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Abstract  
 
Natural Computing is a field of research in Computer Science aimed at reinterpreting 
biological phenomena as computing mechanisms. This allows unconventional computing 
architectures to be proposed in which computations are performed by atoms, DNA strands, 
cells, insects or other biological elements. Membrane Computing is a branch of Natural 
Computing in which biological phenomena of interest are related with interactions between 
molecules inside cells. The research in Membrane Computing has lead to very important 
theoretical results that show how, in principle, cells could be used to solve any 
(computable) computational problem with performances that cannot be obtained by 
conventional computers. However, the implementation of a cell-based computational 
architecture seems not easily achievable. On the other hand, models of Membrane 
Computing have found an alternative application to the  description of biological systems, 
with the aim of developing simulators and other analysis tools for the study of biological 
problems. 

1.  Introduction 

Results obtained in the first half of the last century in the Theory of 
Computability tell us that not all computational problems are computable, 
namely can be solved by a rational mechanizable computational procedure. 
Moreover, computable computational problems are in turn divided into 
tractable and intractable problems, depending on how the number of 
computational steps (i.e. elementary operations) necessary to solve an 
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instance of the problem increases when the size of (a suitable representation 
of) the instance itself increases (asymptotic complexity). 

For example, computing the minimum value of a sequence of n integer 
numbers is a computational problem that can be solved by an algorithm 
executing a number of computational steps proportional to n. (It is enough 
to read one by one the values of the sequence and compare each value with 
the minimum of the previous ones.) Instead, the ordering of a sequence of n 
integers is a problem that can be solved by algorithms executing at most a 
number of steps proportional to n·log(n). The game Tower of Hanoi1, is a 
computational problem the solution of which requires a number of steps 
(moves) proportional to 2n. 

Usually, a computational problem is considered as tractable if its 
asymptotic complexity can be expressed as a polynomial function. 
Computational problems with exponential complexity (like the tower of 
Hanoi) are hence considered as intractable. In practice, this means that even 
the most efficient supercomputer would require times in the order of billions 
of years to solve non-small instances of these problems. 

An interesting class of computational problems is that of NP-complete 
problems. For the solution of NP-complete problems only algorithms with 
exponential complexity are known2. On the other hand, there is no formal 
proof that a polynomial solution does not exist for them3. It is worth noting 
also that NP-complete problems can be reduced one another, and hence a 
polynomial solution for one of them could be used to solve efficiently all of 
them. See Garey & Johnson (1979) for a review on the topic of NP-
completeness. 

Examples of NP-complete problems are determining whether a 
Hamiltonian path or cycle exists in a given graph, determining the 
satisfiability of a given boolean formula (SAT) and the well-know Sudoku 
puzzle. A feature of these problems (and of all the other NP-complete 
problems) is that given a candidate solution of one instance of one of them it 
is possible to check in polynomial time whether such a candidate solution is 

                                                 
1 Consisting of a structure of three rods in which n disks of different sizes have to be moved 
from the first rod to the third one. Disks have to be moved one by one from one rod to an 
adjacent one without placing a small disk over a bigger one. 
2 This is not completely true. There exist solutions of a few NP-complete problems the 
complexity of which is subexponential, but superpolynomial. See e.g. Deĭneko et al. (2006) 
where an algorithm to solve the Hamiltonian cicle problem in planar graphs is proposed 
with an asymptotic complexity proportional to 2√n. 
3 Determining whether NP-complete problems can be solved in polynomial time is one of 
the major open problems in Computer Science (known as P=NP). 
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actually a solution or not. For instance, in the case of Sudoku checking 
whether a candidate solution is correct is intuitively rather easy: it is enough 
to check whether each row, column and 3x3 square of the matrix contains 
all numbers from 1 to 9. 

The non-existence of efficient solutions to NP-complete problems has 
not been proved. However, the (supposed) high complexity of such 
problems and the possibility of easily checking candidate solutions has 
made some NP-complete problems very useful to develop technologies of 
significant socio-economic impact, in particular in the context of 
cryptography. 

An approach to the efficient solution of intractable problems (in 
particular NP-complete ones) consists in considering new computing 
architectures that are not based on the simple sequential execution of a 
number of computational steps. An idea could be to exploit infrastructures 
based on parallel computing technologies and programming methodologies. 
Such technologies and methodologies allow performances of programs 
solving several computational problems to be improved by distributing the 
computational workload among several different processors working 
(almost) independently. Anyway, parallel computing is not a solution that in 
general allows reducing significantly the asymptotic complexity of the 
considered computational problems. This is due to the fact that 
computational resources are in practice always limited (e.g. by the number 
of available processors or by the complexity of orchestrating the activities of 
processors) whereas the size of an instance of a computational problem can 
be arbitrarily large. Even the best parallel algorithm applied to solve a large 
enough instance of a (non-trivial) computational problem will encounter the 
problem of saturation of the available computational resources. 

In order to efficiently solve intractable problems parallel computing 
architectures with unbounded parallel computational resources would be 
needed. Several research efforts have been aimed at finding such ideal 
computing architectures in unconventional contexts. In particular, the 
research field known as Natural Computing (Rozemberg et al., 2012) aims 
at reinterpreting biological phenomena as (parallel) computing mechanisms. 
Natural Computing includes several different approaches that differ in the 
kind of considered biological phenomena (e.g. related with DNA, with the 
interactions between molecules and membranes, with the interactions 
among cells, etc...). All of these approaches actually deal with complex 
systems where an extremely high (virtually unbounded) number of entities 
(e.g. DNA strands, molecules, cells, etc...) interact each other autonomously 
(hence in parallel). The final aim of Natural Computing is hence to find 
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valid interpretations as computational steps for the interactions among the 
considered biological entities. This would allow the extremely high level of 
parallelism of biological systems to be exploited to solve computational 
problems without the limitations of traditional parallel computing 
architectures. 

Membrane Computing (Păun, 2000 and 2002) is a branch of Natural 
Computing in which biological phenomena of interest are related with 
interactions between molecules inside cells, where cells are internally 
organized in separate compartments given by a membrane structure. Models 
of computation defined in the context of Membrane Computing are called 
membrane systems (or P systems, by the name of their inventor Ghorghe 
Păun). Such models consider different ways of combining basic biological 
phenomena and provide suitable interpretations of such phenomena as 
computing mechanisms. The result is that many of these combinations of 
biological phenomena turn out to have computational capabilities analogous 
to those of a Turing machine, namely they are Turing-complete. Moreover, 
it has also been shown that some membrane systems exploiting phenomena 
of membrane division allow the intrinsic parallelism of biological systems 
to be completely exploited. Indeed, they have been shown to be able to 
solve NP-complete problems in polynomial time (Zandron et al., 2001). 

The computing capacities and the theoretical properties of membrane 
systems have been deeply investigated, and are still the subject of a very 
active research field. However, after more than ten years of research no 
biological implementation of any algorithm based on membrane systems has 
been proposed. The main difficulty in bringing membrane systems from 
theory to practice is that the biological mechanisms exploited in the theory 
are assumed to be very precise when in practice they are extremely subject 
to stochastic noise, environmental conditions, interferences with other 
mechanisms, and so on. 

Very recently, research on membrane systems has found a way to bring 
such systems back to reality that was probably unexpected at the beginning. 
The proposal of such a way back is related with the recent developments in 
molecular and cellular biology. In these fields new high-throughput analysis 
techniques (e.g. in genome sequencing) are providing a huge amount of 
genomic and biochemical data the interpretation of which requires new 
modelling and analysis approaches at a system level (systems biology). The 
ability of membrane systems to deal with biological mechanisms in a simple 
and formal way makes them suitable to be used for the aims of systems 
biology, namely as models of biological processes. It is now rather common 
to see membrane systems used as a formal notation for the description and 
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analysis of cellular pathways. More surprisingly, membrane systems found 
successful practical application not only in the context of systems biology, 
but also in other biological contexts such as ecosystem modelling. Indeed, 
membrane systems turn out to be suitable for modelling population 
dynamics in general, independently from the specific context (cell biology, 
ecology, socio-economic, etc...). 

2.  From Biology to Computation: Membrane Systems as Models of 
Computation 

Membrane systems (or P systems), initially proposed and developed in Păun 
(2000) and Păun (2002), are mathematical objects representing distributed 
computing devices inspired by the structure and the functioning of living 
cells. The key elements of a membrane system are: 

 
i. Membranes (that create compartments used to distribute 

computations); 
ii.  Multisets (abstractions of chemical solutions that are used as data); 

iii.  Evolution rules (abstractions of chemical reactions that are used as 
programs). 
 

Membranes of a membrane system have a hierarchical structure with a top-
level membrane representing, for instance, the external membrane of a cell. 
Each membrane of a membrane system contains a multiset of objects, a set 
of evolution rules, and possibly other membranes. An example of membrane 
system represented as a diagram4 is shown in figure 2.1, where membranes 
are depicted as boxes (identified by a natural number), objects as lower-case 
letters and evolution rules as pairs of multisets of objects separated by an 
arrow. 

                                                 
4 We do not show the mathematical representation of membrane systems since it is not 
essential for the aims of this paper. 
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Fig. 2.1 Example of membrane system consisting of four membranes, eight 
evolution rules and sixteen objects. Subscript in3 means that the object 
produced by the rule is sent inside membrane 3. Subscript out means that the 
object produced by the rule is sent into the outer membrane. 

 
An evolution rule in a membrane can be applied only to objects in the 

same membrane, and the effect of application of a rule is the replacement of 
the objects mentioned in its left-hand side with the objects mentioned in its 
right-hand side. Objects produced by the rule may remain in the same 
membrane, or be sent out of the membrane, or be sent into the inner 
membranes. In the original definition of membrane systems (Păun, 2000), 
evolution rules are applied with maximal parallelism, namely it cannot 
happen that a rule is not applied when the objects needed for its triggering 
are available. Although other forms of parallelism have been considered 
(see e.g. Bernardini et al., 2005 and Ciobanu et al., 2007), maximal 
parallelism is the most distinguishing feature of membrane systems, as it 
allows Turing-completeness to be achieved even when very simple forms of 
evolution rules are considered (e.g. catalytic rules5). Maximal parallelism 
has the following implications: (i) more than one rule can be applied (on 
different objects) in the same computation step and (ii) each rule can be 
applied more than once in the same step (on different objects).  

A computation of a membrane system is a sequence of steps in which at 
each step evolution rules are applied according to maximal parallelism.  

 

                                                 
5 Rules with just two objects in their left-hand side in which one of the two is left 
unchanged by the rule, namely is present also in the right-hand side. 
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Fig. 2.2 Example of computation of a simple membrane system that tests 
whether a given natural number n is even. Case n=4. 

 

 
 

Fig. 2.3 Example of computation of a simple membrane system that tests 
whether a given natural number n is even. Case n=5. 

 
Simple examples of computations of a membrane system are shown in 

figures 2.2 and 2.3. The membrane system considered in both figures 
consists of a single membrane. The aim of such a system is to check 
whether a given natural number n is even. The input number n is encoded as 
a multiset of objects containing n copies of object a. The result of the 
computation is represented by the multiset of objects in the final 
configuration of the system, namely in the situation reached at the end of 
the computation when there are no further applicable rules. In particular, the 
multiset in the final configuration will contain either Y or N depending on 
whether n is even or odd, respectively. 

Figure 2.2 shows a computation in the case of n even, in particular n=4. 
In this case the computation consists of a single step in which all instances 
of  a disappear by a maximally parallel application of the first rule, which 
replaces pairs of instances of a by the empty multiset. At the same time, by 
maximal parallelism we have that also the second rule has to be applied, 
transforming the c into Y. The system reaches a configuration in which Y is 
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present and no further rule can be applied, hence the answer of the system is 
that the input value n is even. 

On the other hand, figure 2.3 shows a computation in the case of n odd, 
in particular n=5. The first step is as in the previous state, but with the 
difference that one instance of a is not deleted (since they are deleted in 
pairs by the first evolution rule). As a consequence, the configuration 
reached after the first step is such that the third evolution rule can be 
applied. So the system performs one more step transforming a and Y in N. 
This time the configuration obtained is final, and the answer of the systems 
is that the input value n is odd. 

This is how membrane systems compute, and this example, although 
simple, shows how important is the role of maximal parallelism for 
computing. 

Programming membrane systems for non-trivial examples is very 
difficult since evolution rules are very simple. Variants and extensions of 
membrane systems obtained by considering different types of evolution 
rules have been proposed such as membrane systems with rule priorities, 
with promoters and inhibitors, with dissolution of membranes, with 
symport/antiport rules and with active membranes. A complete description 
of all of these variants can be found in Păun (2000). For example, an 
evolution rule with promoters is a rule having the form u→v|p where u and v 
are multisets of objects used as in a usual evolution rule, and p is a multiset 
of objects (called promoters) the presence of which enables the application 
of the rule. Moreover, objects mentioned as promoters (i) are not removed 
from the multiset the rule is applied to, and (ii) enable the parallel 
application of the rule as much as possible independently of how many 
copies of p are present in the system (one copy of p is enough to apply the 
rule in parallel as many times as possible). An example of a computation of 
a membrane system in which an evolution rule with promoters is used is 
shown in figure 2.4. 
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Fig. 2.4 Example of computation of a membrane system computing the 
product n×m, where n is represented by the number of copies of object a, and 
m by the number of copies of object b. The result is given by the number of 
copies of object c in the final configuration. 

 
All of the mentioned variants and extensions of membrane systems are 

Turing-complete. Most of them, however, are not able to solve NP-complete 
problems substantially more efficiently than Turing machines. The only 
exceptions (among the mentioned variants) are membrane systems with 
active membranes. Such system allow membrane division rules to be used 
having the form [u] i → [v] j[w]k where u, v and w are multisets of objects and 
i, j and k are membrane indexes. The meaning of a membrane division rule 
is that a membrane with index i and containing the multiset of objects u 
(and any set of evolution rules) can be rewritten into two separate 
membranes with indexes j and k, containing multiset of objects v and w, 
respectively, and both with the same set of evolution rules as the one in the 
original membrane i. 

Membrane systems with active membranes have been proved to be able 
to solve NP-complete problems in polynomial time (Zandron et al., 2001). 
This has been obtained by exploiting the ability of membrane division rules 
to produce 2n different membranes in n subsequent steps. Indeed, when such 
rules are applied with maximal parallelism they can double the number of 
available membranes at each computation step. This feature of membrane 
division rules can be used to initialize (in polynomial time) as many 
different membranes as are the different potential solutions of the 
considered NP-complete problem. Now, each membrane can check (in 
parallel with all the other membranes) whether a given potential solution is 
correct, and this, as we discussed above, can be done in polynomial time. 
The computed solution is hence chosen among the potential solutions 
resulted to be correct, and the complexity of the whole procedure turns out 
to be globally polynomial. 



 
 
 
 
10 Paolo Milazzo 
 

 

 
 
 
 
 
 

 

3.  From Computation to Biology: Membrane Systems as Models of 
Biological Systems 

In the last few years there has been a strong technological improvement in 
molecular and cellular biology. A huge amount of data is now available on 
the structure of biological entities in cells. However, the functioning of such 
entities is still largely unknown. Cells are complex systems and they have to 
be studied as such. This is the aim of the new research field of systems 
biology in which computational models play an essential role: modelling 
and analysis tools allow researchers (i) to unambiguously formulate 
hypotheses on the behaviour of the biological phenomena of interest (by 
developing models), and (ii) to validate such hypotheses in silico by 
comparing results of simulations of their models with data obtained by 
observing the phenomena of interest. 

Several modelling notations have been proposed to make descriptions 
of biological phenomena unambiguous and computer-friendly, for example 
by Danos & Laneve (2004), Regev et al. (2004) and Barbuti et al. (2006). In 
addition there exist notations that are variants of membrane systems, for 
example Metabolic P Systems proposed by Manca (2010) and Dynamical 
Probabilistic P Systems proposed by Pescini et al. (2006). Membrane 
systems have a simple notation that captures the essential elements of 
cellular processes (see for instance the model in figure 3.1). In order to 
properly describe the dynamics of cellular processes over time, quantitative 
extensions of membrane systems have been considered in which evolution 
rules are associated with reaction kinetics information. This enables the 
translation of membrane systems models into ordinary differential equations 
(ODEs) and into stochastic models, which in turn enables analysis of 
models by means of simulations (and not only). 
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Fig. 3.1 Membrane system modelling the EGF signalling pathway, from 
Pérez-Jiménez & Romero-Campero (2005). 



 
 
 
 
12 Paolo Milazzo 
 

 

 
 
 
 
 
 

 

The simplicity of the membrane systems notation suggested their 
application also to the modelling of other kinds of system. In particular, they 
have been successfully applied to the modelling of population dynamics and 
ecosystems. The idea is that individuals of a population can be modelled as 
objects whereas actions and interactions can be modelled by means of 
evolution rules. Moreover, the morphology of the population territory can 
be (roughly) modelled by means of membranes. If a finer description is 
necessary of the territory and of the positions in it of the population 
individuals, the spatial extension of membrane systems proposed by Barbuti 
et al. (2006) can be used. 

Maximal parallelism is particularly suitable to describe the behaviour of 
individuals in ecosystems. Indeed, it is often the case that the biology of the 
modelled species is such that the development of individuals consists in a 
sequence of clearly defined stages. Moreover, also the life of adult 
individuals is often organized as a repetition of periodic seasons in which all 
of the individuals are involved in a specific activity (e.g. reproductive 
seasons, hibernation, etc...). These situations in which the dynamics of the 
population is organized in stages or seasons in which all of the individuals 
are involved in some specific activity can be modelled by maximally 
parallel applications of evolution rules describing the fates of the individuals 
at the end of each stage or season. 

The modelling of populations and ecosystems by means of membrane 
systems follows the Individual Based Modelling (IBM) approach (Grimm & 
Railsback, 2005), although only partially. Evolution rules describe the 
activities and the interactions from an individual viewpoint. Hence, the 
dynamics of the population emerges from events described at the individual 
level. However, individuals with the same observable characteristics (e.g. 
same sex and age class) are indistinguishable in the model since they are 
described by two instances of the same object. 

Examples of evolution rules for population dynamics are as follows. 
Assume M and F to be objects representing adult male and female 
individuals, respectively. Moreover, let O to represent an offspring and P a 
predator. Mating and birth event can be modelled as MF → MFO, growth of 
a female offspring as O → F, death of an adult male as M →  , and 
predation as PM → P. 

Computational models of populations and ecosystems allow the factors 
governing population growth and extinction to be better understood. 
Moreover, they also allow the dynamics of an endangered population to be 
predicted in order to plan control policies or reintroduction/reinforcement 
actions. An example of use of membrane systems as a modelling tool for 
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ecosystem is the paper by Cardona et al., (2011). In such a paper a 
membrane system is used to model the ecosystem related to the Bearded 
Vulture in the Pyrenees: an endangered species feeding on bone remains of 
wild and domestic ungulates. Results of simulation of the model compared 
with field data are used to discuss causes of vulture extinction. 

4.  Conclusions 

Membrane Computing is a research area in which many interesting 
theoretical results have been obtained. Such results represent important 
contributions for Computer Science, in particular in the areas of Theory of 
Computability and Formal Languages Theory. However, the 
implementation of new computing devices constituted by biological 
material and based on the computing mechanisms studied in Membrane 
Computing seems still far from been possible. Membrane systems, however, 
have found applications that were probably unexpected at the beginning. In 
fact, they turn out to be suitable as model notation for several different 
classes of biological systems. The evolution of research in Membrane 
Computing is hence an example of how foundational research if well 
conducted can lead not only to important theoretical results, but also to 
applications often initially not foreseen. 
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