very particular 
circumstances opens plenty of flexible re-parameterization options, which weakens 
the theory (cf. Taatgen, 2003), especially if we also consider that prediction error 
minimization is detached from temporal constraints of the system’s performance. 
PP operates over appropriately long-term timeframes (cf. Hohwy, 2020a; Seth et al., 
2020), which means that any locally suboptimal behavior can appear optimal from an 
appropriately extended perspective.

2  This interpretation is not necessarily correct. The complete class theorem states that for any decision 
problem, there exists an admissible Bayesian estimator; that is, an estimator using a Bayesian decision 
rule is never dominated by (worse than) an estimator using some other decision rule. The fact that the 
Bayesian decision rule yields the best estimator for any decision problem does not entail that an admissible 
Bayesian estimator will always be accurate or that any behavior can be plausibly cast as Bayes optimal (we 
would like to thank Matteo Colombo for the clarification on this issue). However, Friston’s interpretation 
is much more relevant to our argument, given that it is assumed by PP modelers and directly motivates 
their modeling practices.
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By means of complete class theorem, PP may even necessitate needless reconcep-
tualizations of relatively well-understood phenomena (Jurjako, 2022). Let us con-
sider self-deception, which is a motivationally biased process of forming beliefs, 
in which they evolve in the direction opposite to what is provided by evidence. PP 
takes such cases as instances of idiosyncratic rationalities (given a unique history of 
internal model development), doing away with a palpable phenomenal distinction 
between beliefs and desires just because it does not differentiate between them at the 
algorithmic level (Jurjako, 2022; Williams, 2021). A variety of forms of motivated 
and unmotivated reasoning is aggregated under a homogenous category of optimal-
ity. Such a broad category lacks explanatory force, does not offer valuable insights 
(for a related point, see Sun & Firestone 2020), and is actually counterproductive, as 
it trivializes the explanations that we already have (for a comprehensive review of 
many different shades of self-deception, see Butterworth et al., 2022).

Summing up, PP can potentially generate a vast set of incorrect models. Its enor-
mous flexibility results in a pitfall of “predicting” phenomena as envisioned by the 
current scientific consensus, including those that will turn out (or have already turned 
out) to be incorrect. Moreover, any behavior may be rendered optimal given a proper 
temporal horizon or prior-cost function coupling. Thus, hierarchical PP lacks the 
tools for the prior assessment of model plausibility and appears to be a computa-
tional framework under the guise of a theory. It shares the fate of other computational 
frameworks that are not empirically informative in themselves, and even a good fit to 
evidence does not necessarily make a framework valuable (Roberts & Pashler, 2000). 
Frameworks may be productive if they inspire novel predictions and new lines of 
research, or they may be unproductive if they generate models in constant need of ad 
hoc patching and offering few scientific insights (Griffiths et al., 2012). It is for PP 
modelers only to decide their ways.

5 Conclusion

Although relatively recently spawned, predictive processing is already a vast 
research tradition, expressed in distinct scientific representations–spanning from par-
ticular models, through (more or less general) theories to computational frameworks 
and toolboxes. To determine its theoretical status, we focused on the testability and 
empirical commitments of two main approaches to PP qua theory: its generalized 
and hierarchical versions. Generalized PP is broad enough to encompass any model-
based accounts, and as such does not yield many informative insights. Hierarchical 
PP, on the other hand, does provide some preliminary constraints on possible imple-
mentations, which makes it a better candidate for an overarching theory in cognitive 
science, as frequently advertised.

As we have shown, in contrast with what its proponents declare, hierarchical PP 
is currently used as a mere framework: a computationally universal yet theoretically 
agnostic modeling tool. It can hardly be empirically disproved as it may be flex-
ibly adapted to provide any explanation, also for phenomena which actually do not 
(or cannot) exist. This is because hierarchical PP lacks essential detail regarding the 
functioning of cognitive systems, and particular PP models can be easily customized 
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through ad hoc assumptions and parameter adjustments. While this is common mal-
practice in computational modeling in cognitive (neuro)science, we urge PP defend-
ers to fill in the important details of their grand theory. Otherwise, it may turn out to 
be just a series of uninformative platitudes, which, even if falsifiable, would not offer 
satisfactory new understanding in cognitive science.

Focusing on testability allows us also to point out that more attention should be 
paid to the refinement of the hierarchical message passing theory, because this is what 
makes PP experimentally contentful. Moreover, models should explicitly specify the 
properties of explananda in a theoretically-motivated fashion, and provide compari-
sons with alternative models. These standards may seem difficult to fulfill in the 
modeling practice, but failure to do so may be detrimental for the whole research 
tradition. In short, where PP needs more work is not exactly in providing more math-
ematical finesse, but in developing its theoretical underpinnings in a robust fashion.

6 Appendix

The underlying idea of generalized PP may be summarized by sketching its algorithm 
in neural network terms, adapted from (Whittington & Bogacz, 2017, p. 1243). Bars 
above variables denote vectors (e.g., x̄ ). The output layer of the artificial neural net-
work is 0, and the input layer lmax. The training sample is denoted by pairs of training 
vectors s̄in  and s̄out , which are iteratively presented to the network.

for all Data do

 x̄(0) ← s̄out

 x̄(lmax) ← s̄in

repeat.
Inference: Eqs. 1, 2.
until convergence.
Update weights: Eq. 3.
Equation 1 specifies the error ε(l)

i
 depending on each value of network node activ-

ity x(l)
i

, mean µ(l)
i

 predicted by a higher level (layer) and scaling value Σ(l)
i

:

 
ε
(l)
i =

x
(l)
i − µ

(l)
i

Σ
(l)
i

(1) 
Equation 2 specifies the rule for changes in x(a)

b
 over time:

 
ẋ

(a)
b = −ε

(a)
b +

∑n(a−1)

i=1
ε
(a−1)
i θ

(a)
i,b f ′

(
x

(a)
b

)
,
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(2) 
where θ(a)

i,b are weights of synaptic connections and f ’ is a derivative of a certain 
non-linear node activation function f. The change in synaptic weight is given in 3; 
variables in steady state, i.e., after convergence is achieved, are denoted with an 
asterisk (e.g., F*):

 

∂F∗
∂θ

(a)
b,c

= ε
∗(a−1)
b f

(
x∗(a)

c

)

(3) 
While the pseudocode and all three equations were put forward in the neural net-

work context (a proposal for a predictive coding approximation of the backpropaga-
tion algorithm with local learning rules), they can be easily understood more broadly 
for any machine learning scheme based on gradient descent. Generally, any array 
data structure will do as well, and the core of the setup consists of chosen func-
tions for updating variable values in an array over time (e.g., even the ordinary least 
squares method for linear regression can be implemented this way). An artificial neu-
ral network operating in accordance with this description learns a generative model 
of the data, conditioned on the input and encoded in the connection weights between 
the layers.
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