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Abstract

Natural Computing is a field of research in Compubeience aimed at reinterpreting
biological phenomena as computing mechanisms. altasvs unconventional computing

architectures to be proposed in which computatayesperformed by atoms, DNA strands,
cells, insects or other biological elements. Membr&omputing is a branch of Natural
Computing in which biological phenomena of interast related with interactions between
molecules inside cells. The research in Membranmepliing has lead to very important
theoretical results that show how, in principle llscecould be used to solve any
(computable) computational problem with performandbat cannot be obtained by
conventional computers. However, the implementatagdna cell-based computational
architecture seems not easily achievable. On tlerohand, models of Membrane
Computing have found an alternative applicatioth® description of biological systems,
with the aim of developing simulators and otherlgsia tools for the study of biological

problems

1. Introduction

Results obtained in the first half of the last cepntin the Theory of
Computability tell us that not all computationabplems arecomputable
namely can be solved by a rational mechanizablepatetional procedure.
Moreover, computable computational problems arguimm divided into
tractable and intractable problems, depending on how the number of
computational steps (i.e. elementary operationgessary to solve an
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instance of the problem increases when the sifa siitable representation
of) the instance itself increasesymptotic complexi}y

For example, computing the minimum value of a saqgeefn integer
numbers is a computational problem that can beesoly an algorithm
executing a number of computational steps propaatido n. (It is enough
to read one by one the values of the sequence@ngdare each value with
the minimum of the previous ones.) Instead, thewnd of a sequence of n
integers is a problem that can be solved by algmst executing at most a
number of steps proportional telog(n). The gameTower of Handj, is a
computational problem the solution of which regsiee number of steps
(moves) proportional ta@".

Usually, a computational problem is considered rastable if its
asymptotic complexity can be expressed as a polialorfunction.
Computational problems with exponential complexiike the tower of
Hanoi) are hence considered as intractable. Intipeathis means that even
the most efficient supercomputer would require 8rnmethe order of billions
of years to solve non-small instances of theselpnoh

An interesting class of computational problemshet tof NP-complete
problems. For the solution of NP-complete problemby algorithms with
exponential complexity are kno®nOn the other hand, there is no formal
proof that a polynomial solution does not existtfeent. It is worth noting
also that NP-complete problems can be reduced nothexr, and hence a
polynomial solution for one of them could be usedalve efficiently all of
them. See Garey & Johnson (1979) for a review an ttpic of NP-
completeness.

Examples of NP-complete problems are determiningetirdr a
Hamiltonian path or cycle exists in a given gramgtetermining the
satisfiability of a given boolean formula (SAT) atite well-know Sudoku
puzzle. A feature of these problems (and of all thieer NP-complete
problems) is that given a candidate solution of imstance of one of them it
is possible taheck in polynomial time whether such a candidatet®n is

! Consisting of a structure of three rods in whidttisks of different sizes have to be moved
from the first rod to the third one. Disks haveb® moved one by one from one rod to an
adjacent one without placing a small disk overggbr one.

2 This is not completely true. There exist solutimisa few NP-complete problems the
complexity of which is subexponential, but supeypoimial. See e.g. Deekoet al. (2006)
where an algorithm to solve the Hamiltonian cicteljlem in planar graphs is proposed
with an asymptotic complexity proportional 92

® Determining whether NP-complete problems can Iheegoin polynomial time is one of
the major open problems in Computer Science (knas#=NP).
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actually a solution or notFor instance, in the case of Sudoku checking
whether a candidate solution is correct is inteiyvrather easy: it is enough
to check whether each row, column and 3x3 squatbeoimatrix contains
all numbers from 1 to 9.

The non-existence of efficient solutions to NP-ctete problems has
not been proved. However, the (supposed) high cexitgl of such
problems and the possibility of easily checking didate solutions has
made some NP-complete problems very useful to dpviElchnologies of
significant socio-economic impact, in particular ithe context of
cryptography

An approach to the efficient solution of intracebproblems (in
particular NP-complete ones) consists in considermew computing
architectures that are not based on the simpleesgigl execution of a
number of computational steps. An idea could bexloit infrastructures
based orparallel computingechnologies and programming methodologies.
Such technologies and methodologies allow perfoomsinof programs
solving several computational problems to be impdbty distributing the
computational workload among several different pesors working
(almost) independently. Anyway, parallel computisignot a solution that in
general allows reducing significantly the asymputotiomplexity of the
considered computational problems. This is due he tfact that
computational resources are in practice alwaysdian(e.g. by the number
of available processors or by the complexity ohestrating the activities of
processors) whereas the size of an instance oim@u@ational problem can
be arbitrarily large. Even the best parallel altjon applied to solve a large
enough instance of a (non-trivial) computationapem will encounter the
problem of saturation of the available computatisasources.

In order to efficiently solve intractable problerparallel computing
architectures with unbounded parallel computatiomslources would be
needed. Several research efforts have been aimdiadatg such ideal
computing architectures imnconventional contexts. In particular, the
research field known adatural ComputingRozemberget al, 2012) aims
at reinterpreting biological phenomena as (pajatiemputing mechanisms.
Natural Computing includes several different apphes that differ in the
kind of considered biological phenomena (e.g. eelawvith DNA, with the
interactions between molecules and membranes, wiéh interactions
among cells, etc...). All of these approaches #gtueal with complex
systemavhere an extremely high (virtually unbounded) nembf entities
(e.g. DNA strands, molecules, cells, etc...) intesach other autonomously
(hence in parallel). The final aim of Natural Cortipg is hence to find
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valid interpretations as computational steps fer ititeractions among the
considered biological entities. This would allove taxtremely high level of
parallelism of biological systems to be exploited sblve computational
problems without the limitations of traditional pHel computing
architectures.

Membrane ComputingPaun, 2000 and 2002) is a branch of Natural
Computing in which biological phenomena of interese related with
interactions between molecules inside cells, whesds are internally
organized in separate compartments given imembrane structureModels
of computation defined in the context of Membrar@amputing are called
membrane systen(ser P systemsby the name of their inventor Ghorghe
Paun). Such models consider different ways of conmgrivasic biological
phenomena and provide suitable interpretations uwh sphenomena as
computing mechanisms. The result is that many e$¢hcombinations of
biological phenomena turn out to have computaticapbbilities analogous
to those of a Turing machine, namely they Bueing-complete Moreover,
it has also been shown that some membrane systgrtsting phenomena
of membrane division allow the intrinsic parallelisof biological systems
to be completely exploited. Indeed, they have bs®own to be able to
solve NP-complete problems in polynomial time (Zamcet al, 2001).

The computing capacities and the theoretical ptaseof membrane
systems have been deeply investigated, and atdhstilsubject of a very
active research field. However, after more than years of research no
biological implementation of any algorithm basednes@mbrane systems has
been proposed. The main difficulty in bringing mearte systems from
theory to practice is that the biological mechamsisnploited in the theory
are assumed to be very precise when in practigedfres extremely subject
to stochastic noise, environmental conditions, riatences with other
mechanisms, and so on.

Very recently, research on membrane systems hasl faway to bring
such systems back to reality that was probably peebed at the beginning.
The proposal of such a way back is related withrgoent developments in
molecular and cellular biology. In these fields neigh-throughput analysis
techniques (e.g. in genome sequencing) are prayidirhuge amount of
genomic and biochemical data the interpretationwvbfch requires new
modelling and analysis approaches at a system (sysiems biology The
ability of membrane systems to deal with biologizechanisms in a simple
and formal way makes them suitable to be usedHeraims of systems
biology, namely as models of biological proces#teis.now rather common
to see membrane systems used as a formal notatidhef description and
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analysis of cellular pathways. More surprisinglygembrane systems found
successful practical application not only in theteat of systems biology,
but also in other biological contexts such as esi@sy modelling. Indeed,
membrane systems turn out to be suitable for miodelpopulation
dynamics in general, independently from the specéntext (cell biology,
ecology, socio-economic, etc...).

2. From Biology to Computation: Membrane Systems as M odels of
Computation

Membrane systems (or P systems), initially propasetideveloped indn
(2000) and Run (2002), are mathematical objects represerdiagibuted
computing devicesspired by the structure and the functioning iging
cells. The key elements of a membrane system are:

i. Membranes (that create compartments used to disdrib
computations);
ii. Multisets (abstractions of chemical solutions #r&t used as data);
lii. Evolution rules (abstractions of chemical reactithat are used as
programs).

Membranes of a membrane system have a hierardircature with a top-
level membrane representing, for instance, thereatenembrane of a cell.
Each membrane of a membrane system contains asetuli objects, a set
of evolution rules, and possibly other membraneseRample of membrane
system represented as a diagtasnshown in figure 2.1, where membranes
are depicted as boxes (identified by a natural rerjnlbjects as lower-case
letters and evolution rules as pairs of multisdt®lmgects separated by an
arrow.

* We do not show the mathematical representatiomerdbrane systems since it is not
essential for the aims of this paper.
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ab-->c
C > a3

k aabbb

Fig. 2.1 Example of membrane system consisting of four mamds, eight

evolution rules and sixteen objects. Subsci® means that the object
produced by the rule is sent inside membrane 3s@igtout means that the
object produced by the rule is sent into the omtembrane.

An evolution rule in a membrane can be applied ¢olpbjects in the
same membrane, and the effect of application ofeis the replacement of
the objects mentioned in its left-hand side witl tbjects mentioned in its
right-hand side. Objects produced by the rule mayain in the same
membrane, or be sent out of the membrane, or be isen the inner
membranes. In the original definition of membragstems (Run, 2000),
evolution rules are applied wittmaximal parallelism namely it cannot
happen that a rule is not applied when the objeetsled for its triggering
are available. Although other forms of paralleli$rave been considered
(see e.g. Bernardinet al.,, 2005 and Ciobanwet al, 2007), maximal
parallelism is the most distinguishing feature ofmirane systems, as it
allows Turing-completeness to be achieved even wkensimple forms of
evolution rules are considered (e.g. catalytic SyleMaximal parallelism
has the following implications: (i) more than onder can be applied (on
different objects) in the same computation step @fdeach rule can be
applied more than once in the same step (on difterigjects).

A computationof a membrane system is a sequence of steps chwahi
each step evolution rules are applied accordingagimal parallelism.

® Rules with just two objects in their left-hand esith which one of the two is left
unchanged by the rule, namely is present alsoeimitit-hand side.
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aa-—> aa-—>
c > c =Y
ay --> N E aYy --> N
aaaa

C Y

Fig. 2.2 Example of computation of a simple membrane sydfeah tests
whether a given natural numbeis even. Case=4.

1 1 1

aa-—-> aa-—-> aa-—->
c -—>Y c -—>Y c >
ay --> N E aYy -> N E aY --> N
aaaaa a

C Y N

N N

Fig. 2.3 Example of computation of a simple membrane sydesih tests
whether a given natural numbeis even. Case=5.

Simple examples of computations of a membrane syste shown in
figures 2.2 and 2.3. The membrane system considereooth figures
consists of a single membrane. The aim of such séesy is to check
whether a given natural numbers even. The input numbaris encoded as
a multiset of objects containing copies of objecta. The result of the
computation is represented by the multiset of dbjem the final
configurationof the system, namely in the situation reachethatend of
the computation when there are no further applecatles. In particular, the
multiset in the final configuration will containtkerY or N depending on
whethem is even or odd, respectively.

Figure 2.2 shows a computation in the case @fen, in particulan=4.

In this case the computation consists of a singlp s which all instances
of a disappear by a maximally parallel application loé first rule, which
replaces pairs of instancesaby the empty multiset. At the same time, by
maximal parallelism we have that also the secomel nas to be applied,
transforming the into Y. The system reaches a configuration in which Y is
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present and no further rule can be applied, hdme@amnswer of the system is
that the input valua is even.

On the other hand, figure 2.3 shows a computatidhe case of n odd,
in particularn=5. The first step is as in the previous state, bith the
difference that one instance afis not deleted (since they are deleted in
pairs by the first evolution rule). As a consequenthe configuration
reached after the first step is such that the tlewdlution rule can be
applied. So the system performs one more stepftranisig a andY in N.
This time the configuration obtained is final, ahe answer of the systems
is that the input value is odd.

This is how membrane systems compute, and this gearalthough
simple, shows how important is the role of maxinparallelism for
computing.

Programming membrane systems for non-trivial exampk very
difficult since evolution rules are very simple. néamts and extensions of
membrane systems obtained by considering diffetgoés of evolution
rules have been proposed such as membrane systéimesule priorities,
with promoters and inhibitors, with dissolution of membranes, with
symport/antiportrules and withactive membranesA complete description
of all of these variants can be found iuR (2000). For example, an
evolution rule with promoters is a rule having tbem u—vj, whereu andv
are multisets of objects used as in a usual ewolutile, ang is a multiset
of objects (called promoters) the presence of wieichbles the application
of the rule. Moreover, objects mentioned as pronso@ are not removed
from the multiset the rule is applied to, and (@hable the parallel
application of the rule as much as possible inddgetly of how many
copies ofp are present in the system (one copy @ enough to apply the
rule in parallel as many times as possible). Am#la of a computation of
a membrane system in which an evolution rule withnmpters is used is
shown in figure 2.4.
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1 1 1

a -->ac| a -->ac| a -->acl
b b b
db-> d : db-> d , db-> d
aaa aaa aaa
cCcc cccccc
bb d b d d

-/ N

Fig. 2.4 Example of computation of a membrane system comguthe
productnxm, wheren is represented by the number of copies of olgeand

m by the number of copies of objdztThe result is given by the number of
copies of object in the final configuration.

All of the mentioned variants and extensions of lbeEme systems are
Turing-complete. Most of them, however, are noeablsolve NP-complete
problems substantially more efficiently than Turingachines. The only
exceptions (among the mentioned variants) are nmeamebsystems with
active membranes. Such system allm@mbrane divisiomules to be used
having the form{i]; — [v];[w]x whereu, v andw are multisets of objects and
I, j andk are membrane indexes. The meaning of a membrarsodi rule
is that a membrane with indexand containing the multiset of objeais
(and any set of evolution rules) can be rewrittemo itwo separate
membranes with indexgsandk, containing multiset of objects and w,
respectively, and both with the same set of evafutules as the one in the
original membrane

Membrane systems with active membranes have besegto be able
to solve NP-complete problems in polynomial timarfdronet al, 2001).
This has been obtained by exploiting the abilityna@mbrane division rules
to produce?” different membranes im subsequent steps. Indeed, when such
rules are applied with maximal parallelism they cauble the number of
available membranes at each computation step. f€atsire of membrane
division rules can be used to initialize (in polymal time) as many
different membranes as are the different potensalutions of the
considered NP-complete problem. Now, each membrare check (in
parallel with all the other membranes) whetheregipotential solution is
correct, and this, as we discussed above, can e itlopolynomial time.
The computed solution is hence chosen among thengait solutions
resulted to be correct, and the complexity of thmhl procedure turns out
to be globally polynomial.
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3. From Computation to Biology: Membrane Systems as M odels of
Biological Systems

In the last few years there has been a strong ¢éotpical improvement in
molecular and cellular biology. A huge amount ofadis now available on
the structure of biological entities in cells. Hoxee, the functioning of such
entities is still largely unknown. Cells are compsystems and they have to
be studied as such. This is the aim of the newarebkefield of systems
biology in which computational models play an esisémole: modelling
and analysis tools allow researchers (i) to unaodugly formulate
hypotheses on the behaviour of the biological phesra of interest (by
developing models), and (i) to validate such hiesesin silico by
comparing results of simulations of their modeldhwilata obtained by
observing the phenomena of interest.

Several modelling notations have been proposedakendescriptions
of biological phenomena unambiguous and compuiendiy, for example
by Danos & Laneve (2004), Regeval. (2004) and Barbutt al (2006). In
addition there exist notations that are variantsmgimbrane systems, for
exampleMetabolic P Systemproposed by Manca (2010) aiynamical
Probabilistic P System$roposed by Pescini et al. (2006). Membrane
systems have a simple notation that captures teengal elements of
cellular processes (see for instance the modelgurd 3.1). In order to
properly describe the dynamics of cellular processeer time, quantitative
extensions of membrane systems have been consithergaich evolution
rules are associated with reaction kinetics infdroma This enables the
translation of membrane systems models into orglidéferential equations
(ODEs) and into stochastic models, which in turraldes analysis of
models by means of simulations (and not only).
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Fig. 3.1 Membrane system modelling the EGF signalling pathweom
Pérez-Jiménez & Romero-Campero (2005).
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The simplicity of the membrane systems notationgested their
application also to the modelling of other kindssgétem. In particular, they
have been successfully applied to the modellingogpiulation dynamics and
ecosystems. The idea is that individuals of a patpn can be modelled as
objects whereas actions and interactions can beelleddby means of
evolution rules. Moreover, the morphology of thepplation territory can
be (roughly) modelled by means of membranes. Iinarfdescription is
necessary of the territory and of the positionsitirof the population
individuals, thespatial extension of membrane systems proposed by Barbuti
et al (2006) can be used.

Maximal parallelism is particularly suitable to dabe the behaviour of
individuals in ecosystems. Indeed, it is often¢hee that the biology of the
modelled species is such that the developmentd¥iguals consists in a
sequence of clearly defined stages. Moreover, #ho life of adult
individuals is often organized as a repetition efipdic seasons in which all
of the individuals are involved in a specific adyv(e.g. reproductive
seasons, hibernation, etc...). These situationghich the dynamics of the
population is organized in stages or seasons ichwail of the individuals
are involved in some specific activity can be mbaklby maximally
parallel applications of evolution rules describthg fates of the individuals
at the end of each stage or season.

The modelling of populations and ecosystems by si@membrane
systems follows théndividual Based Modelling (IBMapproach (Grimm &
Railsback, 2005), although only partially. Evolutioules describe the
activities and the interactions from an individuaéwpoint. Hence, the
dynamics of the population emerges from eventsritest at the individual
level. However, individuals with the same obsereatharacteristics (e.g.
same sex and age class) are indistinguishableeimitdel since they are
described by two instances of the same object.

Examples of evolution rules for population dynam&se as follows.
Assume M and F to be objects representing adult male and female
individuals, respectively. Moreover, |€t to represent an offspring afda
predator. Mating and birth event can be modellesllias—~ MFO, growth of
a female offspring a®© — F, death of an adult male &8 — , and
predation a®M — P.

Computational models of populations and ecosystiow the factors
governing population growth and extinction to bettdre understood.
Moreover, they also allow the dynamics of an endagd) population to be
predicted in order to plan control policies or teaduction/reinforcement
actions. An example of use of membrane systemsmasdelling tool for
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ecosystem is the paper by Cardosiaal, (2011). In such a paper a
membrane system is used to model the ecosysteteddia the Bearded
Vulture in the Pyrenees: an endangered speciemfged bone remains of
wild and domestic ungulates. Results of simulabbthe model compared
with field data are used to discuss causes of rubutinction.

4. Conclusions

Membrane Computing is a research area in which miatgresting
theoretical results have been obtained. Such eesafiresent important
contributions for Computer Science, in particularthe areas of Theory of
Computability and Formal Languages Theory. Howevethe
implementation of new computing devices constituteg biological
material and based on the computing mechanismsedtud Membrane
Computing seems still far from been possible. Manbrsystems, however,
have found applications that were probably unexguket the beginning. In
fact, they turn out to be suitable as model notafior several different
classes of biological systems. The evolution ofeaesh in Membrane
Computing is hence an example of how foundatiomelearch if well
conducted can lead not only to important theorktieaults, but also to
applications often initially not foreseen.
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