

2014 Isonomia – Epistemologica

Rivista online di Filosofia

Università degli Studi di Urbino Carlo Bo

Paolo Milazzo
“Membrane Computing: from biology to computation and back”
© 2014 Isonomia, Rivista online di Filosofia – Epistemologica – ISSN 2037-4348
Università degli Studi di Urbino Carlo Bo
http://isonomia.uniurb.it/epistemologica

Membrane Computing:
from biology to computation and back

Paolo Milazzo
University of Pisa

milazzo@di.unipi.it

Abstract

Natural Computing is a field of research in Computer Science aimed at reinterpreting
biological phenomena as computing mechanisms. This allows unconventional computing
architectures to be proposed in which computations are performed by atoms, DNA strands,
cells, insects or other biological elements. Membrane Computing is a branch of Natural
Computing in which biological phenomena of interest are related with interactions between
molecules inside cells. The research in Membrane Computing has lead to very important
theoretical results that show how, in principle, cells could be used to solve any
(computable) computational problem with performances that cannot be obtained by
conventional computers. However, the implementation of a cell-based computational
architecture seems not easily achievable. On the other hand, models of Membrane
Computing have found an alternative application to the description of biological systems,
with the aim of developing simulators and other analysis tools for the study of biological
problems.

1. Introduction

Results obtained in the first half of the last century in the Theory of
Computability tell us that not all computational problems are computable,
namely can be solved by a rational mechanizable computational procedure.
Moreover, computable computational problems are in turn divided into
tractable and intractable problems, depending on how the number of
computational steps (i.e. elementary operations) necessary to solve an

2 Paolo Milazzo

instance of the problem increases when the size of (a suitable representation
of) the instance itself increases (asymptotic complexity).

For example, computing the minimum value of a sequence of n integer
numbers is a computational problem that can be solved by an algorithm
executing a number of computational steps proportional to n. (It is enough
to read one by one the values of the sequence and compare each value with
the minimum of the previous ones.) Instead, the ordering of a sequence of n
integers is a problem that can be solved by algorithms executing at most a
number of steps proportional to n·log(n). The game Tower of Hanoi1, is a
computational problem the solution of which requires a number of steps
(moves) proportional to 2n.

Usually, a computational problem is considered as tractable if its
asymptotic complexity can be expressed as a polynomial function.
Computational problems with exponential complexity (like the tower of
Hanoi) are hence considered as intractable. In practice, this means that even
the most efficient supercomputer would require times in the order of billions
of years to solve non-small instances of these problems.

An interesting class of computational problems is that of NP-complete
problems. For the solution of NP-complete problems only algorithms with
exponential complexity are known2. On the other hand, there is no formal
proof that a polynomial solution does not exist for them3. It is worth noting
also that NP-complete problems can be reduced one another, and hence a
polynomial solution for one of them could be used to solve efficiently all of
them. See Garey & Johnson (1979) for a review on the topic of NP-
completeness.

Examples of NP-complete problems are determining whether a
Hamiltonian path or cycle exists in a given graph, determining the
satisfiability of a given boolean formula (SAT) and the well-know Sudoku
puzzle. A feature of these problems (and of all the other NP-complete
problems) is that given a candidate solution of one instance of one of them it
is possible to check in polynomial time whether such a candidate solution is

1 Consisting of a structure of three rods in which n disks of different sizes have to be moved
from the first rod to the third one. Disks have to be moved one by one from one rod to an
adjacent one without placing a small disk over a bigger one.
2 This is not completely true. There exist solutions of a few NP-complete problems the
complexity of which is subexponential, but superpolynomial. See e.g. Deĭneko et al. (2006)
where an algorithm to solve the Hamiltonian cicle problem in planar graphs is proposed
with an asymptotic complexity proportional to 2√n.
3 Determining whether NP-complete problems can be solved in polynomial time is one of
the major open problems in Computer Science (known as P=NP).

Membrane Computing: from biology to computation and back 3

actually a solution or not. For instance, in the case of Sudoku checking
whether a candidate solution is correct is intuitively rather easy: it is enough
to check whether each row, column and 3x3 square of the matrix contains
all numbers from 1 to 9.

The non-existence of efficient solutions to NP-complete problems has
not been proved. However, the (supposed) high complexity of such
problems and the possibility of easily checking candidate solutions has
made some NP-complete problems very useful to develop technologies of
significant socio-economic impact, in particular in the context of
cryptography.

An approach to the efficient solution of intractable problems (in
particular NP-complete ones) consists in considering new computing
architectures that are not based on the simple sequential execution of a
number of computational steps. An idea could be to exploit infrastructures
based on parallel computing technologies and programming methodologies.
Such technologies and methodologies allow performances of programs
solving several computational problems to be improved by distributing the
computational workload among several different processors working
(almost) independently. Anyway, parallel computing is not a solution that in
general allows reducing significantly the asymptotic complexity of the
considered computational problems. This is due to the fact that
computational resources are in practice always limited (e.g. by the number
of available processors or by the complexity of orchestrating the activities of
processors) whereas the size of an instance of a computational problem can
be arbitrarily large. Even the best parallel algorithm applied to solve a large
enough instance of a (non-trivial) computational problem will encounter the
problem of saturation of the available computational resources.

In order to efficiently solve intractable problems parallel computing
architectures with unbounded parallel computational resources would be
needed. Several research efforts have been aimed at finding such ideal
computing architectures in unconventional contexts. In particular, the
research field known as Natural Computing (Rozemberg et al., 2012) aims
at reinterpreting biological phenomena as (parallel) computing mechanisms.
Natural Computing includes several different approaches that differ in the
kind of considered biological phenomena (e.g. related with DNA, with the
interactions between molecules and membranes, with the interactions
among cells, etc...). All of these approaches actually deal with complex
systems where an extremely high (virtually unbounded) number of entities
(e.g. DNA strands, molecules, cells, etc...) interact each other autonomously
(hence in parallel). The final aim of Natural Computing is hence to find

4 Paolo Milazzo

valid interpretations as computational steps for the interactions among the
considered biological entities. This would allow the extremely high level of
parallelism of biological systems to be exploited to solve computational
problems without the limitations of traditional parallel computing
architectures.

Membrane Computing (Păun, 2000 and 2002) is a branch of Natural
Computing in which biological phenomena of interest are related with
interactions between molecules inside cells, where cells are internally
organized in separate compartments given by a membrane structure. Models
of computation defined in the context of Membrane Computing are called
membrane systems (or P systems, by the name of their inventor Ghorghe
Păun). Such models consider different ways of combining basic biological
phenomena and provide suitable interpretations of such phenomena as
computing mechanisms. The result is that many of these combinations of
biological phenomena turn out to have computational capabilities analogous
to those of a Turing machine, namely they are Turing-complete. Moreover,
it has also been shown that some membrane systems exploiting phenomena
of membrane division allow the intrinsic parallelism of biological systems
to be completely exploited. Indeed, they have been shown to be able to
solve NP-complete problems in polynomial time (Zandron et al., 2001).

The computing capacities and the theoretical properties of membrane
systems have been deeply investigated, and are still the subject of a very
active research field. However, after more than ten years of research no
biological implementation of any algorithm based on membrane systems has
been proposed. The main difficulty in bringing membrane systems from
theory to practice is that the biological mechanisms exploited in the theory
are assumed to be very precise when in practice they are extremely subject
to stochastic noise, environmental conditions, interferences with other
mechanisms, and so on.

Very recently, research on membrane systems has found a way to bring
such systems back to reality that was probably unexpected at the beginning.
The proposal of such a way back is related with the recent developments in
molecular and cellular biology. In these fields new high-throughput analysis
techniques (e.g. in genome sequencing) are providing a huge amount of
genomic and biochemical data the interpretation of which requires new
modelling and analysis approaches at a system level (systems biology). The
ability of membrane systems to deal with biological mechanisms in a simple
and formal way makes them suitable to be used for the aims of systems
biology, namely as models of biological processes. It is now rather common
to see membrane systems used as a formal notation for the description and

Membrane Computing: from biology to computation and back 5

analysis of cellular pathways. More surprisingly, membrane systems found
successful practical application not only in the context of systems biology,
but also in other biological contexts such as ecosystem modelling. Indeed,
membrane systems turn out to be suitable for modelling population
dynamics in general, independently from the specific context (cell biology,
ecology, socio-economic, etc...).

2. From Biology to Computation: Membrane Systems as Models of
Computation

Membrane systems (or P systems), initially proposed and developed in Păun
(2000) and Păun (2002), are mathematical objects representing distributed
computing devices inspired by the structure and the functioning of living
cells. The key elements of a membrane system are:

i. Membranes (that create compartments used to distribute

computations);
ii. Multisets (abstractions of chemical solutions that are used as data);

iii. Evolution rules (abstractions of chemical reactions that are used as
programs).

Membranes of a membrane system have a hierarchical structure with a top-
level membrane representing, for instance, the external membrane of a cell.
Each membrane of a membrane system contains a multiset of objects, a set
of evolution rules, and possibly other membranes. An example of membrane
system represented as a diagram4 is shown in figure 2.1, where membranes
are depicted as boxes (identified by a natural number), objects as lower-case
letters and evolution rules as pairs of multisets of objects separated by an
arrow.

4 We do not show the mathematical representation of membrane systems since it is not
essential for the aims of this paper.

6 Paolo Milazzo

Fig. 2.1 Example of membrane system consisting of four membranes, eight
evolution rules and sixteen objects. Subscript in3 means that the object
produced by the rule is sent inside membrane 3. Subscript out means that the
object produced by the rule is sent into the outer membrane.

An evolution rule in a membrane can be applied only to objects in the

same membrane, and the effect of application of a rule is the replacement of
the objects mentioned in its left-hand side with the objects mentioned in its
right-hand side. Objects produced by the rule may remain in the same
membrane, or be sent out of the membrane, or be sent into the inner
membranes. In the original definition of membrane systems (Păun, 2000),
evolution rules are applied with maximal parallelism, namely it cannot
happen that a rule is not applied when the objects needed for its triggering
are available. Although other forms of parallelism have been considered
(see e.g. Bernardini et al., 2005 and Ciobanu et al., 2007), maximal
parallelism is the most distinguishing feature of membrane systems, as it
allows Turing-completeness to be achieved even when very simple forms of
evolution rules are considered (e.g. catalytic rules5). Maximal parallelism
has the following implications: (i) more than one rule can be applied (on
different objects) in the same computation step and (ii) each rule can be
applied more than once in the same step (on different objects).

A computation of a membrane system is a sequence of steps in which at
each step evolution rules are applied according to maximal parallelism.

5 Rules with just two objects in their left-hand side in which one of the two is left
unchanged by the rule, namely is present also in the right-hand side.

Membrane Computing: from biology to computation and back 7

Fig. 2.2 Example of computation of a simple membrane system that tests
whether a given natural number n is even. Case n=4.

Fig. 2.3 Example of computation of a simple membrane system that tests
whether a given natural number n is even. Case n=5.

Simple examples of computations of a membrane system are shown in

figures 2.2 and 2.3. The membrane system considered in both figures
consists of a single membrane. The aim of such a system is to check
whether a given natural number n is even. The input number n is encoded as
a multiset of objects containing n copies of object a. The result of the
computation is represented by the multiset of objects in the final
configuration of the system, namely in the situation reached at the end of
the computation when there are no further applicable rules. In particular, the
multiset in the final configuration will contain either Y or N depending on
whether n is even or odd, respectively.

Figure 2.2 shows a computation in the case of n even, in particular n=4.
In this case the computation consists of a single step in which all instances
of a disappear by a maximally parallel application of the first rule, which
replaces pairs of instances of a by the empty multiset. At the same time, by
maximal parallelism we have that also the second rule has to be applied,
transforming the c into Y. The system reaches a configuration in which Y is

8 Paolo Milazzo

present and no further rule can be applied, hence the answer of the system is
that the input value n is even.

On the other hand, figure 2.3 shows a computation in the case of n odd,
in particular n=5. The first step is as in the previous state, but with the
difference that one instance of a is not deleted (since they are deleted in
pairs by the first evolution rule). As a consequence, the configuration
reached after the first step is such that the third evolution rule can be
applied. So the system performs one more step transforming a and Y in N.
This time the configuration obtained is final, and the answer of the systems
is that the input value n is odd.

This is how membrane systems compute, and this example, although
simple, shows how important is the role of maximal parallelism for
computing.

Programming membrane systems for non-trivial examples is very
difficult since evolution rules are very simple. Variants and extensions of
membrane systems obtained by considering different types of evolution
rules have been proposed such as membrane systems with rule priorities,
with promoters and inhibitors, with dissolution of membranes, with
symport/antiport rules and with active membranes. A complete description
of all of these variants can be found in Păun (2000). For example, an
evolution rule with promoters is a rule having the form u→v|p where u and v
are multisets of objects used as in a usual evolution rule, and p is a multiset
of objects (called promoters) the presence of which enables the application
of the rule. Moreover, objects mentioned as promoters (i) are not removed
from the multiset the rule is applied to, and (ii) enable the parallel
application of the rule as much as possible independently of how many
copies of p are present in the system (one copy of p is enough to apply the
rule in parallel as many times as possible). An example of a computation of
a membrane system in which an evolution rule with promoters is used is
shown in figure 2.4.

Membrane Computing: from biology to computation and back 9

Fig. 2.4 Example of computation of a membrane system computing the
product n×m, where n is represented by the number of copies of object a, and
m by the number of copies of object b. The result is given by the number of
copies of object c in the final configuration.

All of the mentioned variants and extensions of membrane systems are

Turing-complete. Most of them, however, are not able to solve NP-complete
problems substantially more efficiently than Turing machines. The only
exceptions (among the mentioned variants) are membrane systems with
active membranes. Such system allow membrane division rules to be used
having the form [u] i → [v] j[w]k where u, v and w are multisets of objects and
i, j and k are membrane indexes. The meaning of a membrane division rule
is that a membrane with index i and containing the multiset of objects u
(and any set of evolution rules) can be rewritten into two separate
membranes with indexes j and k, containing multiset of objects v and w,
respectively, and both with the same set of evolution rules as the one in the
original membrane i.

Membrane systems with active membranes have been proved to be able
to solve NP-complete problems in polynomial time (Zandron et al., 2001).
This has been obtained by exploiting the ability of membrane division rules
to produce 2n different membranes in n subsequent steps. Indeed, when such
rules are applied with maximal parallelism they can double the number of
available membranes at each computation step. This feature of membrane
division rules can be used to initialize (in polynomial time) as many
different membranes as are the different potential solutions of the
considered NP-complete problem. Now, each membrane can check (in
parallel with all the other membranes) whether a given potential solution is
correct, and this, as we discussed above, can be done in polynomial time.
The computed solution is hence chosen among the potential solutions
resulted to be correct, and the complexity of the whole procedure turns out
to be globally polynomial.

10 Paolo Milazzo

3. From Computation to Biology: Membrane Systems as Models of
Biological Systems

In the last few years there has been a strong technological improvement in
molecular and cellular biology. A huge amount of data is now available on
the structure of biological entities in cells. However, the functioning of such
entities is still largely unknown. Cells are complex systems and they have to
be studied as such. This is the aim of the new research field of systems
biology in which computational models play an essential role: modelling
and analysis tools allow researchers (i) to unambiguously formulate
hypotheses on the behaviour of the biological phenomena of interest (by
developing models), and (ii) to validate such hypotheses in silico by
comparing results of simulations of their models with data obtained by
observing the phenomena of interest.

Several modelling notations have been proposed to make descriptions
of biological phenomena unambiguous and computer-friendly, for example
by Danos & Laneve (2004), Regev et al. (2004) and Barbuti et al. (2006). In
addition there exist notations that are variants of membrane systems, for
example Metabolic P Systems proposed by Manca (2010) and Dynamical
Probabilistic P Systems proposed by Pescini et al. (2006). Membrane
systems have a simple notation that captures the essential elements of
cellular processes (see for instance the model in figure 3.1). In order to
properly describe the dynamics of cellular processes over time, quantitative
extensions of membrane systems have been considered in which evolution
rules are associated with reaction kinetics information. This enables the
translation of membrane systems models into ordinary differential equations
(ODEs) and into stochastic models, which in turn enables analysis of
models by means of simulations (and not only).

Membrane Computing: from biology to computation and back 11

Fig. 3.1 Membrane system modelling the EGF signalling pathway, from
Pérez-Jiménez & Romero-Campero (2005).

12 Paolo Milazzo

The simplicity of the membrane systems notation suggested their
application also to the modelling of other kinds of system. In particular, they
have been successfully applied to the modelling of population dynamics and
ecosystems. The idea is that individuals of a population can be modelled as
objects whereas actions and interactions can be modelled by means of
evolution rules. Moreover, the morphology of the population territory can
be (roughly) modelled by means of membranes. If a finer description is
necessary of the territory and of the positions in it of the population
individuals, the spatial extension of membrane systems proposed by Barbuti
et al. (2006) can be used.

Maximal parallelism is particularly suitable to describe the behaviour of
individuals in ecosystems. Indeed, it is often the case that the biology of the
modelled species is such that the development of individuals consists in a
sequence of clearly defined stages. Moreover, also the life of adult
individuals is often organized as a repetition of periodic seasons in which all
of the individuals are involved in a specific activity (e.g. reproductive
seasons, hibernation, etc...). These situations in which the dynamics of the
population is organized in stages or seasons in which all of the individuals
are involved in some specific activity can be modelled by maximally
parallel applications of evolution rules describing the fates of the individuals
at the end of each stage or season.

The modelling of populations and ecosystems by means of membrane
systems follows the Individual Based Modelling (IBM) approach (Grimm &
Railsback, 2005), although only partially. Evolution rules describe the
activities and the interactions from an individual viewpoint. Hence, the
dynamics of the population emerges from events described at the individual
level. However, individuals with the same observable characteristics (e.g.
same sex and age class) are indistinguishable in the model since they are
described by two instances of the same object.

Examples of evolution rules for population dynamics are as follows.
Assume M and F to be objects representing adult male and female
individuals, respectively. Moreover, let O to represent an offspring and P a
predator. Mating and birth event can be modelled as MF → MFO, growth of
a female offspring as O → F, death of an adult male as M → , and
predation as PM → P.

Computational models of populations and ecosystems allow the factors
governing population growth and extinction to be better understood.
Moreover, they also allow the dynamics of an endangered population to be
predicted in order to plan control policies or reintroduction/reinforcement
actions. An example of use of membrane systems as a modelling tool for

Membrane Computing: from biology to computation and back 13

ecosystem is the paper by Cardona et al., (2011). In such a paper a
membrane system is used to model the ecosystem related to the Bearded
Vulture in the Pyrenees: an endangered species feeding on bone remains of
wild and domestic ungulates. Results of simulation of the model compared
with field data are used to discuss causes of vulture extinction.

4. Conclusions

Membrane Computing is a research area in which many interesting
theoretical results have been obtained. Such results represent important
contributions for Computer Science, in particular in the areas of Theory of
Computability and Formal Languages Theory. However, the
implementation of new computing devices constituted by biological
material and based on the computing mechanisms studied in Membrane
Computing seems still far from been possible. Membrane systems, however,
have found applications that were probably unexpected at the beginning. In
fact, they turn out to be suitable as model notation for several different
classes of biological systems. The evolution of research in Membrane
Computing is hence an example of how foundational research if well
conducted can lead not only to important theoretical results, but also to
applications often initially not foreseen.

References

Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., & Troina, A., 2006, «A
Calculus of Looping Sequences for Modelling Microbiological
Systems», Fundamenta Informaticae, vol.72, n. 1, pp. 21-35.

Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., & Tesei, L.,
2011, «Spatial P systems», Natural Computing, vol. 10, n. 1, pp. 3-16.

Bernardini, F., Romero-Campero, F. J., Gheorghe, M., Perez-Jimenez, M. J.,
Margenstern, M., Verlan, S., & Krasnogor, N., 2005, «On P Systems
with Bounded Parallelism», In: Symbolic and Numeric Algorithms for
Scientific Computing, pp. 8-pp, IEEE.

14 Paolo Milazzo

Cardona, M., Colomer, M. A., Margalida, A., Palau, A., Pérez-Hurtado, I.,
Pérez-Jiménez, M. J., & Sanuy, D., 2011, «A Computational Modeling
for Real Ecosystems Based on P Systems», Natural Computing, vol. 10,
n. 1, pp. 39-53.

Ciobanu, G., Pan, L., Păun, G., & Pérez-Jiménez, M. J., 2007, «P Systems
with Minimal Parallelism», Theoretical Computer Science, vol. 378, n.
1, pp. 117-130.

Danos, V., & Laneve, C., 2004, «Formal Molecular Biology», Theoretical
Computer Science, vol. 325, n. 1, pp. 69-110.

Deĭneko, V.G., Klinz, B., Woeginger, G.J., 2006, «Exact Algorithms for the
Hamiltonian Cycle Problem in Planar Graphs», Operations Research
Letters, vol. 34, n.3, pp. 269–274.

Garey, M.R. & Johnson, D. S., 1979, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman.

Grimm, V., & Railsback, S. F., 2005, Individual-based Modeling and
Ecology, Princeton university press.

Manca, V., 2010, «Metabolic P Systems», Scholarpedia, vol. 5, n. 3, 9273.

Păun, G., 2000, «Computing with Membranes», Journal of Computer and
System Sciences, vol. 61, n.1, pp. 108-143.

Păun, G., 2002, Membrane Computing. An Introduction, Springer-Verlag,
Berlin.

Pérez-Jiménez, M. J., & Romero-Campero, F. J., 2005, «A Study of the
Robustness of the EGFR Signalling Cascade using Continuous
Membrane Systems», In: Mechanisms, Symbols, and Models
Underlying Cognition, Springer Berlin Heidelberg, pp. 268-278.

Pescini, D., Besozzi, D., Mauri, G., & Zandron, C., 2006, «Dynamical
Probabilistic P Systems», International Journal of Foundations of
Computer Science, vol. 17, n. 1, pp. 183-204.

Membrane Computing: from biology to computation and back 15

Regev, A., Panina, E. M., Silverman, W., Cardelli, L., & Shapiro, E., 2004,
«BioAmbients: an Abstraction for Biological Compartments»,
Theoretical Computer Science, vol. 325, n. 1, pp.141-167.

Rozenberg, G., Back, T., & Kok, J. (Eds.), 2012, Handbook of Natural
Computing, Springer Verlag

Zandron, C., Ferretti, C., & Mauri, G., 2001, «Solving NP-complete
Problems Using P Systems with Active Membranes», Unconventional
Models of Computation, pp. 289-301, Springer London.

