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... the frame problem ... apparently arises from some very widely held and
innocuous-seeming assumptions about the nature of intelligence, the truth of
the most undoctrinaire brand of physicalism, and the conviction that it must
be possible to explain how we think. ... One utterly central—if not
defining—feature of an intelligent being is that it can “look before it leaps.”
Better, it can think before it leaps. Intelligence is (at least partly) a matter of
using well what you know—but for what? For improving the fidelity of your
expectations about what is going to happen next, for planning, for considering
courses of action ... when we think before we leap, how do we do it?

Daniel Dennett, “Cognitive Wheels, the Frame Problem of AI” (1987), p. 44

Introduction

There are many different views about what exactly the Frame Problem is.
In computer science and engineering, the Frame Problem is typically un-
derstood as that of finding a concise way to represent the effects of actions
in a logical system.1 This problem arose within classical symbolic AI as the-
orists attempted to find ways of programming artificial agents that could
approximate capabilities of humans and other intelligent biological agents.
They construed the problem as essentially a logical one: how can we pro-
gram agents with the knowledge they need to act competently in their en-
vironments, so that the correct actions to perform given their programmed
goals could be derived by a computer program implementing logical rules?
Let’s call this the Narrow Frame Problem (see Shanahan (2016) for discus-
sion). Several theorists, including some philosophers, have seen in this
specific problem a larger question, which deserves to be posed and solved

1Thanks to Daniel E. Koditschek, Sonia Roberts, and MIRA Group for their valuable
feedback.



Updating the Frame Problem L. Miracchi

at a higher level of generality, and which has important implications for
our understanding of all intelligent agency.

We can state this Generalized Frame Problem as follows:

Generalized Frame Problem. How can one design a machine
to use information so as to behave competently, with respect
to the kinds of tasks a genuinely intelligent agent can reliably,
effectively perform?

Understood in this way, the Frame Problem is both a deeply theoretical
problem and one with clear practical upshots. In the 1980s, it attracted
wide attention from philosophers and cognitive scientists, but interest in
the problem waned in the ‘90s along with a loss of interest in genuinely
minded (AMI), general (AGI) and human-level (HLAI) artificial intelli-
gence (Russell & Norvig, 2014). A resurgence of interest in these more
robust forms of AI – and more generally in the properties of autonomy,
robustness, and flexibility that intelligent biological agents exhibit – war-
rants revisiting the Frame Problem. Moreover, this problem is of interest
to cognitive science generally, since it is widely supposed that information
processing is crucial for understanding mental processes.

I will argue that the way the Frame Problem is standardly interpreted,
and so the strategies considered for attempting to solve it, must be updated.
We must replace overly simplistic and reductionist assumptions with more
sophisticated and plausible ones. In particular, the standard interpretation
assumes that mental processes are identical to certain kinds of computa-
tional processes, and so solving the Frame Problem is a matter of finding
a computational architecture that can effectively represent relations of se-
mantic relevance.

Instead, we must take seriously the possibility that the way in which in-
telligent agents use information is inherently different. Whereas intelligent
agents are plausibly genuinely causally sensitive to semantic properties as
such (to what they perceive, desire, believe intend, etc.), computational sys-
tems can only be causally sensitive to the formal features that represent
these properties. Indeed, it is this very substitution of formal generaliza-
tions for genuinely semantic ones that is responsible for the way current AI
systems are brittle, inflexible, and highly specialized. Formal causal rela-
tionships cannot reproduce the functional properties of genuinely intelli-
gent systems, except in highly specialized and restricted circumstances.

There are two morals we should not draw from this lesson. First, we
need not abandon the project of building an artificial agent that intelli-
gently makes use of relevant information. I am actually optimistic about
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our future ability to solve the Frame Problem, to build artificial agents that
reliably and effectively accomplish tasks of the sort genuinely intelligent
agents can accomplish.

Second, we need not deny that computational representations play an
important role in giving rise to genuinely intelligent information use and
behavior. The way intelligent beings use information in solving problems
is our explanandum. Computational information-processing, on the other
hand, is (part of) the explanans. What we need is a more sophisticated way
of investigating the relationship between the two, so that these two senses
of using information are not conflated, but instead the question of how they
are related to one another can be studied directly.

I approach this problem by applying the generative methodology I have
developed elsewhere for cognitive science and AI research (Miracchi, 2017,
2019a). According to this methodology, we treat generative relationships
on close analogy with causal relationships. (A generates B just in case B ob-
tains in virtue of A.) This allows us to keep the explanans and explananda
in their own vocabulary, specifying them as precisely as possible using ba-
sis and agent models, respectively. Then we can empirically investigate
how features of the explanans can make a generative difference to features
of the explanandum. This allows us to represent complex dependence re-
lations, and so move beyond simplistic assumptions about the relationship
between mental and computational states and processes. Applying this
approach to the Frame Problem, the question becomes:

Updated Frame Problem: How can features of a system’s com-
putational processing, body, and environment be organized in
complex and sophisticated ways so that a whole system is gen-
erated which can genuinely make use of semantic relevance in
acting and planning intelligent actions?2

In section 1, I explain why the way genuinely intelligent agents use
information should be characterized in inherently mental terms that es-
sentially involve intentionality and, frequently, consciousness. In section
2, I review the standard interpretation of the generalized Frame Problem
and explain how a problematic conflation of intelligent information use
and computational information processing follows from key explanatory
commitments of the widely adopted computationalism (Fodor, 1980, 1987;
Marr, 1982). In section 3, I explain how the generative methodology can
help us to productively re-conceptualize the Frame Problem.

2This is a determinate of what I call the “Key Question” in Miracchi (2019a).
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1 Intelligent Performance Involves Mental Features

In this section I build on some previous work to explain why AI theorists
should conceive of agent information use in an inherently mental way for
the purposes of making progress on the Frame Problem. We are looking
to understand what is meant by information use for a specific kind of task
achievement: that characteristic of genuinely intelligent agency. Let’s start,
then, by getting clearer on what we should mean by “genuinely intelligent
agency” and the kinds of tasks that manifest it.

Although many engineers and researchers interested in intelligent agency
today are not necessarily interested in building an AI with a mind of her
own as Ada seems to have in Ex Machina (2014) and as Samantha has in
Her (2013), there are good methodological and objective reasons to give
the project of building an artificial minded intelligence (AMI) a special
place. First, our epistemic grip on human-level intelligence (and so HLAI)
is derivative from our grasp of the intelligent behavior of actual humans,
who have minds. We use our assessments of what tasks involve high lev-
els of intelligence when humans accomplish them (such as playing Go or
chess), and it is not clear that such assessments of intelligent performance
can be divorced from genuinely mental aspects of those performances, such
as the phenomenology of effort, creative insight, or intentional strategy.

Plausibly because of this, even when we do succeed in building AI sys-
tems that beat humans (e.g. AlphaGo beating Lee Seedol in Go, Silver &
Huang (2016)), some critics tend to respond that the AI isn’t really intelli-
gent, that the way it’s playing the game isn’t inherently different and more
mechanical than the way we do. This suggests that our categorizations of
tasks as involving human-level intelligence are complex and difficult to
make precise without using mental terminology.

One might think that such rejections reflect mere egotistical or anthro-
pomorphic bias. However, it is not clear why we should trust our intuitions
about which tasks indicate intelligence in choosing HLAI tasks, but at the
same time be skeptical about our intuitions in whether the formalization
of performance assessment succeeds in capturing performance of the kind
of task we are really interested in. As it currently stands, neither choice
of task nor choice of assessment has strong theoretical motivations or con-
straints.3 In investigating HLAI and AGI we are epistemically tied to more
robust conceptualizations of tasks indicative of genuinely mental intelligent

3Perhaps if we are successful in designing systematic agent models, we can develop
some, but it is beyond the scope of this paper to develop the suggestion.
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agency whether we like it or not.
While the goal of more rigorously choosing illustrative tasks and assess-

ments is certainly desirable, perhaps our judgments are onto something,
reflecting the nuances of a more complex reality than AI researchers have
widely acknowledged. I argue in some recent work that genuine mental
intentionality and even consciousness cannot be eliminated from our char-
acteristic descriptions of mental processes or behavior without significant
loss of accuracy and explanatory power Miracchi (forthcoming b, 2019b).
Successes in eliminating inherently mental, content-involving causal gen-
eralizations of mental processes in favor of computational, neural, or other
non-mental descriptions have been extremely limited (see e.g. Dietrich &
List (2016)). Instead, when we investigate contemporary optimism about
such reductions, we often find a slip from the highly supported claim that
it is widely possible to intervene on mental processes by manipulating
lower-level features (such as neural processes, hormones, etc) to, instead,
the claim that we have discovered lower-level mechanisms that accomplish
mental functions (see Bickle (2015) as an example, discussed in Miracchi
(forthcoming b).)

The former claim is not in dispute. What we want to know is whether
intelligent task performance and the way intelligent agents use information
for such performances can be characterized non-mentally. Not only is there
little direct evidence for this, but examples in other higher-level sciences
should make us very cautious. Consider thermoregulation, for example.4

The explanation of in virtue of what an organism thermoregulates involves
a complex suite of internal mechanisms that are coordinated so that each
is activated in the right conditions, and the “result” is that the organism
as a whole stays within the optimal temperature range. Thermoregulation
has different characteristic causes and effects than its underlying mecha-
nisms, and so can be evolutionarily selected for. Causally intervening at
the level of the underlying mechanisms tends not to change whether the
organism as a whole thermoregulates, because the underlying mechanisms
are carefully orchestrated to compensate for one another.5 Failure to ther-
moregulate can cause life-threatening problems, but failures of underlying
mechanisms typically do not (another one will step in to accomplish the
task.) Selection for thermoregulation will often entail the development of
more and more subtly orchestrated lower-level mechanisms, so that the or-

4The examples of the Mendelian gene and thermoregulation are ones I have explored in
detail elsewhere (Miracchi, 2017, 2019a, forthcoming b).

5See also Andersen (2013) for discussion of this issue regarding homeostasis, and it’s
implications for causal inference.
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ganism successfully thermoregulates across increasingly wide conditions.
While thermoregulation depends on a complex suite of mechanisms at

lower-level scales, it cannot be identified with them. It is how the organ-
ism’s suite of mechanisms is sensitively coordinated, in relation to body
and environment, that explains the higher-level capacity.

This phenomenon is not specific to biological systems, but is even il-
lustrated with higher-level characterizations of physical systems, such as
describing gases using Boyle’s Law (Strevens, 2008), for which the dynam-
ics of individual molecules is irrelevant. (Imagine trying to do chemistry
purely in the language of physics, or biology purely in the language of
chemistry! Good luck!)

What examples like this show is that throughout the special sciences
theorists are increasingly accepting that higher-level kinds operate at their
own explanatory levels, governed by irreducible causal generalizations.
This does not mean (as we’ll discuss soon) that we cannot understand how
higher-level kinds are generated by lower-level kinds. What it does mean
is that, where higher-level kinds play robust causal explanatory roles, un-
derstanding relationships between scales may mean that identifications will
not be forthcoming. Higher-level and lower-level kinds are beholden to dif-
ferent explanatory scales, and as such we should understand resistance to
identification not as a failure, but as increased understanding of the differ-
ences in explanatory roles and scales between higher-level and lower-level
kinds respectively.6

The contemporary assumption that we can can carve off the functions
and behavior associated with consciousness from their conscious aspects
is partially due to David Chalmers (1995)’s distinction between the so-
called “easy” problems of consciousness – which are the problems of pro-
viding scientific explanations of functions and behavior associated with
consciousness – from the so-called “hard” problem, of explaining how non-
consciousness-involving processes could give rise to the what it’s like of ex-
perience. As tempting as this may be, I argue in Miracchi (2019b) that this
division of problems commits substitution bias, unwittingly replacing eas-
ier tasks for the ones we want to solve. For example, consider the action
of performing a difficult yoga pose, such as pincha mayurasana. We have
no evidence that such poses can be performed unconsciously. When we
explain what we’re doing and how we’re doing what we do, consciousness
seems to be crucially involved. We are keenly aware of whether our weight

6See also Griffiths & Stotz (2013) regarding different senses, and corresponding explana-
tory roles, of “gene”.
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is more towards the forearms or more towards our fingertips, of how our
hips feel in relation to the base that makes contact with the ground. We
should not assume at the outset that the kinds of external and internal be-
havior associated with consciousness can be specified without reference to
consciousness.

Consider a purely mental task, like understanding that your ex-spouse
is manipulating your children to exert control over you. Drawing that
inference relies on conscious reasoning about what the person did, how
they acted, what their motives might have been, etc. It also involves (of-
ten rather intense) feelings and emotions. When we describe such men-
tal tasks, we do so in ways that are inherently imbued with content and
consciousness. This reasoning is not deductive, but rather is inherently
content-involving. Moreover, the way it is content-involving involves you,
as conscious thinker, trying to figure out what to believe.

Let us return to the Frame Problem. The lesson I suggest we take from
these examples is that if we are interested in building artificial agents with
the capacities that are exhibited by genuinely intelligent agents, we should
take seriously that (i) our best epistemic handle on the kinds of tasks we’re
interested in involves intentionality and consciousness, at least in many
cases, and (ii) it may be that the performing of the tasks themselves indeed
involves all of this juicy mental stuff that AI engineers have been dutifully
ignoring for the last 80 or more years. Perhaps intelligent agency can’t
be explained without the kind of desire that phenomenally pulls at you
to practice (playing Go, or pincha mayurasana), or perhaps the kind of
reasoning that involves gut-wrenching concern for your children. Maybe
explaining intelligent behavior really is that hard.

If so, and we have significantly distorted the Frame Problem by trying
to make specification of the kinds of tasks we’re interested simpler and
more objective by eliminating mental intentionality or consciousness from
characterizing them, then we should expect to get stuck in certain system-
atic ways. This is exactly what we do find, as I’ll now show.

2 The Insolubility of the Traditional Frame Problem

One key way in which mental intentionality has been written out of the
project of solving the Frame Problem is that theorists have traditionally as-
sumed that content-sensitive descriptions of intelligent processes and be-
havior are to be replaced by formal descriptions. Daniel Dennett charac-
terizes the project of solving the Frame Problem in this way:

7



Updating the Frame Problem L. Miracchi

... now how can ideas be designed so that their effects are what
they ought to be, given what they mean? Designing some inter-
nal things—an idea, let’s call it—so that it behaves vis-á-vis its
brethren as if it meant cookie or pain is the only way of endow-
ing that thing with that meaning; it couldn’t mean a thing if it
didn’t have those internal behavioral dispositions. That is the
mechanical question the philosophers left to some dimly imag-
ined future researcher.

Dennett (1987), pp. 44-45

The assumption here is that the task of building an AI whose mental
states respect semantic relationships (behave the way they “ought” to) is to
build an AI with internal symbols whose internal (formal) properties play
structurally analogous causal roles (“vis-á-vis its brethren”). The Frame
Problem so interpreted asks:

Computationalist Frame Problem: How can we design a sys-
tem so that its formal properties are isomorphic to its semantic
properties (or those we would like it to have), so that those for-
mal properties can account for the system’s behavior in the way
we would expect if we were taking its semantic properties to be
causally efficacious?

This strategy is an instance of the more general strategy of computa-
tionalism, according to which mental states and processes are identical to
computational states and processes (e.g. Fodor (1980, 1987); Marr (1982),
see Clark (2001) for an overview). This means that the kind of agential in-
formation use that is our target explanandum for the Frame Problem must
be a kind of computational information processing.

The main difficulty with this identification is that mental processes, be-
cause they are content-sensitive as we saw in the previous section, are in-
herently relational. The properties a perception has of being of a mouse, or
that a belief has of being about Toni Morrison, or that an emotion of excite-
ment has of being for a friend’s upcoming visit, are all relational properties.
Semantic characterizations go beyond describing the internal functioning
of the system—the agent, or her brain—they relate the agent to her en-
vironment. If we must appeal to semantic properties in providing causal
descriptions of genuinely intelligent information use, then our causal gen-
eralizations are inherently relational.
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Computational processes, however, are inherently sollipsistic (Fodor,
1980). A computational process is a process that is specifiable entirely in
terms of its formal properties. Formal properties are either physical proper-
ties of a system or abstractions from its physical properties. Formal prop-
erties thus are independent from their body- or world- involving relation-
ships. In describing a system, mechanism, or process as computational,
we are committing to the claim that we can carve off, at least in principle,
the role that the environment (including any larger computational envi-
ronment that might be present) causally plays from it. The causal contri-
butions and effects can be are constrained to be formally specified inputs,
and outputs. The body and environment make no contribution to how in-
ternal processes are performed.7

As others have noted (e.g. Egan (2014)), this important difference be-
tween the sollipsism of computational processes and the relationality of
their semantic contents is very powerful, and exploitation of this idea is
the crucial strategy behind computationalist assumptions in cognitive sci-
ence. Because computational processes are environment-independent that
we can simplify the project of designing computational systems. Thus com-
putational relationships can be, in certain contexts, structurally analogous
to semantic relationships, and so useful for accomplishing world-involving
tasks. However, the foregoing discussion raises an important concern about
this strategy, at least as a methodological assumption, for AI research (and
cognitive science generally, for that matter). What if computational pro-
cesses are more like the lower-level mechanisms underlying thermoregu-
lation, where a system’s capacity to thermoregulate is not determined by a
single mechanism, but rather by the coordination of internal mechanisms
in response to specific bodily and environmental conditions? In such a case
there would be no “carving off” the joints of the mental system from the
body and environment, and so no prospect of identifying mental processes
with computational processes. If mental processes are genuinely content-
sensitive, computational processes will be unable to replicate them.

To see the issue more clearly, consider the following semantic general-
ization that might be used by an intelligent agent: If a colleague invites you
to dinner, you do not show up empty-handed. The invitation may come in a
variety of physical formats: orally, by email, by post (these days only in ex-
traordinary cases), and it may be phrased in any number of ways, typically
including more specific content (the inclusion of a partner or children, sug-

7Somewhat confusingly, Susan Hurley (1998) refers to this as a kind of vertical modular-
ity, and Brooks (1991) as a kind of horizontal modularity.
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gestions of dates or menu items). Compliance with the consequent might
be instantiated by wine, flowers, dessert, or perhaps an artifact from recent
travel or a toy for your colleague’s child. For any of these determinates of
invitations or gifts, in some other situations they will not count as such. For
example, in the context where my colleague and I are also close friends, the
very same words may not be intended as an invitation to me, but instead
as asking for advice on how to word the invitation to someone else. I might
have stopped at the wine store on the way to dinner intending to keep the
bottle for myself. I might bring an artifact from recent travel that we had
discussed earlier, but not give it as a gift. And so on.8

Moreover, although the content-involving rule is counterfactually sup-
porting, there may be no determinate of this rule that supports the same
counterfactuals, even in normal conditions. Upon receiving an invitation I
may be no more likely to bring flowers than wine, and whether I bring one
or the other may have nothing to do with whether the invitation comes by
email or conversation, or whether the date is given numerically or by rela-
tion to the date of the invitation (e.g. next Thursday). Thus there is no hope
of relating determinate e.g. visual or auditory inputs to determinate motor
outputs so that a formal algorithm instantiates the computation. So many
other factors may come into play in specifying the determinates of invita-
tions and gifts that plausibly the only relevant counterfactual-supporting
generalization that can be made is: if a colleague invites me to dinner, I don’t
show up empty-handed.

Formal computations come with a commitment to formally specifiable
inputs and outputs that an algorithm can relate, whereas with semantic
rules there generally can be no such commitment: the relational contents
specifying the rules inherently cross-cut physical, especially proximal, fea-
tures.

What we lose sight of when we treat semantic generalizations as compu-
tational is the substantial work that goes into triggering the right algorithm
(or collection of algorithms) in the right situation. The orchestration of
algorithms, in coordination with often quite complex bodily and environ-
mental facts, is highly relevant to whether the semantically characterized
generalization is instantiated. Because this is so, it is inappropriate to call

8It is no accident that computational cognitive science’s most specific and convincing ex-
amples of content-involving computational rules are ones where the content is mathemati-
cal, at the very least, and if there is distal content it is scaffolded onto this mathematically
specified content (as in, e.g. Marr & Hildreth (1980)’s model of edge detection to detect
zero-crossings and Shadmehr & Wise (2005)’s computational theory of motor control, as
discussed in Egan (2014).
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such generalizations computational. For the very reasons that generaliza-
tions involving mental states and processes need to be semantically char-
acterized, they are not directly amenable to computational identification.
Because the right causal description of the process is genuinely semantic,
and so genuinely relational, it cannot be instantiated by formal, sollipsistic,
processes.9

We can now understand why the Frame Problem has been so persistent,
and difficult. On the assumption of computationalism, we have ignored the
possibility that agential information use of the kind crucially involved in ef-
fective, reliable intelligent behavior might not be specifiable computation-
ally. We have been trying to represent relations of semantic relevance in the
hopes that the right representations would enable us to replicate agential
information use.10 But if computational processes are inherently causally
isolated from relational factors, then they will only be able to functionally
mimic inherently relational semantic processes, and they will do so only
under very specialized conditions where body and environment are tightly
controlled.

When the issue is articulated in this way, we can expect the kinds of
failures, and persistent difficulties in solving them, that we have in fact
found in AI and robotics research. The massive advances that have been
made for more specialized systems or highly controlled environments have
not transferred well to these other problems (as e.g. evidenced by difficul-
ties encountered at the DARPA Robotics Challenge, C. G. Atkeson & Xin-
jilefu (2015)). More complex forms of processing such as deep neural nets
have shown progress over classical AI systems, but this technology does
not readily transfer to novel problems and on its own and often tends to be
slotted into traditional architecture (Marcus, 2018). Increasing the quality
of information (e.g. image classification) does not solve the problem. Al-
though there are attempts to use deep neural net technology in robotics to
develop robust and flexible behaviors (cf. Ha et al. (2019)), there is to date
no general theorizing about deep neural nets that helps us understand how
they might solve the problem.

In designing and building such specialized systems we have replaced a

9Peacocke (1994) defends the idea that there is a genuinely content-involving concep-
tion of computation that cognitive science makes use of, attempting to appeal to normal
conditions to produce a parallelism between algorithmic and relational characterizations
of mental processes. But as the preceding example shows, appeal to normal conditions is
not enough. What we seem to have is the coordination of algorithsm to produce genuinely
relational causal generalizations. Our theorizing should reflect this.

10See also Searle (1980).
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genuinely relational characterization for a formal characterization, and ex-
pect the formal system – whose causal contours are inherently sollipsistic
– to behave as if its causal contours were inherently relational. If we really
want to build artificial agents that can accomplish tasks that are relation-
ally specified in a wide variety of environments, we should investigate how
to build agents with such relational causal profiles directly.

3 Updating the Frame Problem with the Generative
Methodology

Let us regroup. I have argued that the way the Frame Problem is stan-
dardly interpreted, and thus the strategies considered for attempting to
solve it, are overly simplistic and reductionistic. In particular, the stan-
dard interpretation assumes that solving the Frame Problem is a matter of
finding a computational representational architecture that can effectively
formally represent relations of semantic relevance. The assumption that one
may replace semantic causal generalizations with formal ones and thereby
explain intelligent information use fails to account for the inherent rela-
tionality of semantic processes, on the one hand, and the inherent sollip-
sism of formal processes, on the other. Formal representations of semantic
relationships can only produce brittle systems that at most reproduce some
functional properties of genuinely intelligent systems in highly specialized
and restricted circumstances.

I have suggested that instead we should focus our attention on building
a system that is genuinely causally sensitive to semantic relevance itself. We
should focus on building systems whose lower-level parts are orchestrated
such that the system as a whole responds to relationships of semantic rele-
vance.

I have argued elsewhere that this kind of project – finding the natu-
ralistic bases of mental kinds – project can be made more precise by un-
derstanding it on serious analogy with causal explanation (Miracchi, 2017,
2019a). According to this generative methodology, we treat the empiri-
cal investigation of how non-mental, non-intelligent processes give rise to
intelligent ones as investigation into a kind of another kind of difference-
making relationship. While causal explanations explain how what comes
before makes a difference to what comes after, generative explanations ex-
plain how that which is more fundamental, or “lower-level” structures it-
self into what is less fundamental, or “higher-level”. These higher-level
kinds obtain wholly in virtue of lower-level kinds, but empirical investi-
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gation into how this occurs neither requires, nor results in, a definition of
higher-level kinds in lower-level terms. Instead, the generative methodol-
ogy aims for an a posteriori understanding of what difference-makers there
are, and uses measures of both explanans and explanandum variables in
context to infer those relationships.

On this approach, solving the Frame Problem is a matter of finding
computational, bodily, and environmental generative difference-makers to
how agents use information. Importantly, a generative explanation in-
volves three components. First, there is the basis model, the explanation of
the computational, bodily, and environmental factors in those terms: their
important features and causal roles. It is models of this sort that we are
most familiar with in AI and cognitive science. Adequate basis models will
plausibly appeal heavily to computational information processing.

Then there is the agent model, which describes the intelligent behavior
or process we want explained – in our case, use of relevant information for
accomplishing a task. Our agent models will aim to describe as clearly and
systematically as possible the kinds of intelligent behavior and information
use we are interested in artificially replicating, but they will not aim to
eliminate mental vocabulary. Adequate agent models will appeal to agents
as users of information and performers of intelligent tasks, and appeal to the
agent’s understanding and consciousness in describing how the agent uses
information in accomplishing her aims.

Lastly, there is a generative model, which describes how manipulat-
ing features of the basis model makes a generative difference to features of
the agent model. Computational information processing is part of the ex-
planans, while intelligent use of information by artificial agents is the ex-
planandum.

The Frame Problem is thus the problem of understanding how compu-
tational processing, orchestrated in complex ways with artificial body and
environment, can generate genuine semantic sensitivity at the level of the
whole agent. We can update the Frame Problem now as follows:

Updated Frame Problem: How can features of a system’s com-
putational processing, body, and environment be organized in
complex and sophisticated ways so that a whole system is gen-
erated which can genuinely make use of semantic relevance in
acting and planning intelligent actions?11

There are a few things to note right away. First, as a methodology and

11This is a determinate of what I call the “Key Question” in Miracchi (2019a).
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strategy, there is no guarantee that we will be able to provide a general the-
ory of how intelligent agents use relevant information. We may at most be
able to explain how an intelligent agent is able to use relevant information
for a certain range of behaviors, in the kinds of contexts she tends to find
herself in. At least as a methodological starting point, we should not re-
quire more generality that this. Just as in the causal case one can accurately
describe causal mechanisms even if they hold only locally (Godrey-Smith,
2008), so in the generative case one might provide a genuine explanation
of an agent’s use of semantic properties that holds only for a range of cir-
cumstances. Another reason to expect this is that the range of basis models
will be as diverse as the range of possible AI architectures, bodies, and en-
vironments. Perhaps there is something general to say at the physical level,
but it may be that all such systems will have in common is that they are
organized in ways that give rise to intelligent agent information use.

Second, even though the Updated Frame Problem as specified is inher-
ently more complex than traditional ways of understanding and approach-
ing it, it has the potential to be a rigorous and systematic research program
on which incremental progress can be made. Even though we are not cur-
rently in a position to tackle anything as difficult or complex as the use
of information for behavior that is clearly intelligent, such as performing
pincha mayurasana or inferring that your ex is manipulating your chil-
dren to exert control over you, adopting a generative methodology puts
us in increasingly better position to develop more and more sophisticated
basis, agent, and generative models. If we increasingly understand how
features of computational mechanism relate to body and environment in
coordinated ways so as to produce desired behaviors across a range of cir-
cumstances, we may eventually be able to understand how to generate the
robust and flexible behavior characteristic of genuinely relational informa-
tion use.12

Recently collaborators and I took the first step towards illustrating the
viability of this approach. In (Roberts et al., forthcoming), we provide six
examples of research in legged robotics that show how a generative anal-
ysis can help us to distinguish basis-level commitments (e.g. what rep-
resentations are needed) from agent-level explananda (in this case Gibso-
nian affordance-exploitation of the environment, Gibson (1979)). By dis-
tinguishing basis and agent models we open up empirical space to ask how

12In this way, we can adopt Brooks (1985, 1991)’s insight that AI research will be more
productive by incrementally developing systems with real-world capabilities, instead of
designing systems that are supposed to play a role in an armchair-specified architecture.
This insight does not require his accepting his general anti-representationalist stance.
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information-processing might generate affordance exploitation, instead of
supposing that the desired behavior must be, or is most effectively pro-
duced by, certain kinds of representational states. We show how capacities
for simpler behaviors can be organized in order to generate systems char-
acterizable as exploiting relational affordances, but these affordances are
not explicitly represented by the robot. We also show how advances can be
progressively built upon to produce robots with more complex and robust
capacities (see, e.g. Ilhan et al. (2018)).13

The prospects of this kind of empirically based incremental approach
– that includes explicit philosophical and empirical attention to specifying
the kinds of tasks of interest and aims to specify ever more precise and
accurate agent models, thereby opening up the space for empirical investi-
gation into generative relationships – are bright. The Frame Problem might
be hard, but it no longer seems hopeless.

4 Conclusion

I hope to have shown why the Frame Problem has seemed so intractable,
why oversimplifying and reductive assumptions are the root of the diffi-
culty, and how to update those assumptions in a way that helps us ap-
proach the Frame Problem in a new, more productive light. The Frame
Problem can be solved, just not as traditionally conceived. Instead of as-
suming that agential information use can be given a computational speci-
fication directly, we should look to provide generative models of how com-
putational information processing, in body and environment, generate this
relational capacity that we and other genuinely intelligent beings have.

I close with brief discussion of an issue that I have before now left im-
plicit, namely how the preceding discussion gives robotics a central place
in AI research. Because semantic generalizations are relational, a system
that is inherently semantically characterizable cannot have the kinds of
causal joints that disembodied AI systems have. Indeed, the only empiri-
cally tractable way I see of generating a system that is inherently semanti-
cally characterizable is by starting with simpler robotic systems and pro-
gressively making them perform activities that increasingly approximate
intelligent behavior. Real progress on the Frame Problem will be made, not
by developing systems that can beat us at specific human-level tasks, but

13The last two examples use explicit representation of affordances at the most ab-
stract level, but the effectiveness of these representations crucially depends on lower-level
affordance-exploitation that does not involve explicit representation of their corresponding
affordances.
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by investigating how artificial embodied systems might be progressively
designed so that they increasingly interact with their environments as if
they have minds of their own, using what is available to them to get their
aims accomplished.
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