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Abstract. Stochastic independence (SI) has a complex status in probabil-
ity theory. It is not part of the de�nition of a probability measure, but it is
nonetheless an essential property for the mathematical development of this the-
ory, hence a property that any theory on the foundations of probability should
be able to account for. Bayesian decision theory, which is one such theory, ap-
pears to be wanting in this respect. In Savage�s classic treatment, postulates on
preferences under uncertainty are shown to entail a subjective expected utility
(SEU) representation, and this permits asserting only the existence and unique-
ness of a subjective probability, regardless of its properties. What is missing
is a preference postulate that would speci�cally connect with the SI property.
The paper develops a version of Bayesian decision theory that �lls this gap. In
a framework of multiple sources of uncertainty, we introduce preference con-
ditions that jointly entail the SEU representation and the property that the
subjective probability in this representation treats the sources of uncertainty
as being stochastically independent. We give two representation theorems of
graded complexity to demonstrate the power of our preference conditions. Two
sections of comments follow, one connecting the theorems with earlier results
in Bayesian decision theory, and the other connecting them with the founda-
tional discussion on SI in probability theory and the philosophy of probability.
Appendices o¤er more technical material.

1 Introduction and preview

The property of stochastic (or statistical, or probabilistic) independence occu-
pies a rather special place in the mathematical theory of probability. It does

1A �rst version of this paper was presented at a seminar at the Munich Center for Math-
ematical Philosophy and at the TARK 2017 conference. The present version has particularly
bene�ted from detailed comments made by Richard Bradley, Donald Gillies, Robert Nau,
Marcus Pivato, Burkhard Schipper, Peter Wakker, Paul Weirich, two anonymous TARK ref-
erees, and two anonymous referees of this journal. We thank the Investissements d�Avenir
(ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047) for supporting our research.
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not belong to the properties that this theory singles out to de�ne a probabil-
ity measure axiomatically. Indeed, its familiar de�nitions by the multiplication
rule, or the equality of conditional with unconditional probability, do not enter
the Kolmogorov axiomatization of a probability measure. Rather, they capture
properties of given events (and more generally, of given partitions or random
variables) for a given probability measure and can thus be adopted only to
model particular situations. At the same time, probability theory obviously
makes extensive use of independence assumptions, as evidenced by the Laws of
Large Numbers, many theorems on stochastic processes and some core results
of statistical theory. For Kolmogorov himself, this property occupies a "central
position in the theory of probability" (1933-1956, p. 8), making it signi�cantly
di¤erent from the theory of positive measures. One would thus expect all the-
ories of the foundations of probability to pay careful attention to stochastic
independence, but this is not the case. In this paper, we investigate Bayesian
decision theory, one of the most in�uential among these theories, and at the
same time a curious example of neglect of this major property.
As is well known, Bayesian decision theorists have developed a brand of sub-

jective interpretation for the probability calculus. They claim that an agent�s
uncertain beliefs should be represented by a probability measure, and ground
their claim on a pragmatic argument. They show formally that if the agents�
preferences over uncertain prospects - typically, but not exclusively over mon-
etary bets - obey certain requirements of practical rationality, these agents�
beliefs should conform to the axiomatic de�nition of a probability measure.
Bayesian decision theorists typically stop their work when they have completed
this demonstration. By not explaining how it can be extended to recover the
de�nition of stochastic independence, they are open to the objection that they
have not yet fully connected the probability calculus with rational belief. That
is, they can be critized for having handled only the basics of this calculus instead
of its actual working.
More technically, Bayesian decision theory o¤ers a representation theorem

for preferences over uncertain prospects that involves two sets of quantities, util-
ities (over the consequences of prospects) and probabilities (over the uncertain
events), these two items being combined by the familiar rule of expected util-
ity. After Ramsey�s and de Finetti�s sketches, this strategy was implemented in
full axiomatic detail by Savage (1954). At one point, Savage (1954-1972, p.44)
extends the representation theorem to obtain a posterior probability measure,
i.e., one that represents beliefs after a partial resolution of uncertainty, and
proves that this posterior obeys Bayes�s rule of revision; properly speaking, the
"Bayesian" label of the school becomes fully justi�ed only at this stage. This
is also where Savage stops. As we will report below, however, he acknowledges
that a treatment of stochastic independence should have come next, but his
admission of an un�nished business was generally lost to later Bayesian decision
theorists. The rare exceptions will be discussed below.
What is missing from Savage�s axiom system and its variants is a condition

put in the preference language of these systems that would account for stochas-
tic independence speci�cally. The present paper formulates one such condition.
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We do not use Savage�s system, but a more accessible one, and it is another
contribution of the paper to introduce this alternative system. The desired con-
dition turns out to be highly simple and intuitive. We set up a framework in
which there are two distinct sources of uncertainty S and T , and states of nature
thus have the form of two-component vectors (s; t) 2 S � T . In this framework,
the condition relates to the agent�s conditional preferences and stipulates that
those de�ned conditionally on s should be the same for all s in S, and those
de�ned conditionally on t should be the same for all t in T . What this e¤ec-
tively means is that if the agent knows t but not s, or knows s but not t, then
this partial knowledge cannot improve the decisions made under the residual
uncertainty. This recovers in axiomatic preference terms one of the standard
informal justi�cations of stochastic independence: if the occurrence of an event
A carries no information on the occurrence of B, and vice versa, then the two
events should be declared to be independent.
An alternative informal justi�cation, which is also common, goes as follows:

if the occurrence of an event A does not in�uence the occurrence of B, and vice
versa, then the two events should be declared to be independent. The two lines
are semantically distinct, but easily get mixed up in probability texts and even
some works in the philosophy of probability. When Bayesian decision theory
is extended so as to encompass stochastic independence, there is no danger of
confusion since the information carried by events matters only if it enters the
agent�s decision process, hence is subjective in character. Objective connections
holding between events, for instance causal connections, play a role only if the
agent considers them relevant. Thus, one merit of the extended Bayesian theory
is to give the informational reading of stochastic independence a foundation
that clearly sets it apart from other possible readings. Besides this semantic
contribution, the theory casts some light on the re�ective discussion of that
property in the philosophy of probability. In particular, it has something to
say on the symmetry of the multiplicative de�nition - A�s independence of B
implying B�s independence of A -, a property that this literature has sometimes
called into question.
We o¤er two representation theorems in succession. Both are adapted to the

multiple uncertainty framework sketched above, and both deliver an expected
utility formula in which the subjective probability is multiplicative in the values
of two sources, hence satis�es stochastic independence. The system of Theo-
rem 1 has very few axioms, which deliver the two desired outputs jointly. This
condensed treatment is both an advantage and a disadvantage. To derive a sub-
jective expected utility formula and the multiplicative property in two succesive
logical steps helps one better understand how each of the preference axioms
contributes to the conclusions. The more advanced Theorem 2 is devised for
this purpose.
The rest of this paper is organized as follows. Section 2 introduces the

twofold uncertainty framework and the preference axioms for Theorem 1 via a
motivating example. Section 3 states this result formally, and section 4 does the
same for Theorem 2. Section 5 is devoted to comparisons within Bayesian deci-
sion theory, including the earlier sketches of a preference analysis of stochastic
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independence. Section 6 draws connections with the philosophy of probability.
Three appendices collect the more specialized material. Appendix 1 gives proof
details on the two theorems. Appendix 2 generalizes Theorem 1 by allowing for
0-probability events. Appendix 3 pursues some of the comparisons of section 5
in more detail.

2 A motivating example

Given any probability space (
;A; P ), two events A;B 2 A are said to be
stochastically independent if

P (A \B) = P (A):P (B).

Building on this elementary de�nition, probability theory also de�nes what it
means for sets of events, partitions or random variables to be stochastically
independent. Here we will approach stochastic independence (SI) by specializing
the state set 
 to be a product set, a standard move in the theory when it
comes to working with this property (see, e.g., Halmos, 1974, p. 191-192). The
simple example of this section illustrates this framework and the main decision-
theoretic concepts of the paper.
Suppose that a corn producer must decide how much land to farm while not

knowing what the climatic conditions and the demand for corn will be at the
time of the harvest; supppose also this producer evaluates each farming policy
in terms of monetary proceeds and no other criterion. Following the basics of
decision theory, we can reexpress this example symbolically as follows. There is
a set of states of the world, which takes the form of a product set 
 = S � T ,
where S represents the set of unknown climatic conditions and T the set of
unknown values for demand. There is a set of consequences, which we take to
be the set of real numbers R to represent monetary proceeds. There is a set of
uncertain prospects, i.e., mappings from the states of the world to consequences,
each of which represents a farming policy, which we take to be the set RS�T of
all real functions on 
. Finally, there is a binary relation % on the last set of
prospects to capture the producer�s preferences among cultivation policies.
Now suppose that this preference relation obeys the expected utility (EU)

rule, i.e., there exists a probability function � on 
 = S � T and a utility
function u on R such that for all uncertain prospects X, Y,

X % Y i¤
X
s;t

�(s; t)u(X(s; t)) �
X
s;t

�(s; t)u(Y(s; t)),

and suppose moreover that � satis�es the stochastic independence (SI) property
with respect to S and T , i.e.,

�(s; t) = p(s)q(t),

where p and q are probability functions on S and T respectively. This equation,
also written as � = p
 q, determines p and q uniquely; these are the marginals
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of � on S and T , respectively. The EU rule with an axiomatically derived sub-
jective probability (what will be referred to as subjective expected utility, SEU)
and the SI property of this subjective probability are the intended conclusions of
our theorems. In the present section, we reason heuristically, working backwards
from them to a set of preference conditions that could be proposed as axioms.
Assume for simplicity that S = fs1; s2g and T = ft1; t2g. Then, the proba-

bilities are given by the table:

t1 t2
s1 ps1qt1 ps1qt2
s2 ps2qt1 ps2qt2

and an uncertain prospect X is represented by the following table, which gives
the consequences of this prospect in each state:

X t1 t2
s1 x11 x12
s2 x21 x22

The EU formula for %, i.e.:

V (X) = ps1qt1u(x11) + ps1qt2u(x12) + ps2qt1u(x21) + ps2qt2u(x22).

can be restated either as:

(�) V (X) = ps1 [qt1u(x11) + qt2u(x12)] + ps2 [qt1u(x21) + qt2u(x22)] ,

or as:

(��) V (X) = qt1 [ps1u(x11) + ps2u(x21)] + qt2 [ps1u(x12) + ps2u(x22)] .

Observe that the bracketed sums in (�) are numerical representations for
conditional preferences on the possible values of s, and those in (��) are numer-
ical representations for conditional preferences on the possible values of t. Thus,
the equations entail that (i) these conditional preferences are orderings. Since
the same functional form qt1u(:) + qt2u(:) appears in the two bracketed sums
of (�), and similarly the same functional form ps1u(:) + ps2u(:) appears in the
two bracketed sums of (��), the equations also entail that (ii) these conditional
preferences are the same for di¤erent s, and the same for di¤erent t. Lastly,
from the same equations, if the conditional orderings for both s1 and s2, or
the conditional orderings for both t1 and t2, agree to rank prospect X above
prospect Y, then the overall preference % ranks X above Y. Thus, it also holds
that (iii) preferences over prospects are increasing with respect to either family
of conditional preferences.
We have stated (i), (ii) and (iii) in pure preference language, thus abstracting

entirely from the speci�cs of a numerical representation. In Theorem 1 below,
we assume no more than (i), (ii) and (iii), plus some background conditions, and
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derive a SEU rule with the SI property. Given the de�nition of a conditional,
which is restated below, it is actually possible to reduce (iii) to (i) and obtain
an even more condensed system. One may wonder how such apparently weak
conditions can do the mathematical work. One key point of the formal argument
is that the weak ordering property, when applied to both s and t as in (i),
makes it possible to decompose the preference % not only in terms of s- and
t-conditionals, but also in terms of any other partition of 
, and from there to
get an additive representation for %. The other key point is that the invariance
property, when applied to both s and t, as in (ii), permits not only turning this
additive representation into a EU formula, but also giving the probabilities in
this formula the multiplicative form.2

3 A �rst representation theorem involving sub-
jective expected utility and stochastic inde-
pendence

Formally, there are two variables of interest, s 2 S and t 2 T , and a state of the
world is any pair (s; t) 2 
 = S � T . By assumption, S and T are �nite with
cardinalities jSj, jT j � 2. We keep the same number of sources of uncertainty
as in the motivating example, but this is only for mathematical simplicity. The
next section will suggest how a larger number can be handled. We take the set
of consequences to be R and the set of prospects to be the set of all mappings
S�T ! R, which is identi�ed with RS�T .3 The sets of all probability functions
on S, T and S � T are denoted by �S , �T and �S�T , respectively.
It is convenient to represent prospects X as jSj � jT j matrices, with each

s standing for a row and each t standing for a column. We will thus write
X = [xts]

t2T
s2S , but sometimes also X = (x1,...,xjSj), where each component is

a row vector xs 2 RT , or X = (x1,...,xjT j), where each component is a column
vector xt 2 RS .
We endow the agent with an ex ante preference relation % to compare

prospects and speci�cally assume that
(A) % is a continuous weak ordering.

Hence % is representable by a continuous utility function U(X).4 The agent�s
other preference relations are obtained from % as conditionals. There are three
families of conditionals of interest, i.e., f%sgs2S , f%tgt2T and f%stgs2S;t2T .

2These two heuristic features underlie the proof of Theorem 3 by Mongin and Pivato (2015),
which is our main technical tool in this paper.

3Again, these two assumptions are only for mathematical simplicity. Using the full tech-
nology of Mongin and Pivato (2015), the theorems of this paper could be proved for smaller
domains than R and RS�T . This would permit paying attention to feasibility constraints on
what counts as a consequence and what counts as a prospect.

4A weak ordering (i.e., a re�exive, transitive and complete binary relation) % on some
Euclidean space Rn is continuous if for all x 2 Rn, the upper and lower contour sets
fx0 2 Rn j x0 % xg and fx0 2 Rn j x % x0g are closed sets. This de�nition and the accom-
panying representation theorem are familiar since Debreu (1954) established them.
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The last family represents ex post preferences, and the �rst two represent in-
terim preferences, since each relation in these families depends on �xing one
variable and letting the other vary, which amounts to resolving only part of the
uncertainty.
We now formally de�ne how conditionals are de�ned from the master relation

%.5 Take any subset of states I � S � T . The conditional of % on I is the
relation %I on RI de�ned by the property that for all xI ;yI 2 RI ,

xI %I yI i¤X % Y for some X;Y 2 RS�T s.t. X is xI on I, Y is yI on I,
and X and Y are equal outside I.

Taking I = fsg � T , I = S � ftg, and I = f(s; t)g in this de�nition, we obtain
the three families of conditionals mentioned above.6

In terms of the matrix representation of prospects, the de�nitions of %s and
%t read as follows:

� for all xs;ys 2 RT , xs %s ys i¤X % Y for some X;Y 2 RS�T s.t. xs is
the s-row of X, ys is the s-row of Y, and X and Y are equal outside their
s-row,

� for all xt;yt 2 RS , xt %t yt i¤ X % Y for some X;Y 2 RS�T s.t. xt
is the t-column of X, yt is the t-column of Y, and X and Y are equal
outside their t-column.

Importantly, the de�nition of conditionals does not by itself make them weak
orderings. By a well-known fact of decision theory, %I is a weak ordering if and
only if the choice of X;Y in the de�nition of %I is immaterial, or more precisely,
if and only if

X % Y () X0% Y0,

for all X0;Y0 that also satisfy the condition stated for X;Y in this de�nition.
In this case, the quanti�er "for some" in the de�nition can be replaced by "for
all". When this holds, % is said to be separable in I. By another well-known
fact, separability in I is equivalent to the property that % is monotonically
increasing with the family of conditionals f%i; i 2 Ig. We formally illustrate
this property on the example of f%s; s 2 Sg. Then, if % is separable in each
s 2 S (or equivalently, each %s is a weak ordering), the following holds: for all
X;Y 2 RS�T , if xs %s ys for all s, then X % Y; and if moreover xs �s ys for
some s, then X � Y.7
Combining the two basic facts just said, we see that the monotonicity condition
(iii) of last section actually follows from the weak ordering condition (i). This
will permit reducing the assumptions of our theorem to a bare minimum.

5The formalism below is standard in decision theory. See, e.g., Fishburn (1970) and Wakker
(1989), or at a less technical level, Keeney and Rai¤a (1993)..

6Throughout, we will use the standard identi�cation of s with fsg�T , t with S�ftg, and
(s; t) with f(s; t)g.

7By �, �s, �t and �st we denote the strict preference relation associated with the weak
preference relations %, %s, %t and %st. We denote the corresponding indi¤ erence relations
by s, ss, st and sst.
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Since conditionals %st compare real numbers, it makes sense to identify them
with the natural order of these numbers. This amounts to assuming that, given
any realized state (s; t), they are desirable quantities, be they money values, as
in the producer example, or something else. Thus, we also assume that
(B) for all (s; t) 2 S � T and all xts; yts 2 R, xts %st yts i¤ xts � yts.

Since this equivalence turns the %st into weak orderings, % is increasing with
each of them, hence also with each entry xts of X.
Let us now say that the conditionals %s (resp. %t) are an invariant family if

%s= %s0 for all s; s0 2 S (resp. %t= %t0 for all t; t0 2 T ). These two requirements
capture condition (ii) of last section. None is needed for the conditionals %st,
since they are identical relations by construction.
We are now ready for the �rst representation theorem.

Theorem 1 Given assumptions (A) on % and (B) on %st, the following con-
ditions are equivalent:

� The conditionals %s and %t are weak orderings for all s 2 S and all t 2 T ,
and both families of conditionals are invariant.

� There are increasing, continuous function u : R �!R, and strictly positive
probability functions p 2 �S and q 2 �T , such that % is represented by
the function V : RS�T�!R that computes the p
 q-expected value of u,
i.e., by the function thus de�ned: for all X = [xts]

t2T
s2S ,

V (X) :=
X
s2S

X
t2T

ps qtu(x
t
s).

In this format of EU representation, p and q are unique, and u is unique
up to positive a¢ ne transformations.

The conclusions state both that the ex ante preference relation can be rep-
resented by a SEU formula and that the two sources of uncertainty satisfy SI.
Thus, this theorem extends Bayesian decision theory up to the point that, from
the argument made in the introduction, it ought to have reached. The conclu-
sion that p and q have only positive values is restrictive, but it can be relaxed
by complexifying the assumptions. We pursue this technical line in appendix 2.

4 A second representation theorem involving sub-
jective expected utility and stochastic inde-
pendence

In Theorem 1, strong results follow from a short list of assumptions, undoubt-
edly a feature of mathematical elegance, but also a cause for conceptual dissat-
isfaction. Would it not be better to expand on the assumptions and separate
those which are responsible for the existence of the SEU representation from
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those which account for the SI property occurring in this representation? Such
a disentangling would be the more justi�ed since SI is an optional property
of a probability measure, hence in need of a preference condition that should
be detachable from those underlying the existence of this measure. However,
the assumptions of Theorem 1 cannot be so divided, as the following argument
shows. By taking the %s and %t to be merely orderings, not invariant orderings,
one would get an additively separable representation that does not distinguish
between the utility and probability components of the added terms, unlike EU
representations. By taking only one of the two families to satisfy the ordering
and invariance assumptions, one would get a representation that is separable in
that family alone and would be even more remote from the SEU representation.8

As it turns out, however, we can obtain a relevant partitioning of assumptions
if we enrich the decision-theoretic framewok beyond the present two-dimensional
stage. Let us suppose that the agent pays attention not only to the uncertainty
dimensions s and t of the �nal consequences, but also to a third dimension i, so
that these consequences are now represented by real numbers xist. The added
dimension can be thought of in several ways, like time, space or an omitted
dimension of uncertainty. Each of these concrete suggestions can �t the mo-
tivating example: the added dimension would indicate when, where or under
what further unknown circumstance the monetary proceeds of a farming pol-
icy accrue to the producer. We will return to the interpretation of the added
dimension after stating Theorem 2.
By assumption, i takes its values in a �nite set I with cardinality jIj � 2.

The set of prospects is now the set of all mappings S�T�I �! R, i.e., RS�T�I .
Prospects can be represented as three-dimensional arrays

X =
�
xist
�i2I
s2S;t2T 2 R

S�T�I ,

or as vectors

X = (X1; :::;XjSj), X =(X1; :::;XjT j) or X = (X1; :::;XjIj),

the components of which are matrix-valued, i.e., Xs =
�
xist
�i2I
t2T 2 R

T�I , Xt =�
xist
�i2I
s2S 2 R

S�I and Xi =
�
xist
�
s2S;t2T 2 R

S�T , respectively.
Adapting the formalism of last section, we assume that

8The additively separable representation of the �rst point reads asX
s2S;t2T

vst(x
t
s),

with increasing and continuous vst : R ! R, for all s 2 S; t 2 T . This follows from another
theorem of Debreu (1960). As to the next point, if the assumptions only hold for the %s, the
separable representation reads as

W (V1(x1); :::; VjSj(xjSj)),

with increasing and continuous W : RS ! R and Vs : RT ! R, for all s 2 S. On this
representation, see Blackorby, Primont and Russell (1978, p. 108).
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(A�) the agent�s ex ante preference relation % on RS�T�I is a con-
tinuous weak ordering,
and from this relation, we de�ne four families of conditionals, i.e., f%s; s 2 Sg,
f%t; t 2 Tg,

�
%i; i 2 T

	
and

�
%ist; s 2 S; t 2 T; i 2 I

	
. The %s, %t and %i re-

spectively compare matrices Xs, Xt, Xi, as de�ned above, the %st compare
vectors xst 2 RI , and the %ist compare real numbers. Similarly as before, we
assume that
(B�) each %ist coincides with the natural order of real numbers,

which makes it an ordering, and furthermore makes the %ist an invariant family.
The other conditional relations may or may not be weak orderings, and may or
may not form invariant families, depending on which assumptions are put on
them.

Theorem 2 Given assumptions (A�) on % and (B�) on %ist, the following
conditions are equivalent:

� The conditionals %i are weak orderings.

� There are increasing, continuous functions ui : R �!R, for all i 2 I, and a
strictly positive probability function � 2 �S�T , such that % is represented
by the function W : RS�T�I�!R that computes the �-expected value ofP

i2I u
i, i.e., the function thus de�ned: for all X =

�
xist
�i2I
s2S;t2T ,

(�) W (X) :=
X

s2S;t2T

X
i2I

�st u
i(xist):

In this format of EU representation, � is unique, and the ui are unique
up to positive a¢ ne transformations with a common multiplier.

Moreover, the following are equivalent:

� The above assumption on the %i holds, and the %s are weak orderings and
an invariant family.

� The above conclusions hold, and there are strictly positive probability func-
tions p 2 �S and q 2 �T with � = p
 q, so that (�) becomes: for all
X =

�
xist
�i2I
s2S;t2T ,

(��) W (X) :=
X
s2S

X
t2T

X
i2I

ps qtu
i(xist).

In this format of EU representation, p and q are unique, while the ui

have the same uniqueness property as before.

Unlike Theorem 1, Theorem 2 is in two parts, corresponding to the SEU
formula and the SI property respectively. What appears to be essential to the
latter is that one of the two sources (here conventionally taken to be S) gives
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rise to an invariant family of conditionals. We now reinforce the suggestion that
invariance is the crucial condition by a heuristic argument.
Considering for simplicity only four states, suppose that the agent takes

(s1; t1) to be more likely than (s1; t2), and (s2; t1) less likely than (s2; t2). That
is, from knowing how the uncertainty on s is resolved, the agent is able to
draw an inference on how the uncertainty on t would be resolved. If the agent
reasoned probabilistically, the joint probabilities would of course not decompose
multiplicatively. It is easy to conclude that the conditionals on s cannot be
invariant. Take �; �0 representing desirable quantities, with � > �0, and the
following prospects in matrix form:

X t1 t2
s1 � �0

s2 �0 �
and

Y t1 t2
s1 �0 �
s2 � �0

.

The �rst line of X, which puts the best consequence on the more likely state,
should be preferred to the �rst line of Y, which puts it on the less likely state;
that is, (�; �0) �s1 (�0; �). By a similar comparison, the second line of X should
be preferred to the second line of Y; that is (�0; �) �s2 (�; �0). Thus, the two
conditional preferences di¤er. Contraposing the argument, we see that if an
agent entertains identical %s and learns which s is realized without yet learning
t, this agent would not use the knowledge so obtained to draw information on
t.
The converse claim is problematic. Preference reversals may occur between

%s and %t simply because the agent�s preferences are sensitive to which of
s or t is realized, and this evaluative disposition is logically unrelated to the
epistemic disposition of not using s-information to infer t-information. That is,
the latter disposition can prevail in preference contexts where the property that
the %s are an invariant family should not be assumed. The only way to secure
a converse is to exclude the troublesome evaluative disposition by �at, which
all ordinary axiomatizations of SEU theory actually do, a strategy that has the
de�nite shortcoming of narrowing the application range of the theory. For lack
of a better solution, we reproduce this standard move here.
To derive (��), it was unnecessary to assume that both the %s and the %t

are invariant. The invariance of the latter family follows from the representation
(��) itself.9 If it is su¢ cient to require one form of invariance, this is because
a EU representation (�) holds from the previous stage. Under this assumption,
it is impossible to distinguish between s bringing no relevant information on t,
and t bringing no relevant information on s. This is formally shown in appendix
1 and further discussed in appendix 3.
We now return to the interpretation of the third dimension i introduced in

this section. A very natural decision-theoretic account becomes available when
i represents time. Then, the alternatives X mean contingent plans, i.e., plans
for the future whose consequences in a given period depend on the way the

9From (��), the %t are represented by
P
s2S

P
i2I ps u

i(:), which does not depend on t.
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uncertainty - still represented by (s; t) - is resolved in that period. The matrix-
valued objects Xs, Xt and Xi mean partly contingent plans (for the �rst two,
when one dimension of uncertainty is �xed) or dated prospects (for the last,
when the time dimension is �xed). As to the vector-valued objects xst, they
mean non-contingent plans, since they take the uncertainty to be resolved at
each time period.10

However, time considerations are extraneous to uncertainty, which is the
concern here, and it may be more appropriate to �nd an interpretation for i
that relates to these concerns. Suppose we declare i to be a third dimension of
uncertainty. We can then add a third part to Theorem 2, which puts on the %i
the same invariance assumption as was imposed on the %s and the %t. With
this addition, it can be proved that (��) gives way to the following more speci�c
representation: for all X =

�
xist
�i2I
s2S;t2T ,

(� � �) W (X) :=
X
s2S

X
t2T

X
i2I

ps qtriu(x
i
st),

where r = (ri)i2I is a strictly positive probability function on I, and the utility
function u in the SEU formula is now independent of the i index. Besides
having a semantic advantage, this extension of Theorem 2 carries with it a
sense of mathematical generalization. To obtain the SI property for a product
space 
 with any �nite number of sources of uncertainty is no more di¢ cult
than to obtain it for 
 = S � T � I, but this would impose a heavy notational
burden.

5 Comparisons with decision theory

We start this decision-theoretic section with two comments that Savage makes
on SI in his Foundations of Statistics. Having axiomatized a qualitative proba-
bility relation, he complains that "the notions of independence and irrelevance
have ... no analogues in qualitative probability; this is surprising and unfortu-
nate, for these notions seem to evoke a strong intuitive response" (1954-1972,
p. 44). Later, at the end of a well-known passage on "small worlds", Savage
restates his complaint as follows: "it would be desirable, if possible, to �nd
a simple qualitative personal description of independence between events" (p.
91).11 The two comments clearly express the need for Bayesian decision theory
to complement its derivation of subjective probability with an account of SI, but
point in di¤erent directions. The �rst relates to qualitative probability, which is
an auxiliary concept in Savage�s construction; he uses it as an intermediary be-
tween his preference postulates and his �nal conclusions, in which subjective
probability acquires a numerical form. Today, Savage�s complaint in respect of

10These interpretations assume that each period is uncertain in the same way as any other,
i.e., no interaction exists between the resolution of uncertainty and the passing of time.
11Savage used to say "personal probability" where later theorists say "subjective probabil-

ity".
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this concept is no longer justi�ed. There now exist richer systems of qualitative
probability than his, which contain a special relation to express the stochastic
independence of two events or two random variables.12 The second comment
does not mention qualitative probability and we read in it a suggestion to base
SI directly on the preference relation. In this respect, Savage�s complaint is still
topical. The present axiomatic work, which it motivated, appears to have been
foreshadowed in only three papers, to be discussed now.
The main connection is with Blume, Brandenburger and Dekel (1991, p. 74).

These writers use Anscombe and Aumann�s (1963) axiom system to explore the
preference foundations of lexicographic probability, a topic apparently remote
from the present one. However, their construction includes ordinary Kolmogorov
probabilities as a particular case, and we may just focus on this application. To
account for SI, they impose invariance of relevant conditionals of their ex ante
weak ordering (which they have rede�ned so that it bears on a Cartesian prod-
uct). Leaving aside the Anscombe-Aumann features (see our critical comments
below), their condition is the same as ours. Their paper does not contain a
proof that this condition delivers SI, but we will provide one in appendix 3.
In an important follow up, which still uses Anscombe and Aumann�s axiom

system, Battigalli and Veronesi (1996) push the analysis of Blume, Branden-
burger and Dekel in the direction of conditional probability systems (CPS). These
amount to taking conditional probabilities, rather than absolute probabilities,
as being the primitive terms of the probability calculus, a move that philoso-
phers usually associate with the works of Rényi (1955) and Popper (1959). For
a suitable de�nition of what it means for a CPS to satisfy SI, Battigalli and
Veronesi (1996, p. 243) connect this property with a form of conditional invari-
ance. Given the dissimilarity of frameworks, the step from this condition to
ours is far from trivial.
A comparison is also in order with a little known axiomatization of Bayesian

decision theory by Bernardo, Ferrandiz and Smith (1985). These writers�deriva-
tion of SEU hinges on the strong assumption that a preexisting probability mea-
sure is available on a subalgebra of events; this will serve to calibrate subjective
probability values. They de�ne a preference condition relative to two events E
and F that entails the equation P (E \F ) = P (E):P (F ) at the stage of proving
the representation theorem. Although evocative of the informational reading
of SI, this condition di¤ers from ours, and this di¤erence seems connected with
the technical choice of approaching SI in general probability spaces rather than
product spaces.13

Theorems 1 and 2 should also be compared with the recent axiomatic work

12See Domotor (1969), Fine (1971), Kaplan and Fine (1977), Luce and Nahrens (1978), to
cite only the earliest accounts of SI in terms of qualitative probability. Fine�s 1971 classic
Theories of Probabilities makes interesting comments on SI, and at some point (p. 36-37)
even suggests moving in the direction of a pragmatic, preference-based account of SI.
13Relatedly, Pfanzagl�s (1968, p. 210-213) text on measurement theory states a preference

condition for SI that is de�ned for a general probability space. Also using a calibration process,
but with less elaboration than Bernardo, Ferrandiz and Smith, he derives a SEU formula that
satis�es this property.
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on second-order expected utility.14 This work involves considering two sources
of uncertainty; however, unlike ours, it aims at establishing a logical hierarchy
between these sources. By assumption, uncertainty takes both a primary form
and a secondary form, which concerns what the primary form may be. This
hierarchy can be interpreted epistemically, with the primary form bearing on the
realization of natural events and the secondary form bearing on the realization
of the primary form considered as an epistemic event, but it also admits of a
temporal interpretation, with the primary and secondary sources corresponding
to uncertainties of the second and �rst periods, respectively. In the present
notation, if T represents the uncertain states of the primary form, and S those
of the secondary form, a second-order EU representation of ex ante preferences
is X

s2S
psv(

X
t2T

rstu(x
t
s)),

where rs = (rst)t2T is a conditional probability function for t given s, v is a
continuous and increasing function on R, and u is a function on a consequence
set that may be, but is not necessarily R. This representation is axiomatized by
Nau (2006, p. 143). Ergin and Gul�s (2009, p. 912) version uses an unconditional
probability for t: X

s2S
psv(

X
t2T

qtu(x
t
s)).

15

If one takes v to be a positive a¢ ne transformation, the two forms of uncertainty
play symmetric roles, and both formulas collapse onto a SEU formula with
a subjective probability that satis�es SI; thus, one gets the representation of
Theorem 1 as a particular case. How the axioms for second-order EU should be
strengthened so as to get this particular case is a relevant question, which we
take up in appendix 3.16

We now compare our axiomatization of the SEU formula with those in cur-
rent use. Being entirely preference-based, the former is like Savage�s (1954-
1972), but there are important dissimilarities. An obvious one concerns the car-
dinality of the state set 
, which is in�nite in Savage and �nite here. Also, the
highly condensed axiom systems for Theorems 1 and 2 do not relate to Savage�s
seven-postulate system in a transparent way. However, it is well-known that
given postulate P1 (which requires that the ex ante preference relation % be a
weak ordering), postulate P2 (the "sure-thing principle") can be restated as the
requirement that the conditional %E on any event E of the state set be a weak
14We are grateful to a referee for bringing out this connection.
15The classic article by Klibano¤, Marinacci and Mukerji�s (2005, p. 1858) has a similar

representation with integrals instead of �nite sums.
16Here is a �nal comparison. As a further development of Joyce�s (1999) representation the-

orem for pairs of credibility and preference relations, Bradley (2017, p. 104) shows that a weak
separability assumption on the credibility relation imposes the SI property on the probability
measure representing this relation. Joyce�s and Bradley�s analyses belong to Je¤rey�s (1965)
theory of decision, which is several steps removed from the Bayesian decision theory of this
paper and the works just reviewed.
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ordering. This restatement facilitates comparison with the present system. We
only assume that the conditionals on some distinguished events E of the state
set are weak orderings. This weakening is in the spirit of axiomatizations of
some non-EU rules that do not entirely relinquish the "sure-thing principle".
By contrast, our invariance condition is stronger than P3 - the "event inde-

pendence" postulate - because it bears on all possible prospects and not only
on constant prospects, as is the case in that postulate. Savage has another
important postulate, P4, which is a clear step towards the existence of sub-
jective probability and has no analogue here; it can only be veri�ed from the
utility representation itself. Our best guess is that P4 is made dispensable by
the assumptions that consequences are real numbers and conditional preferences
respect the order of these numbers. By contrast, Savage puts no restriction at
all on his consequence set.
Another comparison to the point is with Anscombe and Aumann�s (1963)

popular variation on Savage�s system. We share with these authors the assump-
tions of a �nite state set and a highly structured consequence set, but they
assume the latter to be a set of probabilistically de�ned lotteries, an assumption
we are glad to eschew here. From a Bayesian decision theory perspective, the
Anscombe-Aumann system is open to the objection that it is question-begging
to derive a subjective probability by supposing that other probabilities already
exist. A common rejoinder is that the preexisting probabilities are objective,
hence of a di¤erent nature from the subjective probability to be derived, but
this is a free commentary without any basis in Anscombe and Aumann�s formal
system. We do not deny the practical convenience of this system, but ours is
no more complicated, while being perhaps easier to defend theoretically.17

6 Connections with foundational discussions on
probability

Underlying the axiomatic work of Savage and Bayesian decision theorists gen-
erally are two major claims on the foundations of probability: probability mea-
sures represent uncertain beliefs in the normatively appropriate way, and what
makes the measures in question normatively appropriate is that practical ratio-
nality considerations recommend using them in decision making. Both claims
have been disputed, with some objections surfacing already before Bayesian de-
cision theory fully took shape. The �rst claim can be attacked along at least
two di¤erent lines. One may question the appropriateness of probabilities on
the ground that they are absolute measures, and as an alternative develop a
calculus for conditional probabilities taken as primitive terms. This line has re-
cently been defended by Fitelson and Hajek (2017) in connection with Popper�s
(1959-1972, Appendices *iv and *v) pioneering work in this area. All existing
conditional probability systems preserve the additivity of probability measures,

17There are other alternatives to this system than the present one for application to �nite
state sets. An early example is Wakker�s (1989, ch. IV).
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and an alternative critical line is indeed to question that property. Decision
theory has made thorough contributions on this score; see Gilboa (2009) and
Wakker (2010) for overviews. As to the second foundational claim, it can again
be attacked from di¤erent sides, one representative example being Joyce�s (1998)
"nonpragmatic" argument that probabilities are appropriate representations of
uncertain beliefs for directly epistemic reasons.18

These deep foundational questions arise in connection with the present work,
but exceed its limited purpose. We meant to �ll a gap in Bayesian decision theory
by following its own principles, rather than defend these principles against out-
side criticism. However, since SI is our focus, we should ask whether this theory,
as extended here, may contribute to a better understanding of this property.
There is much conceptual tension in the way probability theorists introduce

the de�nition of SI. For one thing, they usually discuss its informal meaning
in terms of a provisional de�nition of SI by the equality of conditional and
unconditional probability: for any two events A;B 2 A with P (B) > 0,

P (A j B) = P (A).

Once they have made intuitive sense of this equation, they proceed to the multi-
plicative equation of section 2 as constituting the proper de�nition of SI, arguing
that the latter avoids the sign restriction P (B) > 0 and makes SI symmetric.
This argument is unconnected with the intuitions supporting the provisional de-
�nition, which makes the whole sequence semantically awkward.19 For another
thing, probability theorists informally defend their de�nitions by resorting to
more than one concept of unrelatedness. Prominent examples are logical inde-
pendence, causal independence (or alternative forms of objective independence),
and informational independence. While some accounts are relatively clear on
which concept they privilege, many others are equivocal, and some even fall into
amazing confusions between them.20

The Bayesian decision theory developed here contributes nothing to the �rst
problem. Only a move from absolute to conditional probability could avoid the
discrepancy between the provisional and �nal de�nitions of SI, and we have
not performed this move here. However, on the second problem, the theory
has something to say. At the very least, it avoids the equivocations between
di¤erent informal accounts by �rmly opting for informational independence.
The invariance property of conditional preferences is the pragmatic criterion by
which one can judge that the agent regards s as carrying no information on t.
It remains to be said whether the present theory contents itself with endors-

ing one of the available accounts of SI or adds something signi�cant to that
account. We may credit the theory with two contributions. One is to connect

18Leitgeb and Pettigrew (2010) have recently pursued this line of purely epistemic justi�-
cation with a new derivation of probability from an accuracy requirement.
19Two examples among many of this two-step de�nitional sequence are to be found in Feller

(1950-1968, p. 125) and Hoel, Port and Stone (1971, p. 19).
20Here is a curious example due to two otherwise excellent scholars: SI means that "the

knowledge of (one event) does not a¤ect the other" (Luce and Narens, 1978, p. 226). Naturally,
one would expect "the knowledge of the other" instead of "the other".

16



the SI property with the foundations of subjective probability more tightly than
is usually done. There has been some vacillation among subjectivists concerning
the role of SI assumptions in probability theory. Whereas Savage did not under-
play this role, de Finetti considered it with strong reluctance. As Gillies (2000, p.
75-76) explains, citing from Probabilismo (1931), de Finetti argued against the
application of SI to repeated trials of the same experiment on the ground that
this assumption blocked the possibility of learning from the successive results of
the trials through Bayes�s rule of revision. This argument opened the way to de
Finetti�s alternative to SI, which is exchangeability. Without entering the rich
debate - well covered by Gillies - on the respective merits of the two concepts,
we can make the broader point that learning by Bayes�s rule in repeated trials is
just one particular case to be considered by the subjective theory of probability.
It is possible to make perfect subjective sense of the opposite particular case in
which no learning occurs from one trial to the other; it is actually incumbent
on the subject to decide which case is relevant. In other words, there is no logi-
cal necessity to associate the subjective theory with a large scope of non-trivial
applications of Bayes�s rule. Although this point may be clear by itself, it comes
out perhaps more clearly after Bayesian decision theory, which is a brand of
subjectivism, has o¤ered an account of SI.
Another possible contribution is to put the symmetry of the de�nition of

SI in perspective. Writers on the foundations of probability have sometimes
expressed dissatisfaction towards the fact that asymmetric dependence or inde-
pendence cannot be formulated within the Kolmogorov axiomatic framework;
see Fitelson and Hajek (2017) for a recent example. This is a fair complaint to
make in connection with the logical and causal (or more generally objective)
readings of SI, but its force as to the informational reading is not so clear, as
Fitelson and Hajek concede. In the Bayesian decision theory of this paper, one
can assume the s-component of uncertainty to be informationally irrelevant to
the t-component without assuming the converse irrelevance, for this amounts
to requiring invariance from the s-conditionals and not from the t-conditionals.
However, we have seen that this logical independence of the two assumptions
vanishes once the preference axioms for SEU are all in place. This result can be
understood in two opposite ways - those who take the preference conditions for
SEU to be normatively compelling will view it as a justi�cation of the postulated
symmetry of SI, whereas others, for whom this symmetry is an arbitrary diktat,
will turn the result against the allegedly compelling preference conditions.

7 Conclusions

We have responded to Savage�s request to extend the preference apparatus of
Bayesian decision theory to the point where it includes an account of stochastic
independence. To do so, we have reconstructed this preference apparatus and
proved representation theorems that contain both a novel derivation of subjec-
tive expected utility and the desired addition that the subjective probability
makes the sources of uncertainty stochastically independent. These theorems
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call for richer variants that need to be pursued elsewhere. One such variant
would relax the �niteness assumption put on the set of states of the world. Be-
sides absolute probability as in Kolmogorov, this line of research could more
ambitiously concern conditional probability taken as an axiomatic primitive,
in Popper�s sense. Each time, the objective would be to map the features of
the probability space onto axiomatic preference counterparts. Another project
would be to reconsider stochastic independence in relation to the non-additive
measures of uncertainty that decision theorists have introduced since they moved
away from a primarily Bayesian conception. This is the more challenging of the
two lines of research, because it requires one not only to �nd preference counter-
parts to already de�ned mathematical properties, but also to discover those new
mathematical de�nitions which capture stochastic independence when probabil-
ity gives way to weaker notions.

8 Appendix 1: Proofs

In the two theorems of this paper, the direction from the SEU representation
to the axiomatic conditions is clear. The other direction follows from a result
proved by Mongin and Pivato (2015, Theorem 1). We restate this result in the
present notation and a simpli�ed form adapted to the purpose of deriving them.

Theorem 3 Given assumptions (A) on % and (B) on %st, the following con-
ditions are equivalent:

� The conditionals %s and %t are weak orderings for all s 2 S and all t 2 T ,
and the %s are an invariant family.

� There are increasing, continuous functions ut : R �!R for all t 2 T , and
there is a strictly positive probability function p 2 �S, such that % is
represented by the function V : RS�T�!R that computes the p-expected
value of

P
t2T u

t, i.e., by the following function: for all X = [xts]
t2T
s2S,

V (X) :=
X
s2S

X
t2T

ps u
t(xts).

In this format of EU representation, p is unique, and the ut are unique
up to positive a¢ ne transformations with a common multiplier.

Theorem 1 requires both families of %s and %t to be invariant. A proof for
it results from applying Theorem 3 twice over and checking the compatibility
of the obtained representations. See Mongin and Pivato (2015, Corollary 1) for
mathematical details.
The �rst part of the conclusions of Theorem 2 is a direct application of

Theorem 3, with i playing the role of s and (s; t) playing the role of t in the
statement of the latter. The second part is proved below.
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Proof. We �rst observe that, for every given s 2 S, the (�) representation of
the �rst part of the conclusions delivers a function RT�I ! R,X

t2T

X
i2I

�stu
i(xist),

which represents the weak ordering %s. If we de�ne �0st := �st=
P

t02T �st0 for
all t 2 T , the function X

t2T

X
i2I

�0stu
i(xist)

is also a representation of %s. Now �x s0 2 S and take any s 2 S. By the
invariance of the f%sgs2S family, there is an increasing function �s on R such
that for all xist 2 R,X

t2T

X
i2I

�0s0t u
i(xist) = �s

 X
t2T

X
i2I

�0stu
i(xist)

!
.

Now for all t 2 T , i 2 I, de�ne

zist := �
0
stu

i(xist),

so that the previous equation becomes a Pexider equation:

X
t2T

X
i2I

�0s0t z
i
st

�0st
= �s

 X
t2T

X
i2I

zist

!
.

As the ui are increasing and continuous, and so are the double sums of them,
�s is continuous and open.21 It follows that the set of possible values for the
vector (zist)

i2I
t2T is connected and open. Thus, we can apply a theorem on Pexider

equations and conclude that the �s are positive a¢ ne transformations.22 That
is, there exist a number �s > 0, and for all t 2 T and i 2 I, numbers �ist s.t.
for all xist 2 R,

�0s0t u
i(xist) = �s�

0
stu

i(xist) + �
i
st.

This entails that for all t 2 T , �0s0t = �s�
0
st, and in fact (since proportional

probability vectors are equal) �0s0t = �
0
st. We can thus rewrite (�) asX

s2S;t2T
�0s0t

X
i2I

(
X
t02T

�st0)u
i(xist),

which is (��) if one de�nes p := (
P

t02T �st0)s2S and q := (�0sot)t2T . The
uniqueness of p and q in this format of representation is easily established.

21For a proof of continuity, see Fleurbaey and Mongin (2016, Lemma 1). Openness is easily
established.
22This functional equation theorem is due to Rado and Baker (1987, Theorem 1 and Corol-

lary 2). They formally prove it for sums of two terms, but Fleurbaey and Mongin (2016,
Lemma 2) make the easy generalization to sums of any number of terms.
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To show that adding an invariance assumption on the%i leads to the stronger
representation claimed in the main text, i.e.,

(� � �) W (X) :=
X
s2S

X
t2T

X
i2I

ps qtriu(x
i
st),

it is enough to reproduce the proof sequence used for (��) mutatis mutandis.

9 Appendix 2: Extension to 0-probability events

Theorems 1, 2 and 3 all involve strictly positive probability functions. This re-
striction is due to the assumption that all of the %st (in Theorems 1 and 3)
and all of the %ist (in Theorem 2) reproduce the natural order of real num-
bers. It can indeed be checked that this makes the %s, %t and %i non-constant
preference relations, so that there are no "null events" in Savage�s (1954-1972,
p. 24) sense, hence no 0-probability values either. Given that the state set is
�nite, it is possible to prune it of the null states without creating side-e¤ects
on the rest of the framework. This move is often performed in mathematical
treatments of decision theory.23 One may complain, however, that it is un�t
to some game-theoretic applications: di¤erent players can di¤er in their as-
signments of 0-probability values, and this fact may be invested with strategic
relevance. Moreover, and in closer connection with the aims of this paper,
discarding 0-probability values would leave the present extension of Bayesian
theory incomplete.24 We now show how Theorem 1 can be modi�ed so as to
include null states and 0-probability values.
In the formal framework of section 3, we de�ne the conditional %I of % on

I � S � T to be constant if for all xI ;yI 2 RI , xI %I yI . When, for a given
s 2 S (resp. a given t 2 T ), %s(resp. %t) is constant, we say that s (resp. t)
is a null component ; and when for a given (s; t) 2 S � T , %st is constant, we
say that (s; t) is a null state. We assume that the subsets S� � S and T � � T
of non-null components satisfy the cardinality restriction jS�j ; jT �j � 2. In this
enriched framework, a more general form of Theorem 1 can be proved. In this
statement, assumption (A) is unchanged, but (B) is replaced by
(B�) for all (s; t) 2 S� � T � and all xts; yts 2 R, xts %st yts i¤ xts � yts.

Theorem 4 Given assumptions (A) and (B�) , the following conditions are
equivalent:

� For all s 2 S and t 2 T , the conditionals %sand %t are weak orderings, and
so are the conditionals %st for all s 2 S�S� and t 2 T nT �. Furthermore,
the subfamilies of conditionals f%sgs2S� and f%tgt2T� are invariant.

� There are increasing, continuous function u : R �!R, and probability
functions p 2 �S and q 2 �T , such that % is represented by the function

23See, e.g., Debreu (1959-1983, p. 128) and Wakker (1989, p. 83).
24We are grateful to a referee for pressing this point.
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V : RS�T�!R that computes the p 
 q-expected value of u, i.e., by the
function de�ned as follows: for all X = [xts]

t2T
s2S ,

V (X) :=
X
s2S

X
t2T

ps qtu(x
t
s),

with ps = 0 i¤ s 2 S�S� and qt = 0 i¤ t 2 T�T �, i.e., i¤ s (resp. t) is
a null component.

In this format of EU representation, p and q are unique, and u is unique
up to positive a¢ ne transformations.

Proof. The derivation of the axiomatic conditions from the SEU representation
is clear. For the converse derivation, let us �rst observe that, for all s 2 S
and all t 2 T , the conditional %st is constant i¤ either s 2 S�S� or t 2
T�T �. In one direction, if %st is non constant, it follows from the weak ordering
assumption put on %s and %t that these two conditionals are non-constant.
(This assumption ensures that the values outside (s; t) that are used to de�ne
%st from % can also be used to de�ne %s and %t from %, a step needed for
the non-constancy conclusion.) In the other direction, if both %s and %t are
non-constant, (B�) applies and then %st is non-constant. Hence � := (S��T �)c
is the set of null states. In the next step, we take prospects X in vector form
and decompose them into their S� � T � and � subsets of entries, denoting the
corresponding subvectors by XS��T� and X� respectively.
We aim at reaching the following equivalence: for all X =(XS��T� ;X�),

Y =(YS��T� ;Y�) 2 RS�T , and for all Z� = (zts)(s;t)2� 2 R�,

(+) X % Y i¤ (XS��T� ;Z�) % (YS��T� ;Z�).

The proof uses the property that for all X0 = (x0ts )(s;t)2S�T ;Y
0 = (y0ts )(s;t)2S�T

2 RS�T ,
if x0ts sst y0ts for all s 2 S and t 2 T , then X0s Y0.

This monotonicity property results from the fact that the %st are weak order-
ings. Regarding the %st s.t. (s; t) 2 �, this fact follows from the assumptions
and the de�nition of �, and regarding the %st s.t. (s; t) 2 S� � T �, it can be
proved by a technical argument.25 Since the %st are constant for all s 2 S�S�
and t 2 T�T �, monotonicity entails that

(XS��T� ;X�) s (XS��T� ;Z�),

and that
(YS��T� ;Y�) s (YS��T� ;Z�),

whence (+) follows by the transitivity of %. Now, we may let Z� vary in (+),
and from the observation that this does not change the equivalence, conclude

25This argument involves Gorman�s (1968) overlapping separability theorem and is part of
the proof of Theorem 3 (see Mongin and Pivato, 2015, Lemma 4). The role of (B�) in this
argument is to ensure that all subsets of S� � T � are essential in Gorman�s sense.
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that the conditional %S��T� of % on S��T � is a weak ordering. In words, (+)
means that the particular values taken on the null states make no di¤erence to
the ex ante preferences.
To move from (+) to the representation, we apply Theorem 1 to %S��T� ,

viewed as a new primitive preference relation on the new set of prospects
RS��T� . It can easily be checked that in this framework, all assumptions needed
for Theorem 1 hold. It follows that there are increasing continuous functions
u : R �!R, and strictly positive probability functions p� 2 �S� and q� 2 �T� ,
such that %S��T� is represented by

V (X) :=
X
s2S�

X
t2T�

p�s q
�
t u(x

t
s).

By (+), this is also a representation of %. It can equivalentely be formulated
in terms of p 2 �S and q 2 �T , as in the conclusion of the theorem. The
uniqueness of the p�and q� for the SEU format of representation of %S��T�
carries through to p and q for the SEU format of representation of %.
A noticeable di¤erence between Theorems 1 and 4 is that the latter imposes

a weak ordering assumption not merely on the %s and %t, but also on some
%st. This extra assumption is essential to secure the monotonicity property
that drives the above proof.

10 Appendix 3: Technical connections

Blume, Brandenburger and Dekel (1991, p. 74) suggest, but do not formally
establish that the SI property of subjective probability follows from their in-
variance condition, given their choice of an Anscombe-Aumann axiomatization
of SEU. A proof for this claim can be obtained by merely adapting that which
appendix 1 gave for the second part of Theorem 2. Let us �rst assume that the
Anscombe-Aumann axiomatization has delivered a SEU representation for % of
the form X

t2T
�stu(xst),

and then follow the existing proof by ignoring the complication created by the
i index. Thus modi�ed, the proof is exactly suitable to Blume, Brandenburger
and Dekel�s claim when there are only two factors in the Cartesian product
domain. The case of any �nite number of factors, as in their explicit statement,
can be handled by a recursive argument. Notice that it should be enough to
require invariance with respect to n�1 factors, as the representation itself should
entail invariance for the nth one, in the same way as in the two-factor case.
More importantly, the present formal argument involves a functional equation
step that depends on having a �nite set of states of the world, unlike in Savage.
We now discuss how the conclusion of Theorem 1 can be related to the

second-order EU representations discussed in section 5. Nau�s (2006) framework
is most closely related to ours. He considers two sets of �nite cardinality S
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and T , and takes consequences to be real numbers, in his case representing
money values, so that prospects X are elements of RS�T . (We use our own
notation.) At a preliminary stage of his investigation, which will be su¢ cient
for our comparative purpose, Nau assumes that the ex ante preference relation %
satis�es (A) and is increasing in each xts, and he imposes two strong separability
conditions. One amounts to assuming the full force of Savage�s P2 with respect
to S-events (i.e., events of the form S0�T , S0 � S), and the other, to assuming a
conditional form of P2 with respect to T -events (i.e., events of the form S�T 0,
T 0 � T ). In this conditional form, P2 applies to each %s taken separately
rather than the master relation %. This asymmetric treatment of the S and T
sources of uncertainty is an essential feature of the second-order construction.
The following utility representation for % ensues (Nau, 2006, p. 143):

W (X) :=
X
s2S

vs (
X
t2T

ust(x
t
s)),

where the vs and ust are continuous and increasing functions on R. To reach
the conclusion of Theorem 1 from this formula, one must restrict the vs to
be positive a¢ ne transformations. Here is a necessary and su¢ cient condition
for this to obtain: for all t 2 T , %t is a weak order. Essentially, when added
to the others, this condition secures (P2) on all events of S � T , whence an
additive representation follows for %, and the result derives from comparing
this representation with W (X).26

A comparison is also possible with Ergin and Gul (2009), although their
framework is more complex than Nau�s and ours. As in Savage, they postulate
an in�nite set of states of the world and end up with nonatomic probability mea-
sures.27 Barring these and other technical di¤erences, their work also makes it
possible to relate SI to second-order EU representations. By itself, their formula
with unconditional probability for t, i.e.,X

s2S
psv(

X
t2T

qtu(x
t
s))

does imply that SI holds between s and t (Ergin and Gul, 2009, p. 906). If v does
not degenerate to a positive a¢ ne transformation, this property manifests itself
in the separate use of two probability measures on S and T . If v degenerates, it
manifests itself in the SI property of a single probability measure on S�T , as in
Theorem 1. This simpli�cation can be explained in terms of the agent�s second-
order risk attitude thanks to a theorem in Ergin and Gul (2009, p. 911): v is a

26 In more detail, suppose %t is a weak ordering for all t 2 T . Then, by the same argument
as in fn 25, %A is a weak ordering for all subsets A � S � T . Given that % is increasing with
each xts, Debreu�s (1960) theorem applies, and % is represented by

P
s, t wst(x

t
s), where the

wst are continuous and increasing functions. Fixing t, one compares two representations of
%t , i.e.,

P
s wst(x

t
s) and

P
s vs (ust(x

t
s) + ks), where ks =

P
t02T vs (ust(x

t0
s ) for arbitrarily

�xed values xt
0
s . A functional equation argument in the style of that used to prove Theorem

2 leads one to the conclusion that the vs are positive a¢ ne functions.
27 If Ergin and Gul�s representation involves �nite sums, this is because they restrict atten-

tion to prospects with a �nite number of distinct consequences.
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positive a¢ ne transformation if and only if the agent is indi¤erent between risky
and non-risky second-order prospects having the same mean. This establishes an
intriguing connection between the SI property and the psychology of the agent
of Bayesian decision theory.
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