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ABSTRACT
The aim of this paper is to make sense of the Keynes–Johnson
octagon of oppositions. We will discuss Keynes’ logical theory, and
examine howhis view is reflected on this octagon. Thenwewill show
how this structure is to be handled by means of a semantics of par-
tition, thus computing logical relations between matching formulas
with a semantic method that combines model theory and Boolean
algebra.
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1. Introduction

The following proposes a historical and formal approach to what is known nowadays as
Keynes’ logical octagon. While the literature around Keynes’ logical works is not tremen-
dous as it stands, many more studies have been developed about his pioneering work on
complementary categorical propositions. On the one hand, Dekker 2015 recalled that one
passage of Aristotle’s De Interpretatione foreshadowed the possibility of dealing with cate-
gorical propositions whose subject term is negated. But Aristotle never included this case
into his own syllogistic, where subject terms are always affirmed.On the other hand, a num-
ber of contemporary works extended the famous square of opposition into a logical cube
(Dekker 2015; Demey and Smessaert 2018; Dubois et al. 2020), without always mentioning
the central contribution to Keynes in this respect by revealing the ‘other side’ of categorical
propositions (whenever the subject term is denied). Our point is not to implement these
formal developments but, rather, to present a complete analysis of Keynes’ octagon in three
steps: first, a historical introduction to Keynes’ logical achievements (Section 1); second, a
look at the logical structure that was pioneered by Keynes (Section 2); and third, a formal
semantics suggested to make sense of the logical relations between the eight propositions
of Keynes’ octagon.
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Figure 1. Logical octagon in (Keynes 1894, p. 113).

2. Keynes’ Logical Octagon

In the third edition of his well-known textbook Studies and Exercises in Formal logic (1894),
the British logician John Neville Keynes included an octagon of oppositions that has long
been unnoticed (Figure 1).

Keynes acknowledged the help of William E. Johnson in the making of this octagon
(Keynes 1894, p. 113). Later on, Johnson published a similar octagon in his own treatise
(Figure 2).

More recently, Edward A. Hacker also introduced his own version of the octagon.
Hacker briefly discussed Johnson’s octagon and stated that its purpose was ‘to show the
relations of independence, and [that] it is not at all clear as to how one is to read the other
logical relations’ (Hacker 1975, p. 352).

The aim of this paper is to make sense of the Keynes-Johnson octagon of oppositions
between matching propositions.1 For this purpose, we will briefly recall Keynes theory
of propositions. Indeed, this octagon should be understood within Keynes’ logical theory
where categorical propositions involve terms, S and P, and their complements, S′ and P′ (S′
stands for not-S, and P′ for not-P). As such, Keynes goes beyond the traditional typology
of categorical propositions as found in the traditional square. It must be reminded that
Keynes worked on a ‘generalization of logical processes in their application to complex
inferences’, entering into rivalry with logicians such as George Boole and John Venn who

1 Any two categorical propositions are said ‘matching’ whenever they include the same subject and predicate terms.
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Figure 2. Logical octagon in (Johnson 1921, p. 142).

worked complex problems with the use of symbolicmethods.2 Keynes considered his work
to include

the first systematic attempt that has been made to deal with formal reasonings of the most
complicated character without the aid of mathematical symbols and without abandoning the
ordinary non-equational and predicative form of proposition.3

Keynes’ attempt was quite successful though symbolic logicians suspected that he would
never have been in position to invent his non-symbolic methods if he did not previously
learn and practice symbolic methods. Whatever, Keynes’ treatise, first published in 1884
(with three subsequent editions in 1887, 1894 and 1906), should be read as an attempt
to expand syllogistic beyond the traditional scope to deal with complex propositions and
complex problems.4 As such, the octagon must be seen, not just as a logical curiosity but

2 Boole developed amathematical theory of logic in his Laws of Thought (1854) Since propositions are expressed in the form
of equations, logic problems are reduced to systems of equations. Such problems consisted in determining the conclusion
that follows from a set of premises. This is achieved by eliminating undesired or superfluous terms (Green 1991). A dispute
occurred among Boole’s followers regarding the best notation to tackle such problems. William S. Jevons and Vennmain-
tained the equational form while others (Charles S. Peirce, Ernst Schröder, Hugh MacColl, etc.) favored a notation based
on inclusion (Peckhaus 1989; Moktefi 2019). Some traditional logicians, such as John Cook Wilson, opposed to the use of
symbolism and argued that such problemsmay be solvedwithout thismathematical apparatus (MarionandMoktefi 2014).

3 Keynes 1884, p. vii.
4 The treatment of such complex problems played an important role in the competition among logicians regarding the
elimination problem. Indeed, traditional logic problems were generally reduced to syllogisms (involving 3 terms) or series
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rather as a serious illustration of Keynes’ project. In a way, the octagon stands in Keynes’
theory the same way the ‘square’ stands in traditional logic.

Keynes’ octagon reflects his logical theory and the desire to expand traditional syllo-
gistic. Handling negative terms is an important part of this project. In accordance with
many of his contemporaries (e.g. Lewis Carroll) but in opposition with some others (e.g.
JohnVenn), Keynes considered that contradictory terms should be visually regarded on the
same footing since the distinction between A and not-A is conventional. Another instance
of Keynes’ expansion of syllogistic to include negative terms might be observed in his
treatment of Euler diagrams. Keynes attempted to adapt Euler’s scheme in order to handle
negative terms. Hence, he identified and represented diagrammatically 7 possible relations
between classes S, not-S, P, and not-P (Figure 3).

Keynes’ relations (as one might call them) have been obtained simply by substituting
two subcases for each Gergonne’s relation between any two classes S and P: one in which
the outer region is empty, and one where it is not. For instance, Gergonne’s case where the
classes S and P are completely disjoint engender two subcases, depending onwhether there
is ‘something’ outside or nothing.

Among the 10 relations obtained by distinguishing two sub-cases for each of the 5 Ger-
gonne’s relations, Keynes excluded 3 cases where either not-S or not-P (or both) was empty,
thereby keeping 7 relations (Keynes 1894, pp. 140–6) only.5 As curious as Keynes’ diagrams
might seem, they are necessary if onewants to deal rigorously with logical problems involv-
ing negative terms with the use of Euler-type diagrams. In making his octagon, Keynes,
with the help of Johnson, proceeds similarly. His generalization led him to ‘amplify the list
of formal relations recognized in the square of opposition and also to extend the meaning
of certain terms’ (Keynes 1894, p. 89). The octagon is the result of this inquiry.

3. The Structure of the Logical Octagon

After introducing the historical roots of the logical octagon from Keynes’ writings, let us
scrutinize its content and logical properties in the following. A main distinction is to be
made between propositions with respect to their subject-terms and predicate-terms. The
original propositionsA,E,I,O relate to propositions whose subject-term is always affirmed,
whereas the additional propositions A′,E′,I′,O′ are those whose subject-term is always
negated. We will explain the interrelations between both kinds of categorical propositions,
ultimately.

of syllogisms. However, Boole and his followers worked on the general solution of problems involving any number of
terms and any number of propositions. In this line, several logicians (Venn, Allan Marquand, Alexander Macfarlane, Lewis
Carroll, etc.) invented diagrammatic schemes that would allow tackling problems involving more than 3 terms (Moktefi
and Edwards 2011). It was precisely Keynes’ goal to show that such complex problems can be solved without the appeal
to mathematical notations.

5 Joseph D. Gergonne introduced his relations in 1817, p. 193: ‘Let us presently examine the diverse circumstances in which
two ideas, when compared to each other, can be relatively to their extension’ (translated by the author). See also Grattan-
Guinness 1977. In his attempt, Gergonne did not consider negative terms. Arthur Schopenhauer undertook a similar task
in 1818 and got closer to Keynes’ set of relations (Moktefi 2020). Keynes’s dismissal of the cases where classes or their
negatives are empty reflects the difficulties that early logicians faced with empty classes. Venn alluded the problem by
introducing buffer-units, known as compartments, that may be empty, in which case, the corresponding classes are said
not to exist. Carroll defined imaginary classes that contain non-existing individuals but did not pursue the idea consis-
tently. In his steps, MacColl developed a logic of fictions and entered into controversy with Bertrand Russell on this subject
(Radford 1995; Abeles andMoktefi 2011).
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Figure 3. Logical relations in (Keynes 1894, p. 142).
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Figure 4. Logical square of opposition in (Keynes 1894, p. 81).

3.1. Relations Between Propositions with Subject and Predicate Fixed

To understandKeynes’ generalization, let us start with the square itself. In traditional form,
propositions are formed by predication. It includes one subject term among two (either S
or P), and one other predicate term (P or S, respectively), wherein a predicate (either P or
S) is attributed or denied to all or part of a subject (either S or P, respectively): every propo-
sition has one quantity (either universal or particular) and one quality (either affirmative
or negative). Hence, once the subject and predicate are fixed, you have 2 × 2 × 1 = 4 types
of propositions.

A : SaP;E : SeP;O : SoP; I : SiP.

Consequently, you have 6 combinations with the 4 classical relations: contradiction, con-
trariety, subcontrariety, and subalternation. These are those one finds in the traditional
square, as reproduced by Keynes himself in his treatise (Figure 4):

It is important to keep in mind that these 4 relations are the relations between distinct
propositions where subject and predicate are fixed. Indeed, there are other possible rela-
tions between two given propositions whatever. For instance, theymight just be equivalent,
or independent.

3.2. Relations Between Propositions with Two TermsWhatever

Let us now assume that we are interested in propositions with two distinct terms whatever
(that might be subject or predicate). Since the subject and predicate are not fixed, we have
the following possibilities: any of two subject terms (S, or P) and one that has not occurred
as subject terms (the other term, whether affirmed or negated). So we have here 2 × 2 ×
2 = 8 types of propositions:

A : SaP;E : SeP;O : SoP; I : SiP;A′ : PaS;E′ : PeS;O′ : PoS; I′ : PiS

Since PeS is equivalent to SeP and PiS to SiP (by conversion), we actually have 6 distinct
propositions and, consequently, 15 possible combinations. Most can be defined by using
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Figure 5. coextensive classes (Keynes 1894, p. 131).

Figure 6. S is strictly included into P (Keynes 1894, p. 131).

the 4 oppositions already identified when subject and predicate are fixed. However, 4 log-
ical relations connect independent propositions: A and A′; A and O′; O and A′; O and O.
The treatment of these 4 combinations is the main difference between Keynes–Johnson
and Hacker. The later did not make sense of them and did not represent them on his dia-
gram. By contrast, Keynes represented these on his octagon. More importantly, he defined
different types of independence relations depending on what the propositions in each
combination say about the terms S and P (Keynes 1894, p. 131).

Let us first examine the combinationA-A′. These two propositions taken together state
that the classes S and P are coextensive, i.e. have the same extension (Figure 5). Keynes calls
them complementary propositions.

The second pair A-O′ states that S is included into P but does not exhaust it. So,
S is strictly included in P (Figure 6). Keynes calls the propositions of the pair contra-
complementary propositions.

The propositions of the third pair O-A′ are also contra-complementary, with P being
strictly included into S. Finally, the fourth pair O-O′ asserts that S and P are neither
coextensive nor included into one another. So they must correspond to one of the two
combinations (Figure 7). Keynes calls the propositions of the pair sub-complementary
propositions.

Hence, independent propositions can be complementary, contra-complementary, or
sub-complementary. These relations exhaust the relations between the classes S andP, since
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Figure 7. S and P are neither coextensive nor included into one another (Keynes 1894, p. 131).

all 5 possible relations (known as Gergonne’s relations) have been covered. According to
Keynes, these technical terms have been suggested to himby Johnson (Keynes 1894, p. 100).

So, now we have defined all 15 relations between the 6 distinct propositions connecting
two terms whatever. These can be represented by a hexagon of opposition. Keynes did not
provide such a graphical representation, but it can be easily done.

3.3. Relations Between Propositions Connecting Any Two Terms and Their
Contradictories

Now that we identified the different types of relations between two propositions what-
ever according to Keynes, namely: equivalence, contradiction, contrariety, sub-contrariety,
subalternation, and independence (complementarity, sub-complementarity, or contra-
complementarity), we can more easily make sense of the Keynes–Johnson octagon of
opposition, where propositions connect any two terms and their contradictories.

Let the terms be S andP, their contradictories not-S and not-P. By adding negative terms
to the affirmative ones, we thus have the following possibilities: any of four subject terms
(S, not-S, P, or not-P) and any of two ones that have not occurred as subject terms (the
other term, whether affirmed or negated). So we have here 2 × 4 × 2 × 2 = 32 types of
propositions, but only 8 nonequivalent propositions as shown in Keynes’ list (Figure 8):

There are 28 relations connecting those 8 non-equivalent propositions. It is these
relations that are represented by the octagon (Figure 1).

One might think that several such relations are not represented: for instance, those
between A and E, A and E′, etc. However, we should keep in mind a graphical convention
adopted by Keynes in this diagram. The disconnected lines connecting two sides actually
condense each 4 relations connecting the terms of those sides. Let us for instance observe
the discontinuous line connecting sides: AA′ and EE′. It actually represents 4 relations: A-
E, A-E′, A′-E, A′-E′. All these pairs are formed by contrary propositions, so that Keynes
uses just one discontinuous line that might represent any of the 4 pairs. This graphical
convention is common in diagrammatic reasoning, notably in Keynes’ other diagrams.
Still, one might regret that Keynes did not represent properly all relations. Again, this
can be easily done to get a complete octagon of opposition with the following symbols
for the corresponding logical relations: ct (contrariety), cd (contradiction), sct (subcon-
trariety), sb (subalternation), cm (complementarity), ccm (contracomplementarity), scm
(subcomplementarity) (Figure 9).
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Figure 8. Categorical propositions in (Keynes 1894, p. 110).

All one has to do now is to identify the type of relation connecting any two corners in
the octagon, among the relations previously identified: equivalence, contradiction, contra-
riety, sub-contrariety, subalternation and independence (whether it be complementarity,
sub-complementarity or contracomplementarity). Actually, only the equivalence relation
is missing from the diagram. This suggests that Keynes’ understanding of the concept of
opposition might be largely understood as non-equivalence. On the other hand, it is pos-
sible also that he understood them as any relation whatever but just did not bother to
include equivalence; indeed, this would have obliged him (superfluously) to construct a
32-opposition structure by including the other 3 propositional forms equivalent to each of
the 8 non-equivalent propositions of the octagon.

4. A Semantics for the Logical Octagon

We propose now a Boolean semantics in order to show6 the logical relations between all
categorical propositions. For this purpose, we take the meaning of any formula to be for-
mulated in terms of the truth-conditions of its components, i.e. the set of models in which
the latter hold. As the Keynes–Johnson octagon lies in a bivalent frame where any proposi-
tion is either true or false, this means that, for any proposition A and any model wi, either
A or its negation (but not both) belongs to wi. This also amounts to applying a valuation
function v to A and resulting either to the value 1 (for truth, i.e. whenever A belongs to the
corresponding model) or the value 0 (for falsity, i.e. whenever A does not belongs to the

6 Literally speaking, since the following semanticmethod consists in determining the logical relation between anymatching
propositions by comparing their characteristic bits (or Boolean values) pairwisely.
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Figure 9. An exhaustive logical octagon in (Keynes 1894).

corresponding model):

v(wi,A) = 1 iff A ∈ wi, and v(wi,A) = 0 iff A �∈ wi

v(wi,A) = 0 iff v(wi,¬A) = 1.

Let us consider what the components of categorical propositions are and in which models
these formulas hold, before turning to the logical relations between them.

4.1. Logical Forms

Every categorical proposition consists in predicating something from something. By using
First-Order Logic (henceforth: FOL) as a formal language, the previous formulas of tradi-
tional logic may be rephrased in terms of predicate constants S,P and individual variable x:
any predication of the formX = SxPmeans that some/every x that is S is/is not P. The eight
categorical propositions of the Keynes–Johnson octagon are rephrased in the following
table, accordingly.

FOL
A ¬(∃x)(Ax ∧ ¬Bx)
E ¬(∃x)(Ax ∧ ¬Bx)
I (∃x)(Ax ∧ Bx)
O (∃x)(Ax ∧ ¬Bx)
A′ ¬(∃x)(¬Ax ∧ Bx)
E′ ¬(∃x)(¬Ax ∧ ¬Bx)
I′ (∃x)(¬Ax ∧ ¬Bx)
O′ (∃x)(¬Ax ∧ Bx)
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Indeed, it turns out that some of the above components corresponds tomodels of the Euler
diagrams. These can be made clearer through the uniform Venn diagrams, in which either
one of the four areas of the universe is shaded (or not) in black whenever it corresponds
to the affirmation (or denial) of each one of the above four ordered literals: Some S is P,
Some S is not-P, Some not-S is P, and Some not-S 12 is not-P. In the below diagram, the
left-side circle corresponds to the class of Ss and the right-side circle to the class of Ps. Every
model includes four main parts: the class of Ss, the class of Ps, the class of Ss and Ps, and
the surrounding class of whatever is neither S nor P (Figure 10).

A = ¬(∃x)(Ax ∧ ¬Bx) ≡ (x)(Ax → Bx)

A′ = ¬(∃x)(¬Ax ∧ Bx) ≡ (x)(¬Ax → ¬Bx)

and the same holds for the negative universals E and E′:

E = ¬(∃x)(Ax ∧ Bx) ≡ (x)(Ax → ¬Bx)

E′ = ¬(∃x)(¬Ax ∧ ¬Bx) ≡ (x)(¬Ax → Bx)

Despite the failure to translate complementaries in terms of each other, both species of
categorical proposition find their truth-conditions in the same set of models. We will
also see that other related sets of categorical propositions: contra-complementaries and
sub-complementaries, are derived from complementaries by varying the affirmation of
negation of their quantifiers. The three sets of complementaries, contra-complementaries
and sub-complementaries constitute a common set of independent propositions, which is
not a syntactic but, rather, a semantic notion. This justifies the next transition from the
syntactic to the semantic approach to categorical propositions.

4.2. Models

A model is a complete and consistent set of propositions that hold in it, and we already
tackled the kinds of models assumed by Keynes in his study of the logical octagon. More
generally, the set of models that make sense of categorical propositions corresponds to a
finite set of two propositions. Let p and q any such propositions that are either true or false
in a model. Starting from the proto-proposition

±p ∩ ±q,

where ± means that the corresponding component may be either affirmed (+) or denied
(−), the affirmation or denial of the two components may then be combined into an
arrangement of 22 = 4 different models: those where both p and q and affirmed, {p, q};
those where p is affirmed and q is denied: {p}; those where p is denied and q is affirmed,
{q}; and, finally, those in which both p and q are denied, {}.

(1) p ∩ q
(2) p ∩ q̄
(3) p̄ ∩ q
(4) p̄ ∩ q̄
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Figure 10. The16 logical relationsbetween2 classes, from full domainw1 (at thebottom right) to empty
domainw16 (on the top corner left).

(1)–(4) are Conjunctive Normal Forms (henceforth: CNFs) whose disjunction leads to the
22

2 = 16 Disjunctive Normal Forms (henceforth: DNFs) of classical logic, that is, the set
of binary operators that can be represented with the help of truth-tables:

±(p ∩ q) ∪ ±(p ∩ q) ∪ ±(p ∩ q) ∪ ±(p ∩ q)

Each binary operator of conjunction corresponds to either one resulting DNF, as exempli-
fied by the following definition of conjunction ∧ in terms of disjunct proto-propositions:

p ∧ q =df (p ∩ q) ∪ (p ∩ q) ∪ (p ∩ q) ∪ (p̄ ∩ q̄)

The same constructive process may be applied to categorical propositions, insofar as their
subject-terms and predicate-terms correspond to the two propositions p and q. In terms
of FOL, this is made more precise as follows: let p symbolize the proposition that some
arbitrary individual, say a, is S, and let q symbolize the proposition that a is P. Then the
corresponding proto-proposition for categorical propositions is a predication about a,

±Sa ∩ ±Pa

leads to an analogous set of 22 = 4 CNFs for categorical propositions,

(5) Sa ∩ Pa
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(6) Sa ∩ Pa
(7) S̄a ∩ Pa
(8) Sa ∩ P̄a

Thus (5)–(8) are categorical proto-propositions, i.e. the basic components in terms of
which each of the 8 vertices of the Keynes–Johnson are to be expressed in the form of a
DNF where the value a is generalized into an arbitrary individual variable x:

±∃x(Sx ∩ Px) ∪ ±∃x(Sx ∩ P̄x) ∪ ±∃x(S̄x ∩ Px) ∪ ±∃x(S̄x ∩ P̄x)

Indeed, it turns out that some of the above components corresponds tomodels of the Euler
diagrams. These can be made clearer through the uniform Venn diagrams, in which either
one of the four areas of the universe is shaded (or not) in gray whenever it corresponds
to the affirmation (or denial) of each one of the above four ordered literals: Some S is P,
Some S is not-P, Some not-S is P, and Some not-S is not-P. In the below diagram, the left-
side circle corresponds to the class of Ss and the right-side circle to the class of Ps. Every
model includes four main parts: the class of Ss, the class of Ps, the class of Ss and Ps, and
the surrounding class of whatever is neither S nor P (Figure 10).

w1 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w2 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w3 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w4 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w5 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w6 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w7 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w8 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w9 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w10 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w11 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w12 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w13 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w14 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w15 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}
w16 = {∃x(Sx ∩ Px), ∃x(Sx ∩ P̄x), ∃x(S̄x ∩ Px), ∃x(S̄x ∩ P̄x)}

Now we are in position to represent the truth-conditions of categorical propositions by
means of a bitstring, that is, an ordered set of Boolean values associated to every model.
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Using the Boolean valuation function v(A) �→ {1, 0} that associates either truth (1-bit) or
falsehood (value 0-bit) to everyA, every modelwi in whichA holds is such that v(wi,A) =
1, and v(wi,A) = 0 otherwise.

It is important to recall that not any of the above 16models belongs to the corresponding
valuation of categorical propositions: only 7 of these are retained by Keynes, as was men-
tioned earlier.7 Following Figure 3, the ensuing correspondence between Euler and Venn
diagrams: (i) = w9, (ii) = w4, (iii) = w3, (iv) = w1, (v) = w2, (vi) = w5, (vii) = w8, leads to the
following general bitstring that affords the ordered value of every categorical proposition
A into an reordered set of restricted modelsW∗:

v(W∗,A) = {w1(A),w2(A),w3(A),w4(A),w5(A),w8(A),w9(A)}
together with the corresponding bitstring for each single categorical proposition:

A v(W∗,A)

A 0001001
E 0000110
I 1111001
O 1110110
A′ 0010001
E′ 0100010
I′ 1101101
O′ 1101110

Ultimately, we are going to see that these valuations confirm the expected logical relations
that hold in the Keynes–Johnson octagon.

4.3. Logical Relations

The logical octagon that was proposed by Keynes–Johnson andHacker on page 2 include a
total of 28 logical relations, as depicted in (Figure 11) by the exhaustive octagonwhere each
vertex is related to any other one. It corresponds to a combination of two squares of oppo-
sition, that is, two diagrams establishing a number of logical dependencies between the
truth-values of its vertices. These logical relations are: contrariety, contradiction, subcon-
trariety, and subalternation, which can be defined in terms of the compossible truth-values
of their relata. Thus, for any propositionsA,B and any (consistent and complete) modelwi:

A and B are contrary to each other iff v(wi,A) = 1 entails v(wi,B) = 0.
A and B are contradictory iff v(wi,A) = 1 entails v(wi,B) = 0 and v(wi,A) = 0 entails

v(wi,B) = 1.
A and B are subcontrary iff v(wi,A) = 0 entails v(wi,B) = 1.
B is subaltern to A iff v(wi,A) = 1 entails v(wi,B) = 1 and v(wi,B) = 0 entails

v(wi,A) = 0.
The set of logical relations figured on page 2 match with the above characteristic

bistrings of the categorical propositions, insofar that their ordered bits literally ‘show’ the

7 For a restricted study of categorical propositions in these 7 models, due to the existential import, see e.g. Chatti and
Schang 2013; for an unrestricted study of these in any of the 16 models, including a usually unnoticed case of ‘negative
import’, see Schang and Englebretsen 2022.
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Figure 11. Categorical propositions and their corresponding bitstrings.

semantic dependence that obtains between formulas. Thus, it can be checked that, for any
ordered pair of formulas A, B:

• A and B are contraries in that affirming the one implies denying the other, i.e. their
respective bitstrings never include any 1-bit with respect to the same model: {A,E},
{A,E′}, {E,A′}, {A′,E′};

• A and B are contradictories in that affirming the one implies denying the other and vice
versa, i.e. their respective bitstrings never include either 1-bits or 0-bits in the same
model: {A,O}, {E,I}, {A′,O′}, {E′,I′};

• A and B are subcontraries in that denying the same implies affirming the other, i.e. their
respective bitstrings never include either 0-bits in the same model: {I,O}, {I,O′}, {O,I′},
{I′,O′};

• B is subaltern toA in that affirmingA implies affirmingB and denyingB implies denying
A, i.e. the bitstring of B never includes 0-bits wherever the bitstring of A has a 1-bit and
the bitstring of A always includes 0-bits wherever the bitstring of B has a 0-bit: {A,I},
{A,I′}, {E,O}, {E,O′}, {A′,I}, {A′,O′}, {E′,O}, {E′,I′}.

The remaining 8 logical relations of the octagon are not of the same sort, because they do
not express any dependence between the truth-values of their relata. Hence the following
definition of logical independence, in semantic terms: for any formulas A and B and any
model wi,

A and B are logically independent from each other iff the truth-value of either of A and
B does not entail anything about the truth-value of either of B and A.

This is clearly shown in the bitstrings of the complementary propositions, {A,A′} and
{E,E′}. Among this residual set of independent relations, the remaining ones are those
that Keynes calls ‘contra-complementaries’ and ‘subcomplementaries’. These are not to
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be defined either in terms of constrained truth-values, due to their being mutually inde-
pendent from each other. Rather, they correspond to those following combinations of
dependent and independent relations such that, for any formulas A, B:

• A and B are contra-complementaries iff the contradictory of A is the complementary of
B;

• A and B are subcomplementaries iff they are the respective subalterns of complemen-
taries.

This leads to those corresponding pairs of 4 contra-complementaries, where the first
relatum is always the complementary of the second relatum: {A,O′},{E,I′},{A,O′}, and
{A,O′}. Finally, the last 2 pairs are subcomplementaries where each relatum is subal-
tern to the respective ordered complementary: {I,I′},{O,O′}. This functional definition
of subcomplementary is analogous to that of subalternation proposed in Schang (2018):
subcomplementaries are the subalterns of complementaries, just as subalterns are the con-
tradictories of contraries.8 But unlike the latter, subcomplementaries cannot be reduced
completely in semantic terms of truth-conditions since complementarity remains a irre-
ducibly syntactic notion. The fact that complementaries cannot be defined semantically
explains why the derived relations of contra-complementarity and sub-complementarity
cannot be as well, whose definiens are a mixture of syntactic terms (complementary) and
semantic terms (contradictory, and subaltern).

A final representation of the logical relations yields the diagram (Figure 11) where the
Roman letters are replaced by the characteristic bitstrings of the corresponding categorical
propositions. The reader is invited to compare it with the above Boolean redefinitions of
all logical relations, let these be cases of dependence or independence.

5. Conclusion

We proposed a historical and formal analysis of Keynes–Johnson octagon of oppositions
between two kinds of categorical proposition: Aristotelian, whose subject term S is always
affirmed; Keynesian, whose subject term S is always negated. In the first two parts of the
paper, the history concerned its introduction and formalization through the references of
Keynes 1894, Johnson 1921 and Hacker 1975 in basic terms of classes. In the third part of
the paper, the logical octagonwas explored syntactically and semantically with themodern
methods of first-order logic and model theory. The final result and expectedly unprece-
dented contribution9 is a bitstring semantics (see Schang 2012, 2018), which completes
the account offered by Demey and Smessaert 2018 in syntactic terms of duality and lit-
erally ‘shows’ the truth-conditions of categorical propositions in terms of ordered model
sets every proposition belongs to or not. By this way, we hope to get two main results:
a clarification of the logical octagon by means of its formal reconstruction; a generaliza-
tion of the theory of oppositions, from the initial dependence to the final independence

8 Given that subalterns are defined as the contradictories of contraries, this also entails that subcomplementaries are the
contradictories of the contraries of complementaries. For a Boolean calculus of such iterated logical relations in terms of
opposition-forming operators applied to bitstrings (in thewide sense of opposition as any relation of logical dependence),
see Schang 2018.

9 Bistring semantics has been also developed in Demey and Smessaert 2018, however. The original contribution of the
present semantic method concerns the Boolean calculus of logical relations between matching propositions.
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relations between any well-formed formulas. The semantic method will be applied later
on to other logical contexts like modal formulas or polyadic relations, beyond the present
subject-matter of categorical propositions.

Acknowledgments

The authors are grateful to the anonymous referees for their precious critics and advices for the final
version of the present paper.

ORCID

Fabien Schang http://orcid.org/0000-0003-3918-7629

References

Abeles, F. F, andMoktefi, A. 2011. ‘HughMacColl and Lewis Carroll: crosscurrents in geometry and
logic’, Philosophia Scientiae, 15 (1), 55–76.

Boole, G. 1854. An Investigation of the Laws of Thought, London: Walton & Maberly.
Chatti, S., and Schang, F. 2013. ‘The cube, the square, and the problem of existential import’,History

and Philosophy of Logic, 34 (2), 101–32.
Dekker, P. J. E. 2015. ‘Not only barbara’, Journal of Logic, Language and Information, 24, 95–129.
Demey, L., and Smessaert, H. 2018. ‘Aristotelian and duality relations beyond the square of oppo-

sition’, in: P. Chapman et al. (eds.), Diagrammatic Representation and Inference, Diagrams 2018,
Volume 10871, pp. 640–56.

Dubois, D., Prade, H., and Rico, A. 2020. ‘Structures of opposition and comparisons: Boolean and
gradual cases’, Logica Universalis, 14 (1), 115–49.

Gergonne, J. D. 1817. ‘Essai de dialectique rationnelle’, Annales de Mathématiques Pures et
Appliquées, 7, 189–228.

Grattan-Guinness, I. 1977. ‘The Gergonne relations and the intuitive use of Euler and Venn
diagrams’, International Journal of Mathematical Education in Science and Technology, 8 (1),
23–30.

Green, J. 1991. ‘The problem of elimination in the algebra of logic’, in T. Drucker (ed.), Perspectives
in the History of Mathematical Logic, Basel: Birkhäuser, pp. 1–9.

Hacker, E. A. 1975. ‘The octagon of opposition’, Notre Dame Journal of Formal Logic, 16 (3), 352–3.
Johnson, W. E. 1921. Logic: Part I, London: Macmillan.
Keynes, J. N. 1884. Studies and Exercises in Formal Logic, 1st ed., London: Macmillan.
Keynes, J. N. 1894. Studies and Exercises in Formal Logic, 3rd ed., London: Macmillan.
Marion, M., and Moktefi, A. 2014. ‘La logique symbolique en débat á Oxford á la fin du XIXe siécle:

les disputes logiques de Lewis Carroll et John CookWilson’, Revue d’Histoire des Sciences, 67 (2),
185–205.

Moktefi, A. 2019. ‘The social shaping of modern logic’, in D. Gabbay et al. (eds.),Natural Arguments:
A Tribute to John Woods, London: College Publications, pp. 503–20.

Moktefi, A. 2020. ‘Schopenhauer’s Eulerian diagrams’, in J. Lemanski (ed.),Mathematics, Logic and
Language in Schopenhauer, Basel: Birkhaüser, pp. 111–27.

Moktefi, A., and Edwards, A. W. F. 2011. ‘One more class: Martin Gardner and logic diagrams’, in
M. Burstein (ed.), A Bouquet for the Gardener, New York: LCSNA, pp. 160–74.

Peckhaus, V. 1989. ‘Hugh MacColl and the German algebra of logic’, Nordic Journal of Philosophical
Logic, 3, 17–34.

Radford, C. 1995. ‘MacColl, Russell, the existential import of propositions, and the null-class’, The
Philosophical Quarterly, 45 (180), 316–31.

Schang, F. 2012. ‘Abstract logic of opposition’, Logic and Logical Philosophy, 21, 415–38.
Schang, F. 2018. ‘End of the square?’, South American Journal of Logic, 4 (2), 1–21.
Schang, F., and Englebretsen, G. 2022. ‘The non-standard forms of categorical propositions’, (sub-

mitted draft).

http://orcid.org/0000-0003-3918-7629

	1. Introduction
	2. Keynes' Logical Octagon
	3. The Structure of the Logical Octagon
	3.1. Relations Between Propositions with Subject and Predicate Fixed
	3.2. Relations Between Propositions with Two Terms Whatever
	3.3. Relations Between Propositions Connecting Any Two Terms and Their Contradictories

	4. A Semantics for the Logical Octagon
	4.1. Logical Forms
	4.2. Models
	4.3. Logical Relations

	5. Conclusion
	Acknowledgments
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


