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Abstract The contribution of the body to cognition and control
in natural and artificial agents is increasingly described as “offloading
computation from the brain to the body,” where the body is said to
perform “morphological computation.” Our investigation of four
characteristic cases of morphological computation in animals and
robots shows that the “offloading” perspective is misleading.
Actually, the contribution of body morphology to cognition and
control is rarely computational, in any useful sense of the word.
We thus distinguish (1) morphology that facilitates control,
(2) morphology that facilitates perception, and the rare cases of
(3) morphological computation proper, such as reservoir computing,
where the body is actually used for computation. This result
contributes to the understanding of the relation between embodiment
and computation: The question for robot design and cognitive
science is not whether computation is offloaded to the body, but to
what extent the body facilitates cognition and control—how it
contributes to the overall orchestration of intelligent behavior.

1 Introduction

1.1 Structure
It has become increasingly common to explain the intelligent abilities of natural agents through ref-
erence to their bodily structure, their morphology, and also to make extended use of this morphology
for the engineering of intelligent abilities in artificial agents (e.g., robots). These two uses of mor-
phology for explanation and engineering are sometimes referred to as “morphological computation” (see
the special 2013 issue of Artificial Life 19(1)).1 Since this notion is fairly new and fairly vague, we
will look at the existing uses, interpretations, and definitions of this concept and discuss their im-
plications. The term is initially puzzling because it is sometimes used to counter the classical view
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that “cognition is computation” through a study of body-dependent behavior (there it overlaps with
embodiment), but then it reintroduces the notion of computation through the back door. It also
seems to call processes and features “computational” that would not normally fall under that term—
such as the morphology of geckosʼ feet that allows them to walk on smooth vertical surfaces.

In order to clear up the muddy waters of morphological computation, we categorize the conceptual
situation and come to the conclusion that morphological computation is actually extremely rare. We first
introduce four types of characteristic cases that are often cited as examples of morphological compu-
tation: (1) passive dynamic walkers, (2) self-stabilizing robots and climbing geckos, (3) insect eyes with
distribution of light-sensitive cells optimized for particular tasks, and (4) physical reservoir computing
(Section 2). Then, we introduce different notions of computation, abstract and physical (Section 3), and
apply them to the characteristic cases (Section 4). Based on this analysis, we classify the case studies into
three classes: morphology facilitating control, morphology facilitating perception, and morphological
computation. This also serves as a “reality check” for several notions of computing (Section 5). Finally,
we explain the conclusion that design and analysis should focus not on computation, but on how
morphology facilitates cognition and control—how it contributes to the orchestration of intelligent
behavior (Section 6) and how it can be specifically designed to do that—either by evolution in the
case of animals, or by engineers. A perfect example of the latter is the growing field of soft robotics.

1.2 An Initial Worry
In a classic book on the subject, Pfeifer and Bongard [61] show a flexible sprawl robot, a dog, and a
conventional humanoid walking over an uneven surface (see Figure 1) and comment:

Morphological computation. (a) Sprawl robot exploiting the material properties of its
legs for rapid locomotion … thus reducing the need for computation. (b) An animal
exploiting the material properties of its legs (the elastic muscle-tendon system) thus also
reducing computation. (c) A robot built from stiff materials must apply complex control to
adjust to uneven ground and will therefore be very slow. [61, p. 97, Figure 4.1 caption]

By “morphological computation” we mean that certain processes are performed by
the body that otherwise would have to be performed by the brain. [61, p. 96]

These remarks lend themselves to at least two divergent interpretations:

1. Appropriate use of the body morphology leads to a reduction of the total amount of
computation that is required to complete the task.

Figure 1. Morphological computation [61, p. 97, Figure 4.1].
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2. The total amount of computation is constant, but a body takes over some of the
computation originally performed by the brain and computes it in the morphology.

In the example of walking, is this a computational task in the first place? Is the perspective of
“offloading computation from the brain to the body” feasible? That is, is it a design decision that
one can take: In design (a), one decides to off-load computation to the body, and in design (c), one
decides not to, and to compute centrally in the brain/controller? Even if such a hypothetical design
landscape existed and an agent could move on it, in what sense would the contribution of the body
be a computational one?

2 Approaching the Problem: Characteristic Cases

To clarify the picture, we will analyze four families of case studies from the morphological compu-
tation literature and try to structure the diverse approaches by locating them within a conceptual
landscape: (1) the passive dynamic walker, (2) self-stabilizing machines, gecko feet, and coffee
balloon grippers, (3) the eye of the fly, and (4) physical reservoir computing.

The passive dynamic walker (1) is a classic example that is invoked in many places, but it is also
characteristic in that it has no control structure in the classical sense, no computer in the classical
sense, no motors, and no sensors either—a purely mechanical device. It is thus the extreme example:
If this is computing, what is not? Self-stabilizing machines and gecko feet (2) can be viewed as
“active extensions” of the passive walker. The physical body is complemented by actuators and
sensors and their connection in a simple control loop; yet the physical interaction of the body with
the environment remains absolutely crucial for the task at hand. But the systems discussed in the
context of morphological computation concern not only movement, but also traditionally more
“cognitive” abilities like perception, and one case where this is particularly apparent, and well-studied,
is the eye of the fly (3). Finally, there are cases where the whole system, the body, literally seems to
compute, so we need an example for this kind (4), which is reservoir computing. Of course, the choice of
examples was revised in the light of our discovery that there are three distinct uses of “morphological
computing” that actually talk about rather different things—so we need examples for each of these
uses. (Cases (1) and (2) belong to the same category, in our analysis.)

2.1 The Passive Dynamic Walker: Behavior by Purely Mechanical Interaction
One classical example in this field is the passive dynamic walker [52]: a minimal robot that can walk
without any motors or control electronics. It loosely resembles a human, with two legs, a minimal
torso, and two arms, but its ability to walk is exclusively due to the downward slope of the incline on
which it walks and the mechanical parameters of the walker (mainly leg segment lengths, mass
distribution, and foot shape) (Figure 2a). The walking movement is entirely the result of finely tuned
mechanics on the right kind of surface. A motivation for this research is also to show how human
walking is possible with minimal energy use and minimal central control.

2.2 Self-Stabilizing Machines, Gecko Feet, and Coffee Balloon Grippers
Most of the problems that animals or robots are faced with in the real world cannot be solved solely
by passive interaction of the physical body with the environment. Typically, active involvement by
means of muscles/motors is required. Furthermore, the actuation pattern needs to be specified by
the agent,2 and hence a controller of some sort is required. However, it turns out that if the physical
interaction of the body with the environment is exploited, the control program can be very simple.
For example, the passive dynamic walker can be modified by adding a couple of actuators and

2 In this article, we will use “agent” for whatever acts and has some morphology, like an animal or a robot, without thus committing
ourselves to a particular view on what kinds of things are agents, whether they must be individuals, or the like.
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sensors and a reflex-based controller, resulting in the expansion of its ecological niche to level
ground (Figure 2b) while keeping control effort and energy expenditure to a minimum [14].

While taking advantage of the natural interaction of the body with the environment can lead to
very energy-efficient locomotion, what if the agent is perturbed out of this preferred regime? It
seems that corrective action needs to be taken. However, it can be the very same mechanical system
that can generate this corrective response. This phenomenon is known as self-stabilization and is a
result of a mechanical feedback loop. To use the dynamical systems description, certain trajectories
(such as walking with a certain gait) have attracting properties, and small perturbations are automat-
ically rejected.3 Blickhan et al. [5] review self-stabilizing properties of biological muscles in an article
entitled “Intelligence by Mechanics”; Koditschek et al. [42] analyze walking insects and derive
inspiration for the design of a hexapod robot with unprecedented mobility (RHex—Figure 2c; e.g.,
[71]). In human locomotion, Tagaʼs seminal work dealing with entrainment among the neural system,
the musculoskeletal system, and the environment has a similar spirit [76, 77], including robustness
against perturbations.

In some cases, a particular body morphology is the only means to achieve certain behaviors. This
is wonderfully illustrated by the ability of geckos to climb both rough and smooth vertical surfaces,
mainly thanks to van der Waals forces between their feet and the surface they are climbing on. In
order for these forces to have sufficient magnitude, a very intimate contact between the feet and the
surface is necessary (Figure 2d). This is achieved through a hierarchical structure of compliance that
allows conformation on a centimeter scale (through flexion of body and limbs), millimeter scale
(morphology of toes and lamellae on their surface), 1–50-micrometer scale (setae of which the
lamellae are composed), and <500-nanometer scale (hundreds of spatulae at the setae tips) [2]. These
findings have inspired the design of Stickybot—a robot that can climb smooth vertical surfaces
including glass, tile, and plastic [39]. Again, the specific ability of the gecko is the result of its mor-
phology interacting with a particular environment—not primarily that of higher-level central control.

Finally, the same equally applies to other behaviors or tasks—not only to locomotion. Brown
et al. [8] have devised a gripper that utilizes a unique grasping strategy. Fingers of a hand are replaced
by a single mass of granular material (e.g., ground coffee). The bag containing granular material is
pressed onto an object, flows around it, and conforms to its shape (Figure 2e). Then, a vacuum
pump is used to evacuate air from the gripper, which makes the granular material jam and stabilize

3 The description is idealized—in reality, a walking machine would fall into the class of hybrid dynamical systems, where the notions of
attractivity and stability are more complicated.

Figure 2. Walking, climbing, and grasping creatures. (a) The Cornell passive dynamic walker with arms, which can walk
completely passively down an incline [15]. (b) An actuated extension of the passive walker that can traverse flat
ground [14]. (Both pictures courtesy of Steve Collins.) (c) RHex robot [71] (picture courtesy of U. Saranli). (d) Gecko
foot. (e) Coffee balloon gripper [8] (picture courtesy of John Amend).
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the grasp. The gripper conforms to arbitrary shapes passively, that is, without any sensory feedback,
thanks to its morphological properties only. Brown et al. identify three mechanism that contribute to
the gripping: (i) geometric constraints from interlocking between gripper and object surfaces; (ii) static
friction from normal stresses at contact; and (iii) an additional suction effect, if the gripper membrane
can seal off a portion of the objectʼs surface. The properties of the gripper can be changed by using a
different granular material. Objects of various shapes as well as hardnesses (from steel springs to raw
eggs) can be gripped.

2.3 The Eye of the Fly
In previous subsections, we have outlined a few characteristic cases that illustrate the key role the
particular body morphology plays in performing certain behavior. The focus was thus on the impli-
cations of the shape and material properties of the body for direct physical interaction with the
environment. However, the body morphology critically shapes the information flow in an agent
as well. In particular, the type of sensory receptors—their mechanism of transduction—determines
what kind of signals the agentʼs brain or controller will be receiving from the environment. Further-
more, the shape and placement of these sensors will perform an additional transformation of the
information that is available in the environment.

For example, different species of insects have evolved different non-homogeneous arrangements
of the light-sensitive cells in their eyes, providing an advantageous nonlinear transformation of the
input for a particular task. One example is exploiting ego-motion together with motion parallax to
gauge distance to objects in the environment and eventually facilitate obstacle avoidance. However,
to correctly compute the distance to the objects, the sine of the angle spanned by the objectʼs mo-
tion on the eye is involved (see Figure 6 in [25]), which would have to be taken into account by the
motion detection circuitry—if the spacing of light-sensitive cells were uniform. However, the dis-
tribution of the cells is nonuniform and follows a sine gradient in the interommatidial angle, such
that sampling of the visual space is finer towards the front than laterally (the head of a male housefly
can be seen in Figure 3a). This effectively compensates for the sine relationship in the formula and
allows uniform motion detection circuitry to be used everywhere. Franceschini et al. [25] performed
this analysis on a housefly and at the same time designed a mobile robot that avoids obstacles using
the same concept. Recent designs of artificial eyes with design inspired by arthropods include [73]
and [23] (Figure 3b).

2.4 Physical Reservoir Computing
Unlike typical robot bodies that often have rather simple geometrical forms and are composed of
rigid materials, biological bodies typically have highly complex shapes and are soft and deformable.
These properties also make their dynamics much richer. This can be exploited for directly achieving
particular behavior in the physical world on one hand, and on the other hand can be utilized for
computational tasks.

Figure 3. Eye morphology. (a) Eye of a fly. (b) CurvACE artificial compound eye [23] (image courtesy of Dario Floreano).
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The neural networks community has recently proposed a family of architectures that has been
named reservoir computing (see, e.g., [47] for a review). There is a large collection of neurons with non-
linear activation functions and with recurrent connections that have a random but bounded strength;
this is referred to as a dynamic reservoir. These neurons are randomly connected to input streams, and
the dynamics of the input is then spread around and transformed in the reservoir, where it resonates
(or “echoes”—hence the term “echo-state networks”) for some time. It turns out that tapping into
the reservoir with simple output connections is often sufficient to obtain complex mappings of input
stream to output stream that can approximate the input-output behavior of highly complex nonlinear
dynamical systems (e.g., [37]). During training, the weights from the input streams and between the
reservoir neurons are left intact; only the output weights—from the reservoir to the output layer—are
modified by a learning algorithm (e.g., linear regression). The complexity of the training task has been
greatly reduced (as opposed to training all the connections—see [36] for details) by exploiting the
reservoir to perform a spatiotemporal transformation of the input stream (the temporal aspect of
the input sequence has basically been unfolded by the reservoir and can be retrieved directly at
any instant). Furthermore, if feedback loops from the output back to the reservoir are introduced
and subject to training, the network can be trained to generate desired output streams autonomously.

Interestingly, a physical device can act as a reservoir as well. This can be simply a bucket of water
[22] or the body of an agent. Biological bodies interacting with their environments tend to possess
the properties required—nonlinearity and fading memory—and might thus be employed as spatio-
temporal filters. Hauser et al. [27, 28] provide a theoretical foundation for these mechanisms:

The underlying idea is to view the morphological structure as some fixed nonlinear
kernel, which provides us with high-dimensional projections and nonlinear combinations
of our input. Hence, the required nonlinearity (next to the dynamics) is provided by
the morphological structure itself and, therefore, linear feedbacks and readouts are
sufficient in order to emulate nonlinear differential equations. [28, p. 601]

Concrete demonstrations of this property are provided using simulated mass-spring systems. For
example, different networks consisting of dozens of masses and springs with linear feedback loops
(see Figure 4) are trained to emulate different nonlinear limit cycles (Van der Pol oscillator, quadratic
limit cycle, Lissajous figure) as well as four output streams corresponding to motor patterns for four
quadruped gaits. Johnson et al. [38] have demonstrated that a similar mass-spring system can be evolved
to replace a continuous-time recurrent neural network in the famous categorization task of Beer [4].

This idea has been adopted by others and demonstrated in other systems too. Caluwaerts et al.
[10] have explored this approach in a simulated “robot”—a tensegrity structure consisting of fixed
bars and passive and active springs. The body was employed as a reservoir to sense the properties of
different terrains. Then, a simple readout mechanism was trained to classify the grounds. Further-
more, the tensegrity structure, accompanied by a feedback loop and a readout mechanism, was also

Figure 4. Spring-mass computer [28]. (Image courtesy of Helmut Hauser.)
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shown to generate a periodic pattern similar to one produced by a nonlinear oscillator [11]. This
output could then be used as a command sequence sent to actuators. However, this approach
was further complicated in a quadrupedal robot [19]. Nakajima et al. [57] have used a model of a
soft robotic arm inspired by the octopus. In a simulated arm in an underwater environment, they
successfully embedded the same benchmarks used by Hauser et al. in the open-loop system (2nd-
and 10th-order dynamical system and Volterra series [27]) and in the system with feedback (Van der
Pol equations, quadratic limit cycle, and Lissajous curve [28]). Extensions on an actual physical
silicone arm in a water tank were presented in [58].

3 The Relevant Notions of Computation: Abstract and Physical

Before we try to analyze the characteristic cases with respect to their relationship to computation, we
will set the ground for this exercise by reviewing different notions of computation and, in particular,
what it means for a physical system to compute.

3.1 Abstract Computation and Its Models
We will briefly introduce the most important models of abstract or mathematical computation. The
first will be the classical Turing model. Second, we will introduce a class of “nonstandard” or
“natural” computation models that try to go beyond the Turing model and lift some of its constraints.

3.1.1 Digital Turing Computation
The classical notion of computation starts from a digitally encoded input, which is processed step by
step, following an algorithm, giving rise to a digital output. One formalization of this notion is the
Turing machine—an abstract device that manipulates symbols on a tape according to a table of rules.
The computation is serial and batch, that is, the computation is finished and complete output is pro-
vided only once the machine halts. No additional inputs can be introduced during the computation.
This can be used to define the family of effectively (or algorithmically) computable functions, as
outlined by the Church-Turing thesis:

All and only the effectively computable functions can be computed by a Turing machine.
[13, 80; also see 55]

Alternative, but equivalent, formalizations are possible using lambda calculus [13], recursive
functions [40], or other techniques.

To move from one digital state to another in a Turing machine is a step-by-step process that
follows a finite rule, that is, an algorithm, which is itself formal. So, the computation is a purely
syntactic process that can be realized in several different ways on a physical device: It is thus multiply
realizable, and since the states are digital, it is exactly multiply realizable.

3.1.2 Natural Computation
The Turing model of computation has been extremely powerful and is sometimes regarded as syn-
onymous with computation itself. However, some of the features of the Turing model (digital,
batch, serial, etc.) can also be constraining, especially with regard to realizing the computation on
substrates that are common in nature. “Natural computing” is an umbrella term that encompasses
efforts to characterize computations performed by natural systems—neural computation, for
example—as well as realizing computation on alternative hardware, like molecular (or DNA) com-
puting or quantum computing.

Some classes of problems, like the continuous domain, can only be approximated by Turing
machines; some, like parallel asynchronous computing, lie outside the Turing model altogether.
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However, to qualify as computation, an alternative model is required that provides a formal descrip-
tion of the states and their evolution.

One possible formalism for analogue computing is provided by dynamical systems theory: A
dynamical system is governed by its internal dynamics, and it may also receive a stream of input
signals and produce a stream of output signals.4 Crutchfield et al. [16] provide a broader context
for computation by complex systems in their introduction to a focus issue of the journal Chaos :
“Information Processing in Dynamical Systems—Beyond the Digital Hegemony.” Dambre et al.
[18] have studied these real-time mappings and defined the information-processing capacity of a
dynamical system and how it can be inferred, allowing for a comparison of computational properties
of a broad class of dynamical systems. Time-invariant systems with fading memory—which often
serve as a formalism in reservoir computing (including physical reservoir computing [27])—are one
particular class of these systems. Maass et al. [49] present a computational model based on transient
dynamics in high-dimensional neural circuits. Unlike in the Turing model, no sequential transitions
between discrete states are necessary, yet universal computational power can be achieved.5

In theory, natural computation would be a superset of Turing computation, but it is rather a
collection of different possible computational models that lift some of the constraining features
of the Turing model (digital, batch, serial, etc.; see [20] for a detailed account). An analogue com-
puter uses continuously changing processes and requires some sort of input, a process, and then a
measurement of the outcome to a certain degree of accuracy. A classic example is the slide rule; a
less mathematical example is the bombsights used in WWII bomber aircraft to determine the op-
timal time of bomb release to hit a target, given the angle, altitude, and wind speed (taking into
account gravity and air drag). Both were replaced by digital computers in the 1960s. If the compu-
tational model is analogue, it is not possible to realize it exactly in physical machines, and it is thus
only approximately multiply realizable.

3.2 When Does a Physical System Compute?
The models of computation discussed above are solely on the abstract level; for computation to be
performed in the real world, they need to be realized on a physical system. A prime example is the
standard digital computer, which comes practically close to realizing the (abstract) Turing machine in
an electronic device (only the computerʼs memory is not unbounded like the tape of the Turing
machine). This particular physical realization is unproblematic, and it naturally occurs to us that
the digital computer performs computation. However, the situation will become more complicated
as we discuss whether other physical systems are computing.

3.2.1 Designed, Useful Computation with Encoding and Decoding
A concrete formal framework addressing “When does a physical system compute?” was recently put
forth by Horsman et al. [32] in an article with that title. They tackle the question as a relationship be-
tween an abstract object (a computation) and a physical object (a computer), which is best explained by
using a schematic (Figure 5) to illustrate the correspondences. These correspondences are encapsulated
in a theory T. There are then two principal perspectives one can take. The first one is that of an
experimental science, like physics, that aims at understanding a (physical) system. This is a modeling
endeavor—a theory is sought that allows describing the evolution of the physical system in abstract
terms, and it can be tested using experiments. That is, under the particular theory, the state of the
physical system, p, is observed and turned into its abstract counterpart, mp, using the representation
relation RT. Then the physical system is left to evolve, and in parallel the abstract layer is also evolved,
using the abstract dynamics, CT, which should parallel the physical dynamics,H. Finally, if the theory is

4 A possible bridge between dynamical systems and digital computation is the symbolic dynamics framework (e.g., [45]).
5 This architecture, that of liquid state machines, was later united with echo-state networks under the “reservoir computing” umbrella.
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valid, the abstract final state, mp
0 , should be “close enough” to the representation of the physical

final state, RT (p
0), that is, mp 0. The abstract and the physical layer should thus “commute,” and

the theory can be used to predict the evolution of the physical system (running only the path from
p over mp to mp

0 ).
The other perspective is essentially complementary and involves using the physical system to predict

the outcome of an abstract evolution. It relies on the quality of the theory T that produces a commuting
diagram, but requires in addition a representation relation in the opposite direction—the instantiation IT.
That is, it has to be possible to find a physical object corresponding to an abstract description (encoding
the abstract state—e.g., encoding a “1” as voltage high). Here we are moving from the realm of science
(modeling) to the realm of technology—the theory can be used to construct (engineer) a physical sys-
tem in a given state. With that in place, the physical system can finally be used as a computer using the
following trajectory: An abstract initial state mp is encoded into the physical system using IT (mp), giving
rise to p; the physical system is left to evolve, reaching p0, which is finally decoded using RT(p

0), giving
rise to mp 0, which we are assuming corresponds to mp

0—the desired outcome of the abstract evolu-
tion. In this case, the physical system has acted as a computer.

Horsman et al. [32] conclude their framework by stating the necessary requirements for a physical system
to be capable of being used as a computer :

a. A theory T of the physical computational device that has been tested in relevant situations
and about which we are confident.

b. A representation {RT, IT} of the physical system that is used for representing the initial
state of the physical system (encoding using IT) and also for the final state, so that output
is produced from the computation (decoding using RT).

c. At least one fundamental physical computational operation that takes input states to
output states.

d. The theory, representation, and fundamental operation(s) satisfy the relevant sequence of
commuting diagrams.

This description is agnostic with respect to the particular abstract computation type (digital Turing or
natural) as well as to the nature of the physical system—the important thing is that the theory is
sufficiently advanced and reliable that we can rely on the commuting diagrams in all scenarios we are
planning to use the computational device in. The advantage of a digital computer is that a perfect,
rather than a “close enough,” match between mp

0 and mp 0 is guaranteed.

Figure 5. Full commuting diagram between an abstract and a physical system. The relationship between the abstract and
the physical system is established by the theory T. The dynamics of the abstract system (transition between initial and
final states) is described by CT. The initial state of the abstract system is denoted as mp, and its final state as mp

0 . The
physical systemʼs dynamics isH, and its initial state and final state are denoted as p and p0, respectively. RT is the modeling
relation that maps physical entities p to their abstract models mp (also decoding). IT is the inverse instantiation relation
(encoding) that goes in the opposite direction and allows one to physically instantiate an abstract entity. (Created based
on multiple schematics from [32].)
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3.2.2 Without the User, There Is No Computer
There is an additional important aspect that is implied by condition b—representation, involving
encoding and decoding. As Horsman et al. put it:

A necessary condition of there being representation present is that there is, as well as
the computer, an entity capable of establishing a representation relation. That is, an
entity that represents this specific physical system as this specific abstract object,
encoding and decoding data into it. Something must always be present that is capable
of encoding and decoding: if there is a computer, what is using it? [32, p. 15]

This definition matches with the conditions for computation presented by Crutchfield et al. [16, p. 2],
who characterize systems performing “designed computation” as machines that “process information in
ways that are useful to us”—and it is one approach to the symbol grounding problem [54]. In the same
vein, Piccinini [66, p. 740] introduces a “Usability Constraint: if a physical process is a computation, it
can be used by a finite observer to obtain the desired values of a function”—so he allows for a computer
that is not actually used—as does the “programmability” proposal in Zenil [84].

Finally, another definition of computation—specifically targeted to encompass morphological
computation—was developed for the 2007 International Conference on Morphological Computation
under the leadership of Norman Packard (cited from the call for papers of the 2011 conference),
defining a process to be a computation if:

(1) we can identify relation between input and output systematically,

(2) the process is programmable for the generation of different classes of non-trivial input-
output mappings, and

(3) it is useful for some specific purposes.

Again, conditions (2) and (3) seem to step out of the computational process itself and take an outside
perspective of an observer or user of the computation. That is, the mappings need to be programmable
(by someone) and useful ( for someone ). This observer or user can presumably be the agent itself, or it can be
humans that exploit a particular physical system to perform a specific type of mapping that is useful to
them. The encoding/decoding step is not explicitly addressed here, however.

3.2.3 Intrinsic Computation
The world is naturally populated with a variety of physical systems of different properties and scales.
Many of them can be said to have some computational properties (like storing and generating in-
formation) without being “designed computers,” so they “intrinsically compute” [16]. Information-
theoretic methods can be used to measure the amount of computation (see, e.g., [83] for an example
in quantum systems). Some physical systems will then have richer or more interesting computational
properties than others—for example, they can be very fast or compute in parallel. Specifically
relevant to morphological computation, biological bodies interacting with their environments tend
to possess nonlinearity and fading memory, which can be exploited by the reservoir computing
framework (Section 2.4).

If there is a user, encoding and decoding are designed, and the physical system is sufficiently
reliable, then the natural computing substrates can become computers according to the framework
presented in the previous section. However, Horsman et al. [32] point out that this computational
(abstract) description of the physical evolution should be available a priori. Only then can the
physical system be used to predict anything (the evolution of an abstract system). Conversely:

A common, and unfortunate, method of ascribing computational ability to a non-standard
system is as follows. A novel computing substrate is proposed (a stone, a soap bubble,
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a large interacting condensed-matter system, etc.). The physical substrate is “set going”
and an evolution occurs. At a certain point, the end of the process is declared and
measurements taken. The initial and final states of the system are compared, and then
a computation and a representation picked such that if the initial state and final states
are represented in such a way, then such a computation would abstractly connect them.
The system is then declared to have performed such a computation: the stone has
evaluated the gravitational constant, the soap bubble has solved a complex optimization
problem and so on.… If a computational description of a physical evolution can only
be applied post-hoc, then the system has not acted as a computer. [32, p. 20]

They argue that numerous representations can be invented post hoc, and hence this approach may lead to
a special type of pancomputationalism (“everything computes”—see Section 3.2.4 below). Intrinsic com-
putation is thus loosely defined, encompassing all physical systems with some “interesting” computational
properties. We have depicted this schematically in Figure 6 as a superset of designed computation.

3.2.4 Pancomputationalism: Everything Is a Computer
The position that the universe is a computer, that all processes are computation, is now often called
“pancomputationalism,” a term probably first used by [65] and [24, p. 566]. In its strongest form,
pancomputationalism claims that the universe is literally a computer that computes the changes of
the universe according to the physical laws; that all processes are computational processes. Our con-
ventional computing machines would thus be only a tiny fraction of all the computing going on. This
is really a cosmological thesis of physics and has its origins in that discipline. For a discussion and
recent literature, see [21, esp. Section 2; 56]. Pancomputationalism implies that cognitive and mor-
phological processes are trivially computational in the sense that everything else is.

In the morphological computation literature, the pancomputationalist dissolution looms in re-
marks like “Control implies computation” (Füchslin et al. [26, p. 10]). If one takes this literally, then
no difference between computational and other control can be made any more. But we normally
want to say that, for example, the centrifugal governor in a steam engine is a dynamic system and
provides proportional control. The centrifugal governor is not a computer, even if it can be replaced

Figure 6. Different notions of computation performed by a physical system. Designed computation refers to physical
systems engineered in such a way that their physical evolution can be used to predict the outcome of an abstract evo-
lution (see Section 3.2.1). Intrinsic computation lacks a proper definition, but refers to natural physical systems with
interesting computational properties (Section 3.2.3). Pancomputationalism spans the whole hypothetical space, claiming
that everything computes (Section 3.2.4). Finally, “offloaded computation” is defined negatively as computation that does
not have to be performed by a brain/controller (Section 3.2.5).
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by a computational system that measures the relevant values, computes a response, and controls the
relevant value (valve opening). If the remark “this is a computational process” deteriorates into “this
is a process,” then it becomes pointless. In Figure 6, this is simply illustrated by pancomputation-
alism being the ultimate superset.

3.2.5 Morphological Computation as Offloading from the Brain
A notion of computation that is very popular among the morphological computation community
seems to rely on a negative or complementary definition of morphological computation. This is
computation in the sense of offloading from brain to body (e.g., [61, p. 96]) that we introduced
in Section 1.2. Another instance appears in Hauser et al. [27, p. 356]:

A rigorous implementation of this concept [morphological computation] are passive walkers.
The first of a series was developed by McGeer [52]. Typically, such a robot has no active
controller at all. Only its passive physical structure maintains the balance in a robust fashion,
while it walks down a slope. Therefore, one could argue that the computation, which is
needed in order to balance the robot robustly, is “computed” by the physical body itself.

The offloading argument is also picked up in Füchslin et al. [26] and illustrated in Figure 1 there. In-
terestingly, the schematic matches very well with our Figure 5. Therefore, we have adapted our Figure 5
to match the one from [26], resulting in our Figure 7. The goal is to bring a physical system (e.g., body of
an agent) from initial state p to final state p0. This is achieved jointly by the physical dynamicsH and by
the action of the controller that processes the sensory input to obtain a representation mp of the physical
systemʼs state p. With a goal state mp

0 , in mind, it computes a control action that should bring about the
desired transition and translates this into actuator commands. At the same time, the physical system is
subject to its own evolution (dynamics), H. In passive walkers, the abstract level is completely absent;
there is only physical dynamics. Conversely, traditional robotics tends to suppress “body dynamics” or
“natural dynamics” (see, e.g., [33] or [12] for a formal definition) in favor of bringing about the desired
state transitions by means of the computed control action. The idea of “morphological control” is to
exploit the physical dynamics to the maximum, while at the same time reducing the contribution of the
controller (the abstract-level loop)—as illustrated by the bold arrowH(p) in the schematic.6 This is then
interpreted as offloading computation from the brain/controller to the body.

It may be possible to examine the amount of computation on the controller side, and different
controllers can then be compared. This exercise becomes more interesting if one is allowed to mod-
ify also the physical system (the agentʼs body), although this then becomes much harder to compare
formally. Rückert and Neumann [70] studied learning of optimal control policies for a simulated
four-link pendulum that needs to maintain balance in the presence of disturbances. The morphology
(link lengths and joint friction and stiffness) was manipulated, and controllers were learned for every
new morphology. They showed that: (1) for a single controller, the complexity of the control (as
measured by the variance of control gains of a time-varying linear feedback controller ) varies with
the properties of the morphology: certain morphologies can be controlled with simple controllers;
(2) optimal morphology depends on the controller used; (3) more complex (time-varying) controllers
achieve much higher performance than simple control across morphologies.

Among those conclusions of Rückert and Neumann [70], (1) could be interpreted in the
“offloading” spirit, but the performance really depends on a complex interplay of the controller,
body, and environment, and the offloading or outsourcing will thus practically be very complex
and hard to express in a formal framework. More importantly, this scenario allows us to understand
whether the contribution of the body is computational in the sense of the notions presented above.

6 Some schemes from control theory with appropriate cost functions will automatically result in minimal control actions and thus
“optimize the contribution of the morphology.” For example, Moore et al. [53] used discrete mechanics and optimal control to steer
a satellite while exploiting its dynamics to the maximum.
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We claim that it is clearly not, in any sense but the pancomputationalist one. Adopting the framework of
“designed, useful computation with encoding and decoding” (Section 3.2.1), we see that the physical
system is definitely not used to predict any abstract evolution. Instead, the goal is in the physical space
(such as walking), and the abstract level may only serve to help achieve this in the form of a controller (in
fact, the abstract computation performed by the controller will have to run on some hardware too, but
this will normally not be the agentʼs body that is walking, but a neural circuit or a digital chip). We are not
interested in computational properties of the physical system either (what the passive walker or the
pendulum is intrinsically computing). Therefore, the label “morphological computation” is misleading,
as the body is not computing in any but a metaphorical sense of taking away some load from the brain—
perhaps the label “morphological control” might be appropriate [26].

Thus, faithful to the notion of a complement to brain computation, one can illustrate this off-
loaded computation schematically in Figure 6 by interpreting the physical computation types we
have listed so far as sets. Then, if one assumes that there is a task (say walking) and that all processes
are computational (pancomputationalism), the amount of computation needed for the task forms a
universe P. Then, if one knows the amount of computation performed by the central controller, say
C, then the morphological computation in the outsourced sense could be the absolute complement
of the set that represents computation performed by the central controller, that is, P excluding C.
The offloaded computation, O, would be equal to

O ¼ Cð ÞC ¼ P∖C:

This is schematically illustrated in Figure 6.

3.3 Computing Concluded
We have reviewed different types of abstract computational models as well as a number of perspectives
on when a physical system computes. For our purposes—assessing when physical bodies act as com-
puters—it is the latter that is key. To this end, we find the first notion presented, “designed, useful
computation with encoding and decoding” (Section 3.2.1), the most concrete and strict and also the
most useful one. The second one, “intrinsic computation” (Section 3.2.3) is more problematic, but if a
system is found to have “interesting intrinsic computational properties,” it can be further inspected (if
itʼs a natural system) or modified (if itʼs artificial) to see if the stronger requirements—encoding, decod-
ing, user—can be established. Paraphrasing Horsman et al. [32, p. 15], this allows us to distinguish
between a physical system “going about its business” while potentially being a computer, and a
system whose physical evolution is used to compute. The pancomputationalist notion of computation
(Section 3.2.4) does not seem to be helpful to our analysis. Finally, the computation in the sense of
offloading from brain to body (Section 3.2.5) seems to be also a problematic perspective that is hard
to defend beyond the level of metaphor.

Figure 7. Exploiting morphology for control. See text for details, and also Figure 5 for the definition of symbols.
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4 A Look at the Characteristic Cases: Computation?

Let us now look back at the characteristic cases that we introduced in Section 2 in the light of the
different notions of computation. We summarize our findings in Figure 8.

4.1 The Passive Dynamic Walker
Although the passive dynamic walker (introduced in Section 2.1) is often taken as a prominent
example of morphological computation, it really is only “pure physics walking” or a “physical system
going about its business.” That is, it definitely does not satisfy the necessary conditions for
“designed, useful computation with encoding and decoding” (Section 3.2.1). There is no abstract
computation that it was designed to predict through its physical evolution (walking down the slope).
Also, although McGeer [52] does offer a model of the walker—its equations of motion—it would
hardly qualify as a system with particularly interesting computational properties and as thus comput-
ing intrinsically (Section 3.2.3). Therefore, it is hard to conceive of the walker as computing in any
but the pancomputationalist sense, that is, the sense that all physics is computing. Finally, is the
walker doing computation that was offloaded from the brain? Hardly, as there is no brain the com-
putation of which could be offloaded. At the most, the hypothetical computation that “is needed”
for walking has been fully offloaded from a hypothetical controller to the morphology of the walker.
Yet, this offloading landscape is purely metaphorical. To illustrate this graphically, we have simply
located the passive walker inside the pancomputationalist universe in Figure 8, possibly qualifying as
the offloaded computation showcase, but, again, only in a metaphorical sense.

4.2 Creatures Exploiting Morphology to Move
A similar line of argumentation holds for the other examples introduced in Section 2.2. The active
descendants of the passive dynamic walkers (Figure 2b), the self-stabilizing robots (e.g., RHex—
Figure 2c), the gecko (Figure 2d), or the coffee balloon gripper (Figure 2e) do not seem to be com-
puting in any but the trivial, pancomputationalist, sense either. They may be more useful than the
passive dynamic walker, but it is directly their physical behavior in the environment that is useful—
there is again no abstract computational level that would, under some encoding and decoding,
“commute” with the physical level. All of them have a brain or controller of some sort, so the

Figure 8. Characteristic cases and the notion of computation involved. (a) Cornell passive dynamic walker [15].
(b) RHex robot [71]. (c) Gecko foot. (d) Coffee balloon gripper [8]. (e) Eye of the fly. (f) Artificial compound
eye [23]. (g) Spring-mass computer [28].
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offloading thought experiment is somewhat facilitated. One can imagine this in the RHex robot,
for example: If the body had a different design, a more complicated controller might be needed
to stabilize the robot during locomotion. However, the gecko feet seem to further compromise the
offloading perspective—if the gecko did not have feet with the particular morphology, it would simply
fall off the vertical surface, no matter how big a brain was available. In conclusion, we think that all
these are examples of morphology facilitating control and that a computational perspective is misleading.
We will devote a separate subsection (Section 5.1) to these cases.

4.3 The Insect Eye Preprocessor
Unlike in the previous cases, a computational perspective seems better applicable to the eye of a fly
(Section 2.3). The eye morphology performs a nonlinear transformation of the visual input that
greatly facilitates subsequent processing. Does this case fit the framework of Horsman et al.
[32]—Figure 5? Not really. The problem that needs to be solved by the agent is not solely an
abstract one, but lies at the interface of the physical world, which needs to be sensed, and the
abstract world, where the agent needs to estimate the distances to objects.7 That is, the agent does
not start from an abstract problem it would need to solve by encoding it into a physical system and
then reading it out again after the physical systemʼs evolution. Instead, objects in the physical world
are transformed into activations of light-sensitive cells and later into neural activations (“decoded”
from the physical to the abstract system in the sense of Figure 5—this corresponding “encoding”
according to standard usage in nueroscience though). After that, this information is processed
by the agentʼs brain to generate an appropriate motor response (obstacle avoidance). It is a
sensory-motor loop that brings about control of the flying agent, and it is the first part of the control
loop where the morphology steps in. There, part of the transformation that needs to be accomplished is
carried out by the morphology itself, leaving less work to the neural circuitry after processing of the
sensation takes place. One could even say that evolution has “designed” the morphology to compute
this function. Nevertheless, the whole loop does not match with the one that corresponds to using a
physical system to predict abstract evolution, as required by the strict definition presented in Section
3.2.1. On the other hand, one could say that the eye morphology has interesting computational prop-
erties (equivalent to a function involving a sine term), which are “intrinsically” performed by the mor-
phology. This is illustrated schematically in Figure 8.

4.4 Computing with Masses and Springs, Humanlike Bodies, and Octopus Arms?
Buckets of water, masses and springs, tensegrities, and octopus arms were introduced earlier
(Section 2.4). Interestingly, they all satisfy the properties that are necessary to act as a reservoir: high
dimensionality, nonlinearity, and fading memory. They can thus be employed as a nonlinear kernel to
perform a spatiotemporal transformation of incoming data. In a second stage, using a readout mech-
anism implemented in a “classical” computer, they give rise to a powerful information-processing
pipeline, which is particularly suited for some tasks, like classification and prediction of time series.
In a biological context, perception is a prime example where classification and prediction of incom-
ing input streams is highly relevant. In this sense, the biological reservoirs—such as soft bodies—
perform a similar function to that of the eye morphology from the previous section. First, however,
they add the temporal dimension to the sensory preprocessing they can perform. Second, unlike the
insect eye, which is specialized in performing one particular transformation, the spatiotemporal un-
folding of the input stream performed by the reservoir is more universal, and there can be several
readout mechanisms that take advantage of it.

The computational capabilities of a reservoir can be further increased if the loop is closed by feeding
the reservoirʼs output back to it. Then, it is possible to autonomously generate a broad class of limit
cycles, such as the Van der Pol oscillator, quadratic limit cycle, and Lissajous figures [28]. Importantly,

7 This division—abstract versus physical—is quite arbitrary, though. In the organism, this sensing task is part of a closed loop that is
connected to the motor neurons in the flyʼs wings that directly bring about the obstacle avoidance.
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these have been demonstrated in two different physical (simulated) reservoir computing setups: a
mass-spring system [28] and an octopus arm [57].

With this additional step, it seems that the reservoir is truly used as a computer—it will compute the
evolution of an abstract mathematical system, such as a nonlinear oscillator. The model of abstract
computation is likely to be one of the natural computation class (Section 3.1.2). For example, Hauser
et al. [28, p. 356] write: “Regarding the type of computation, we consider mathematical models, which
can be characterized as complex mappings of input to output streams in continuous time.” In this
case, we are thus for the first time dealing with a proper computer in the sense of the requirements of
“designed, useful computation with encoding and decoding” (Section 3.2.1) (hence its placement in
Figure 8), with perhaps one reservation: Although the bodies can be recruited for computation, one
can hardly say that they were “designed” with this goal in mind. Furthermore, since different dynam-
ical systems benchmarks were instantiated in different reservoir systems, there is even an important
additional feature of computation—that of universal computation. It thus follows automatically that these
systems would also be intrinsically computing and they are naturally also compatible with the offload-
ing perspective. In fact, taking the case of biological bodies, one could perhaps say that an additional
computing substrate is instantiated in the body where the brain could outsource its tasks.

5 Discussion: Three Roles of Morphology

In our survey of the case studies, we have come across different instances of morphological compu-
tation and we have examined to what extent they satisfy their respective requirements. Confronting the
characteristic cases with these conditions gave rise to their approximate localization on the landscape of
the computational notions (Figure 8). Interestingly, many ended up on the outer circle, far from the
imaginary computational core at the center of the schema. In light of this analysis, we propose a simple
classification of the case studies into three types:

A. Morphology facilitating control

B. Morphology facilitating perception

C. Morphological computation

This classification, along with some representatives for each category, is depicted schematically in Fig-
ure 9. The true computational character of the deployment of morphology increases from left to right.

5.1 Morphology Facilitating Control
This category could also be called “morphological control” [26], “mechanical control,” or, in a narrower,
open-loop sense, “morphology facilitating actuation.” The passive dynamic walker, the creatures ex-
ploiting mechanical self-stabilization, the gecko relying on its special feet, and the jamming-based coffee
balloon gripper would all fall into this category (Figure 9a–d). Also, all the examples of locomotion
(quadruped Puppy and fish Wanda) and grasping (Yokoi hand) cited in [63] belong here. Other fitting
representatives would be the pneumatic actuators embedded in elastomers that can move and grip [35],
and the switching of behaviors exploiting attractors in the mechanical system in [59]. In all these cases
the body is ingeniously contributing to the task; it enables physical behavior in the real world. However,
as we argued in Sections 4.1 and 4.2, it is hard to conceive of the systems as computers in any but the
pancomputationalist sense. The offloading computation perspective is also problematic, since, first, the
possibility of shifting tasks between the controller and the body is practically limited; second, even if
through better exploitation of body morphology the controller can be simplified (and that can be quan-
tified), that does not imply that the body has taken over any computation. In fact, calling it computation
may allude to a much stronger thesis, namely that what is done by the interaction of the body with the
environment here could also be done by a conventional computer. And that is quite the opposite of
what most proponents of the morphological stance want to say, since they want to stress the importance
of embodiment, in fact its indispensability. Therefore, our claim is that exploiting morphology for
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control should be better handled in a non-computational context. This argument is elaborated in [30]
along with a discussion of the implications of simple versus complex bodies.

5.2 Morphology Facilitating Perception
The eye-of-the-fly case study (Sections 2.3 and 4.3) is much more compatible with a computational
viewpoint. The transformation performed by the insect eye is a well-defined input-output mapping that
is useful for the agent and provides input to central processing. In this case, the morphology performs
an important preprocessing step—takes over part of the transformation that would otherwise have to
be performed by the brain at a later stage. Other examples that might fall into this category are the non-
homogeneous distribution of photoreceptors in the human eye (optimized for acuity rather than motion
detection), the mechanotransduction in the cochlea of the ear [50], and the sensilla morphology in
crayfish [75]. Recent examples from robotics include strain-vector-aided sensorization of soft structures
[17] and sensing through compliant artificial pneumatic muscles [34, 74]. However, the morphology (the
physical system) is not deployed here as a computational substrate to calculate an abstract problem—
this would involve encoding the abstract entity into the morphology and eventual decoding. Instead,
the morphology acts at the interface between physical quantities, and their representation in the brain/
controller of the agent. At this interface, they introduce advantageous transformations that facilitate
subsequent processing. Obviously, the morphology has no ambitions regarding multipurpose or uni-
versal mappings; on the contrary, it is highly specialized for one particular transformation.

Figure 9. Three roles of morphology. The passive dynamic walker (a) [15], the robot RHex (b) [71], the gecko foot (c),
and the coffee balloon gripper (d) [8] are featured as representatives of morphology facilitating control. The eye of the fly
(e), artificial compound eye (f) [23], cochlea (g), and whiskers of a rat (h) are examples of morphology facilitating
perception. Morphological computation is represented by the spring-mass computer [28] and the octopus arm reservoir
[58]. (Picture G is from Wikimedia Commons; picture H by Dawn Huczek, Wikimedia Commons; picture J courtesy of
Kohei Nakajima.)
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Of course, the preprocessing performed by the morphology tells only half of the story—a passive
perception one in this case. Organisms interact with their environments in a closed-loop fashion:
Sensory inputs are transformed into motor outputs, which in turn determine what is sensed next.
Therefore, additional advantageous transformations can be achieved if active perception (e.g., [3]) is con-
sidered. Active touch constitutes a perfect example where the sensor morphology, such as the length,
placement, and mechanical properties of a ratʼs vibrissae (whiskers), is as important as the whisking
strategy—active exploration of the environment (see [67] for a survey). These findings can also be trans-
lated into artificial systems, such as whiskerlike sensors [68, 64]. Lungarella and Sporns [48] demonstrate
how sensory morphology and closed-loop interaction can be quantified using information-theoretic
measures. An example on this theme, where sensor morphology and active sensing go hand in hand
and biological inspiration finds its way to robotic systems, is underwater electrical sensing [6, 7]. How-
ever, for the purposes of this article, the effect of sensing actively cannot be directly attributed to the
morphology anymore and thus has remained essentially out of our scope here.

Four representatives of this category are pictured in Figure 9e–h.

5.3 Morphological Computation
Finally, the only case studies that came close to truly computing were the physical reservoir com-
puting cases (Sections 2.4 and 4.4). Employing the reservoir computing framework, systems that
have properties akin to human or animal bodies can be shown to have interesting capabilities in
performing advantageous—and quite general—spatiotemporal transformations of incoming time
series. Moreover, they are capable of autonomously emulating a broad class of dynamical systems.
As this has been demonstrated in multiple systems (masses and springs, octopus arm), these are, in
our view, demonstrations of true computation that can be performed by humanlike morphology.

Let us note here that the reservoir computing approach has also been successfully implemented
in optoelectronic setups [44, 60]. Nonlinear optoelectronic oscillators subject to delayed feedback
have been used to perform digit recognition and time series prediction [44] and speech recognition
and nonlinear channel equalization [60], using the reservoir computing concept. Furthermore, a first
design for an analogue readout mechanism in an optoelectronic setting has been presented [72],
giving rise to a fully analogue setup. However, the optoelectronic implementations have a solely
computational goal—they are basically an alternative substrate, in which the combination of physical
properties with the reservoir idea gives rise to a practically very powerful computer. Thus, they
would fall into the realm of computation performed in alternative hardware, such as molecular or
quantum computing, which really is full-blown computer technology where the morphology is
designed to be transparent with respect to the computation; such systems have remained largely outside
of our scope. These setups work on a completely different scale and speed than the macroscopic human-
body-like reservoirs mentioned earlier, which grants them higher bandwidths.

On the other hand, the macroscopic systems—such as nonlinear compliant bodies of human size—
have intrinsic limitations with respect to computational tasks. In particular, they are very slow and noisy
and they have to perform other tasks at the same time. Yet, they are there for free, so to speak, so the
agent may consider employing their computational resources for some tasks, and reservoir computing
can provide the framework. This very much blurs the boundaries between the brain as the seat of com-
puting and the “mere physical body,” in accordance with biological reality, which will be discussed in the
next section. However, thus far the examples of this type [28, 57, 58, 11, 19, 37] have a theoretical or
proof-of-concept character, and their applicability remains to be proven (Figure 9I–J).

6 Applications and Conclusion

6.1 Biological Reality Blurs the Boundaries
We hope the classification above is a worthwhile contribution that will help to clear up the muddy
waters of morphological computation and at the same time facilitate progress in very practical terms
when designing systems. One additional caveat, however, may lie in the fact that a clear separation of
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the tasks is not always possible. Whereas in artificial systems like robots there is classically a complete
separation of the controller (which is a computer ) and the body (also called plant—a physical
device), in biological systems the brain and the body are so tightly intertwined that this separation
is not feasible. The central and the peripheral neural system are often thought of as processing
information or as computing. For example, Christoph Koch begins his classic book Biophysics of
Computation with the remark: “The brain computes! This is accepted as a truism by the majority
of neuroscientists engaged in discovering the principles employed in the design and operation of
the nervous system” [41, p. 1]. This seems to be a prevalent framework at this point, and we will
not question it here. However, the non-neural tissue has many more complex functionalities than
being just a muscle-tendon system that is commanded by the brain. Rieffel et al. [69] note that apart
from transmitting mechanical properties such as power or balance, the physical forces and displace-
ments are also involved in non-neural conduits of information.

We can perhaps say that the interaction of biological organisms with the environment is orches-
trated through a continuum of processes that can roughly be layered from the most low-level and
physical, through reflexes and simpler circuitry in the spine, to high-level control consisting of pure
information processing with high bandwidths in the brain. All layers are necessary, but the lower the
level we want to understand, the less success we will have with a computational approach.

6.2 Amidst Concepts and Buzzwords: From Computation to Orchestration?
Undoubtedly, there is a lot of potential in recruiting the morphology for all the tasks we have de-
scribed above. Our initial worry (Section 1.2) originated from the tension we perceive within the
“morphological computation” label. As we argued, morphology is absolutely essential for a wide
range of behaviors that animals or machines are engaged in. However, the contribution of the mor-
phology is largely non-computational. Other concepts or labels have been proposed: intelligence by
mechanics [5], morphological control ([26]; but a search suggests that this seems to be a term used
often in chemistry, referring to the shapes of different compounds), mechanical control (used in
different fields in different contexts), anatomical computation [81], implicit intelligence (abstract
of R. Fearingʼs lecture at ETH Zurich, November 2012), and morphological communication
[69]. Furthermore, there is a large overlap with the notion of embodiment, which is commonly used
to capture the phenomena of our sample cases (cf. [82], [9], and [31], where some of the charac-
teristic cases used here are interpreted as embodiment showcases).

Perhaps one can say that embodiment is typically associated with slightly higher-level phenom-
ena, in particular how the embodied interaction with the environment affects cognition, while the
morphological computation community is typically concerned with lower-level traits. Still, as we
have argued, morphological computation refers to facilitating control and preprocessing sensory
information (thus facilitating perception), as well as to the possibility of “true” computation per-
formed by the body. This is also reflected in the list of buzzwords above—for instance, intelligence
by mechanics, morphological control, and mechanical control seem to highlight the exploitation of
morphology to simplify a control task, whereas morphological communication seems to emphasize
the information flows in the morphology. Perhaps, trying to cover all these facets with a meaningful
label is futile. The overarching goal is to orchestrate the morphology so that it contributes as much
as possible to all the tasks the agent needs to master. In fact, orchestration, or “orchestration of
behavior” [63], seems to be an expression appreciated by the community,8 which does not have
any undesired connotations or legacy.

6.3 Conclusion
In our discussion of the increasingly popular notion of morphological computation, a number of
well-known case studies that are often cited in this context were confronted with different notions
of computation. We concluded that many of the morphological computation showcases, such as

8 As witnessed in the discussion at International Workshop on Soft Robotics and Morphological Computation in Ascona, Switzerland, 2013.
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passive dynamic walkers, fail to qualify as computation in other than a metaphorical sense. Three
categories were proposed: (A) morphology facilitating control, where the walkers and other creatures
that exploit their morphology (like geckos) fall; (B) morphology facilitating perception, encompass-
ing mostly case studies where body or sensor morphology aids perceptual tasks; and (C) morpho-
logical computation proper, where only physical reservoir computing qualified.

In terms of applications, leaving aside computing on nonstandard hardware, the most relevant
area where exploitation of morphology is and will be the key is probably robotics, and in particular
soft robotics ([1, 62, 79] and the first issue of the Soft Robotics Journal [78]). Soft robots break the
traditional separation of control and mechanics and exploit the morphology of the body and prop-
erties of materials to assist control as well as perceptual tasks (see also [51] for a recent survey of
materials and technologies that can facilitate this). Pfeifer et al. [63] even discuss a new industrial
revolution. Appropriate, “cheap” designs lead to simpler control structures, and eventually can lead
to technology that is cheap in a monetary sense and thus more likely to affect practical applications.
Yet, a lot of research in design, simulation, and fabrication is needed (see [46] for a review). Hermans
et al. [29] recently proposed a machine-learning algorithm to address the first challenge—design—if
an approximate parametric model of the systemʼs dynamics and examples of desired behavior are
available. Kurowski and von Stryk [43, p. 3771] proposed a “systematic approach to the design of
embodiment” applied to a compliant legged robot.

Finally, the area of soft robotics and morphological computation seems to be rife with different
trading spaces [63]. As we move from the traditional engineering framework with a central controller
that commands a “dumb” mechanical structure toward delegating more functionality (control, per-
ceptual, and computational) to the body, some convenient properties will be lost. In particular, the
solutions may not be portable to other platforms anymore, as they will become dependent on the
particular morphology and environment (a passive dynamic walker is the extreme case). The versa-
tility of the solutions is likely to drop as well. To some extent, the morphology itself can be used to
alleviate these difficulties—if it becomes adaptive. Online changes of morphology (such as changes
of stiffness or shape) thus constitute another tough technological challenge (see [51] and project
locomorph.eu). Completely new, distributed control algorithms that rely on self-organizing proper-
ties of complex bodies and local distributed control units will need to be developed (the tensegrity
structure controlled by a spiking neural network [69] is a step in this direction).

The right mix and coupling of computational and morphological building blocks will always
depend on the task at hand. Some subtasks may have a clear computational nature and may be simply
best implemented on a microprocessor. Some, on the other hand, may greatly profit from exploiting
the morphology; some may even disappear altogether if a different body design is employed. This
article will hopefully help the practitioners to navigate in this complex landscape.
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