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Abstract
Both the irreducible  complexity  of biological  phenomena
and the aim of a universalized biology (life-as-it-could-be)
have lead to a deep methodological  shift  in the study of
life; represented by the appearance of ALife, with its claim
that computational modelling is the main tool for studying
the  general  principles  of  biological  phenomenology.
However  this  methodological  shift  implies  important
questions  concerning  the  aesthetic,  engineering  and
specially  the  epistemological  status  of  computational
models  in  scientific  research:  halfway  between  the  well
established categories  of  theory  and  experiment.  ALife
models become powerful epistemic artefacts allowing the
simulation of emergent phenomena, the interaction between
different  levels  of  organization  and  the  integration  of
different  causal  factors  in  the  very  same  manipulable
object. The use of computational models in ALife can be
classified in  four  main  categories  depending  on  their
position  between  theoretical  and  empirical  practices:
generic,  conceptual, functional and mechanistic.  For each
of these  categories  we  analyse their  epistemic  value  and
select  paradigmatic  examples  that  illustrate  how  ALife
models can be fruitfully inserted in the study of life.

Introduction 

Modern Biology shows living systems as highly complex
networks  of  many  interrelated  elements  structured  in
different  levels,  which  in  turn  interact  among  them  at
different  time-scales and  hierarchies,  where  local
contingencies  and  universal  self-organizing  properties
merge  to  produce a  particular  phenomena.  Unlike other
natural  phenomena  such  complex  organizations  are  not
describable as the action of few simple laws because many
local  rules  appearing  at  different  levels  constrain  the
dynamical  processes  in  intricate  ways.  For  this  kind  of
systems  traditional  analytic  and  experimental  research
strategies  are  highly  limited.  On  the  analytic  side
decomposition  of  a  system  into  functionally  complete
structures  is  often  impossible  since  functionality  and
global  structural  patterns  emerge  out  of  non-linear
interactions between lower level components and system-
environment  recursive  interactions.  On  the  experimental
side  intensive  control  and  manipulation  of  the  studied
system is not always possible. 

In order to study such systems a synthetic approach is
required in which biological  patterns can be reproduced
according to abstraction of the underlying mechanisms that
produce them. As E. Fox Keller (2005) has pointed out the
complexity  of  biological  systems  can  only  be  modelled
through vast  systems of  differential  equations,  statistical
analysis, larger sets of algorithms and simulations whose
partial results require an intimate back and forth relation
with empirical experiments. Given this, the study of living
systems requires special techniques many of which have
being made possible due to the development of computers.
Unlike the limitations of traditional mathematical models
of theoretical biology, where models must be simplified to
accommodate  analytic  tractability,  computer  models
permit a much wider range of formal treatment by means
of  numerical  methods.  At  the  same  time  automatized
experimentation in the computer allows a systematic study
of the effect of different parameter values, perturbations on
the system, change of initial and boundary conditions, and
a host of intensive explorations in the model, which are not
amenable to its natural counterpart. 

Hand by hand with a quantitative and systematic study
of  different  biological  organizations  (ecosystems,
metabolic,  genetic,  neural networks, etc.)  it  appears also
the possibility to go further than the empirical  instances
corresponding to the historical contingencies of terrestrial
evolution. Based on the computational “experimentation”
it  would  be  possible  to  formulate  the  organizational
principles of all possible life, including unknown natural
forms of  life  and  even new artificially  created  ones.  In
other words these new methodological tools have opened
the  possibility  to  universalize  Biology.  This  picture  of
biological organization and its computational synthetic and
universalizable  investigation  is  what  ALife  brings  forth
through a set of simulation techniques and  artefacts that
have been developed over the years,  constituting a  new
kind of science: the study of life-as-it-could-be. 

However, since the aim of ALife is the study of living
systems as they could be, ALife models have not often a
direct reference to any explicit empirical domain. Thus, an
adequate  interpretation of  the functional  meaning of  the
different processes and patterns obtained when running the
model  becomes  much  more  problematic  than  what
traditional  epistemology  of  scientific  methodology  has



established.  ALife  simulations  acquire  a  hybrid  status:
they are, as Sismondo has pointed out, at the same time
tools,  representations,  objects  and  ideas.  “These  models
and simulations easily cross categories, such as “theory”
and “experiment”, the bounds of which are otherwise well
established.  And  modelling and  simulation  sit
uncomfortably in science both socially and epistemically,
because  the  boundaries  they  cross”  (Sismondo  1999,  p.
247). 

Unlike  other  disciplines  or  fields,  within  the  ALife
community simulation models sit particularly comfortable.
They are not perceived as threatening the methodological
identity of  the field.  On the contrary  simulation models
constitute,  rather,  a  unifying  factor  of  the  community,
which  is,  itself  a  transdisciplinary field  whose  fuzzy
boundaries  are  defined  by  an  umbrella  of  techniques;
transcending itself into a philosophy of biology, cognition
and complex systems in general. The experimental side of
the ALife community does not only lie on the results of its
simulation models but on a continuous exploration of new
modelling  techniques.  As  a  consequence  traditional
paradigms  of  epistemology,  methodology  and  even
ontology  are  always  being  challenged  and  although
socially  accepted,  the  epistemic  status  of  simulation
models  has  long  being  a  controversial  issue  within  the
community  itself  (Wheeler  et  al.  2002,  Webb  2001,  Di
Paolo et  al  2000,  Moreno 2000,  Bonabeau & Theraulaz
1994, Pattee 1989). 

Although  most  of  the  major  contributions  within  the
field  somehow reinvents its epistemological status, some
general  considerations  can be made  about  the epistemic
use and value of ALife models (ALM hereafter). In this
paper  we  distinguish  three  main  modalities  of  ALMs:
aesthetic,  engineering  and  epistemic.  Then,  we  classify
ALM in four levels of abstraction specifying an epistemic
evaluative framework for each of them. 

Simulations, realizations, theories and models
in ALife 

Although  in  this  paper  we  will  focus  on  the  study  of
computer simulations in ALife, it is important to clarify
previously the relations that theories and models have with
simulations and also realizations. 

A theory is a structure of concepts in the human mind
aimed to explain a given domain of reality. This structure
of concepts  gives rise to simulations and/or realizations,
through  the  articulation  of  these  concepts  in  a  model.
Simulations  are  formal  rate-independent  unfolding  of
mathematical models in computer media. As Pattee (1989)
has pointed out, in a simulation a set of formal rules try to
reproduce the laws and material constraints that govern the
dynamics  of  certain  physical  systems,  or  even,  the
simulation  may  generate  a  virtual  universe  of  objects

following alternative laws1. A realization, on the contrary,
is  a  physical  construction  of  a  system to  be  used  as  a
model for the study of a given phenomenon. A realization
is  an  example  of  the  synthetic  methodology  of  ALife,
since it seeks the understanding by a literal reproduction of
those elements supposedly fundamental in the generation
of a given phenomenon. When the model gives rise to a
realization the processes that unfold the consequences of
the basic conceptual assumptions are (at least in part) real
rate-dependent  dynamical  processes,  so  that  the  system
literally obeys the physical laws2. 

An  important  proviso  is  worth  taking  in  mind:  in  a
certain  sense,  a  model  is  more  than  the  simulation  or
implementation  of  a  formal  system,  a  model  includes
auxiliary  assumptions  to  interpret  the  computational
system as  a  relevant  tool.  Note  that  the  same  artificial
system  can  be  used  at  these  four  different  levels  of
abstraction, so that it is not the system itself what specifies
its level of abstraction but the use and interpretation of it.
For instance CTRNNs (Continous Time Recurrent Neural
Networks) can  be  used  at  different  levels:  to  explore
abstract  systemic  properties  of  dynamic  systems  at  an
abstract generic level, to explore the concepts of learning
and memory at  a  conceptual  level,  to  achieve a  desired
functionality found in ant behaviour at a funtional level or
to model the pattern generator circuit of Aplysia at a more
realistic mechanical level. In each case there is a host of
auxiliary  knowledge,  information,  assumptions  or
transformations, which are never explicit in the artificial
system  itself  but  become  essential  components  of  the
model. Failure on making an artificial system productive is
very often due to failure on this auxiliary framework that
makes  the  artificial  system  a  valuable  or  non-valuable
instrument.  While  computational  systems  have  standard
methods of testing, debugging and evaluation the auxiliary
framework is not always easy to evaluate itself, it depends
on a set of not always explicit assumptions. In fact, as we
shall see, many ALMs' epistemic value (especially of those

1 In the so-called “strong” ALife the artificial systems (provided
they  achieve  a  lifelike  behaviour)  are  conceived  not  as  good
models of biological systems, but literally as artificial creations
of the same type of systems. Whereas “weak” ALife considers
that models represent certain aspects of living phenomena, strong
AL would be ready to defend that the phenomenology that takes
place in the actual computational environment is life in a proper
sense.
2 H.  Pattee  (1989)  has  criticized  the  confusion  (within  stron
ALife  supporters)  between  computational  simulations  and
realizations  of  material  biological  systems,  arguing  that  the
former are symbolic systems operating ultimately on inert sets of
symbols, whereas in the latter the symbols (DNA strings) operate
constraining active matter, and conversely, in a causally closed
process,  some of these  constrained materials  (certain proteins)
permit  the physical  expression of  the symbol strings.  In other
words,  the  emergence  of  functions  in  real,  material  biological
systems is autonomous, whereas the functionality of simulated
ALife systems depends ultimately of the designer.



we shall  call  conceptual)  lies  on their  capacity  to make
explicit, dissonant or inconsistent some of the components
of  these  auxiliary  framework  thus  leading  to
reorganization of some theoretical issues. 

Aesthetic, Engineering and Epistemic goals
for ALife Models

One  of  the  main  characteristic  of  ALife  modelling
techniques is their capacity to produce emergent  patterns
or  behaviour out  of  a  set  of  a  local  rules  or  equations.
These  emergent  patterns  can  be  used  for  different
purposes.  For instance models  can be used as epistemic
tools to understand how natural systems work, to explain
life  and living phenomena making explicit  and tractable
the  underlying universal  principles  of  biological
organization by exploring properties of complex systems,
simulating some specific natural behaviour. The emergent
order that natural systems show can also be seen as the
unfolding of a functional evolutionary design that turns out
to be attractive for  engineering goals. In fact evolution is
an  extremely accurate  blind  engineer  that  can  teach  us
weird  and  new ways  of  achieving  solutions  for  a  wide
range  of  problems;  both  the  organization  of  individual
living systems  and  their  collective  behaviour  (e.g.
colonies) also give rise to intriguing designs and functional
behaviours. Nature is  not constrained by any theoretical
assumption, design principles or  industrial tradition and
thus  becomes  an  attractive  pool  in  which  original  and
sophisticated, simple but powerful engineering techniques
can be found. Finally under aesthetic purposes biologically
inspired artefacts can also be used to produce aesthetically
pleasant and original visual or musical patterns.

In each case the aesthetic, engineering or epistemic use
of ALMs requires that the model be evaluated, interpreted
and  designed  in  different  (although  often  overlapping)
terms, i.e. the modelling framework of the artificial system
will depend on these three main kind of goals. For instance
artists will evaluate ALMs against the aesthetic quality of
the  patterns  they  produce,  their  resemblance  with  some
natural  aesthetic  principles,  or  the  models'  capacity  to
generate visual or musical patterns for an artist to select
and combine in a performance. When used for engineering
purposes  ALMs  and  artefacts  are  tested  or  evaluated
against a desired functional outcome and adapted to a set
of material or computational resources; independently of
the aesthetic result, its final  resemblance with the natural
system on which  it  had  being  inspired  or  the  adequacy
with the scientific theories supporting model as far as the
system  works  producing  the  desired  result.  Epistemic
purposes  involve  a  much  more  complex  evaluation
framework ranging from a realistic correspondence with a
particular organism or biological process to the exploration
of highly abstract properties of complex systems. It is this
final purpose what shall concern us the most  throughout
the  rest  of  this  paper.  We  want  to  understand  how  an
artificial system becomes an epistemic artefact, what kind

of  knowledge  it  can  produce  and  how  these  artefacts
interact  with  theoretical  and  empirical  objects.  But  we
shall  first  emphasize  the  importance  (and  difficulty)  of
selecting what is the main purpose of a model.

Often,  in  ALife,  the  temptation  of  building  artificial
worlds  capable  to  generate  some  aesthetically  pleasant
pattern,  presenting  a  vague  biological  resemblance  and
based on a partially new computational technique, is too
high; but the resulting model might  easyly end up being
equally  useless  for  any  of  the  previously  mentioned
purposes. That is why it is important to define an specific
purpose for the model in order to adequately establish a
framework  for  its  evaluation  and,  hence,  for  its  design,
interpretation and experimentation. In some cases, though,
the  boundaries  between  the  proposed  three  categories
might  not  be  very  clear.  For  instance  engineering  and
epistemic purposes might be intertwined when the level of
abstraction of the model is so high and generalist that it
covers both the actual (a wide range of existing natural
phenomena)  and  the  possible  (and  thus  useful for
engineering purposes). In fact, the universalist aspiration
of  ALife  research,  its  foundational  focus  on   life-as-it-
could-be  rather  than  life-as-we-know-it  (Langton  1989)
and the functional  nature  of  living system threatens the
boundary  between  science  and  engineering.  In  addition,
most ALife research feeds back to itself, ALife is certainly
a  technocientific  field  where  technological  artefact  and
objects of study merge. For example an ALife paper on the
study of language evolution might include a contribution
to  engineering  on  the  techniques  used  to  design  or
optimize  a  model  of  cultural  transmission or  the  GA
design to optimize a minimally cognitive behaviour model.
But  even  in  such  limit  cases  the  boundaries  are  worth
keeping.  Within  ALife  there  are  still  significant
differences  between  engineering  and  epistemic  purposes
that  make  a  difference  on  the  construction,  testing  and
interpretation of models. On the one hand, when talking
about  the naturally possible  and the artificially possible,
different  constraints  apply.  Lets  take the  example of  an
artificial system where some kind of self-assembly occurs.
If this system is used as a model of natural self-assembly it
will have to satisfy completely different constraints than if
used as a model for artificial self-assembly. For instance in
the  first  case  the  model  should  accommodate  natural
thermodynamic constraints.  Whereas the engineering use
of  the  system  could  lead  to  a  model  where  the  self-
assembling components have access to global information
obtained  from  a  panoramic  camera  or  where  energy
requirements  are  solved using batteries.  What  would be
misleading in this case would be to generalize claims on
natural  self-assembly on  the  basis  of  the  engineering
model or claiming engineering limits based on a number of
assumptions derived from spontaneous natural processes.
On the other hand, the experiments carried out with the
model might be very different if we are to highlight one or
the  other  purpose.  Finally  the  way to  contextualize  and
show the experimental results will depend on the chosen
framework.  For  instance  for  engineering  purposes  we



might  want  to  compare  the  proposed  model  with  other
existing techniques to solve a class of problems, while in
the  epistemic  case  we  might  want  to  highlight  the
plausibility of the model with, lets say, what the chances
are that the modelled phenomena could appear under the
environmental conditions we can expect to happen in other
planets. 

From idealism to empiricism: 4 epistemic uses
of ALMs

The main interest  and methodological  novelty of ALMs
from the point of view of science and epistemology lies in
its capacity to develop an experimental research program
in the computational domain. But once we fix an epistemic
purpose  for  a  model  there  are  still  many  different
frameworks for its evaluation, in fact the epistemic status
of this computational domain does not fit within traditional
concepts  of  philosophy  of  science.  Each  model  in  this
domain  requires  that  we  understand  and  assume  a
methodological  framework  for  its  evaluation.  We  can
distinguish  four  different  classes  of  such  frameworks
according to the level of abstraction the model shall adjust
to  or,  in  other  words,  the  position  models  are  made  to
occupy  between  theories  and  empirical  data.  This
classification in four levels is certainly not exhaustive but
reflects somehow a clustering of existing models and their
underlying epistemic logic. 

We distinguish those models whose object of modelling
is theoretical (whose evaluation is done against theoretical
principles  or  formalisms),  and  those  whose  object  is
empirical  (which  are  evaluated  against  empirical  data
coming from specific natural phenomena). In the first class
we distinguish on the one hand those generic systems that
serve to discover or classify generic properties of complex
systems,  we  call  these  models  generic  models.  On  the
other side of the theoretical realm we find what we call
conceptual  models whose  framework  of  evaluation  is
given by the dissonance or adequacy with the relationships
established  among  concepts  of  a  given  theory;  abstract
conceptual  models  are  used  to  formalize  or  compare
definitions  of  generic  concepts  (such  as  emergence,
complexity or hierarchy) while domain specific conceptual
models  are  used  to  explore  the  role  and  interaction
between  more  specific  concepts  (such  as  learning,
autopoiesis, cognitive agent, evolvability, etc.). The third
and fourth class of epistemic models directly involve their
matching or  interaction with empirical  data.  On the one
hand  functional  models are  defined  as  those  that  must
adjust to the particular behaviour or functionality exhibited
by  certain  natural  system.  Mechanistic  models ,  on  the
other hand, are those which act as functional and structural
models of a particular phenomena, the model is meant to
be  realistic:  variables  of  the  computational  system
represent  observables  of  the  empirical  system including
the internal mechanisms producing the phenomena under
study.

We shall  now explore  one  by  one  the  particularities,
evaluation framework and examples of these four class of
epistemic use of ALMs.

Generic Models
At the most abstract level we find certain computational
constructions with no particular reference to any specific
object  of  study  but  whose  formal  structure  has  been
selected in virtue of its  resemblance with a wide range of
natural  phenomena,  i.e.  its  generality  is  very  high  and
exploration  of  these  artificial  systems  leads  to  the
discovery  of  generic  abstract  properties  of  complex
systems.  Such  is  the  case  of  explorations  in  Random
Boolean  Networks,  Cellular  Automata  (CA),  Scale-free
networks,  some research in Neural Networks, Dynamical
Systems, etc. Often generic models evolve out of empirical
or functional models when a particular  structure is found
to have properties which might be generalizable to other
domains; then particular and domain specific details of the
model  are  abstracted  and  the  empirical  model  is
transformed into a generic one. 

A  very  common  methodology  to  extract  valuable
knowledge from these models is the exhaustive statistical
analysis  of  different  configurations  of  the  system  and
measurements and operations performed on the resulting
patterns. As a consequence the space of resulting patterns
might  be  classified  and  a  set  of  internal  relationships
between parameters and resulting patterns are discovered
(e.g. the relationship between the rate of connectivity of a
network  and  the  resulting  complexity,  stability,
evolvability,  etc.).  This  knowledge  of  the  properties  of
generic models can feed back to the empirical domain both
at predictive and constructive levels, given the appropriate
adaptation  of  the  abstract  system  to  the  real  one.  For
example the resulting values might be used to initialize a
functional model at the highest complexity region in order
to  achieve  a  wide  range  of  adaptive  capacities.
Alternatively the  same  results  can  be  used  (with  the
required  adaptations)  to  hypothesize  the  number  of
connections in an area of high complexity of the brain.

A paradigmatic example of generic systems is provided
by scale-free networks. Although the theory of scale-free
networks was originally developed by physicist analysing
the  structure  of  the  WWW  (Barabasi  and  Reka  1999,
Barabasi 2002) it has gained increasing attention in ALife.
Research in scale-free networks has discovered a number
of  properties  of  the  structure  of  non-random  networks
found in nature: small-world phenomena (any two nodes
are  separated  by  a  very  small  number  of  connections),
robustness  to  random  node  failures,  etc.  The  same
properties and structure apply to social networks, protein-
interaction  networks,  computer  networks,  economic
networks, etc. Stuart Kauffman's explorations into generic
properties  of  Random  Boolean  Networks  (Kauffmann



1974,  1993)3 are  another  instance  of  generic  models
aiming  to  discover  some  universal  principles  of  self-
organization  in  complex  systems  (independently  of  the
social,  genetic,  metabolic,  immune  or neural  nature  of
these systems).

Conceptual models
The  early  enthusiasm  within  ALife  of  the  genuine
instantiation of  living phenomena in  the computer  gave
rise to a whole a set of artificial worlds. Discussion about
the plausibility, similarity, and  adequacy of these models
with  existing  theories  of  life  produced  both  a  fruitful
debate  about  the  underlying assumptions  in  theoretical
biology  and  the  status  of  such  models  as  instances  of
living beings. As a result models moved to be used as a
tool to question and reorganized theoretical  assumptions
and  concepts  rather  than  to  the creation  of  so  claimed
artificial living systems without a clear epistemic purpose.
Some of these models became conceptual ones which are,
probably, ALife's most specific and original use of models.

What  we  call  a  conceptual  model  involves  the
simulation  of  processes  which  are,  in  virtue  of  some
dynamic  or  structural  analogy  with  theoretical  notions,
conceptualized under  a  certain  theory  of  the  living,
cognitive,  social  or,  in  general,  complex  systems.
Conceptual models can be very abstract or very specific
depending  on  the  theory  under  which  they  are
interpreted/constructed. For instance, at the abstract level,
the model could work to illustrate, formalize or compare
one  or  more  theories  of  emergence  using,  lets  say,  CA
patterns. On the other hand a domain specific conceptual
model  can  be  exemplified  by  a  simulation  of  active
perception in situated agents.

Unlike  generic  models  (whose  applicability to  the
empirical  realm  is  more  straightforward and  related  to
abstract mathematical research) conceptual models have a
more heterodox epistemic status, their relation to theories
and empirical data is more complex and  intricate.  As C.
Emmeche (1994) has pointed out these models (which he
calls  “second-order  simulacra”)  are  not  elaborated  as
abstractions of the biological empirical domain, but from
the  biological  theories  themselves. Maynard  Smith  has
called AL in question since it is a “science without facts”,
referring  to  the  problem  of  how  to  assess  a  set  of
computational  models  whose  (potential)  empirical
references are imprecise and generic (quoted in Horgan,
95).  However,  it  will  is  an  error  to  evaluate  conceptual
ALM based research in these terms. The main interest (and
methodological novelty) of  conceptual ALM lies probably
in  its  capacity  to  develop  experimental  research  (in  the
computational  domain)  on  the  internal  conceptual
relationships  within  theories  of  biological  organization.

3 And  the  set  of  investigations  that  followed  this  pioneer
approach, for instance on the effect of the asynchronous update
of  nodes  (Harvey  and  Bossomaier  1997,  Di  Paolo  2001,
Gershenson 2004)

This computational research allows what  Dennett (1994)
calls  the  realization  of  highly  rigorous  and  far-reaching
thought experiments, which the naked human mind never
could perform. Bedau (1998) and, particularly,  Di Paolo
and colleagues  (Di  Paolo  et  al  2000)  have elaborated a
more  detailed  account  of  the  role  and  methodology  of
ALMs as “opaque thought experiments”. The opacity of
the  thought  experiment  lies  on  the  complexity  of  the
model. The unfolding of properties and patterns from a set
of premises (local rules or differential equations) are not
always predictable in the absence of a computer simulation
that  performs  recursive  calculations,  integrates  random
perturbations,  visualizes  the  results  and  so  on.  As  it
happens with traditional though experiments the epistemic
value of conceptual ALMs does not lie on their  adequacy
with  some  empirical phenomena  (since  the  thought
experiment involves hypothetical and idealised situations).
On  the  contrary  the  model  operates  on  the  hidden
assumptions of the theories used to design and interpret the
model and on the conceptual relationships between these
assumptions.  When  concepts  of  a  theory  are  related  to
each other through relationships which cannot always be
derived on logical grounds computer simulations become
cognitive tools for theoretical development (Casti  1997).
For  instance  learning  and  ontogenetic  plasticity  has
intricate effects  on  evolution.  The  interaction  between
these two concepts (learning and evolution) is difficult to
generalize and study through natural fossil records or other
empirical  means.  An  alternative  is  to  develop  artificial
worlds (whose local rules are abstractions of the generic
mechanisms that evolutionary theory takes to be essential
for natural evolution) where simplified forms of evolution
and  learning  can  be  studied.  The  Baldwin effect  (for
example)  was  nicely illustrated  by  a  computer  model
(Hinton and Nowlan 1987), subsequent research has made
explicit many other properties and dynamic relationships
between learning and evolution (Ackley and Littman 1992,
Suzuki and Arita 2004). The conceptual relationships that
the model uncovers, illustrates or denies are not always the
result of just running the simulation. Most of these models
require  a  careful exploration  and  experimentation  under
different conditions in order to generalize results and find
intermediate  explanatory patterns to extract  conceptually
useful  knowledge  from  the  dynamics  of  the  simulation
model. The resulting conceptual achievement shall later be
used  to  configure  explanatory  patterns  of  specific
cognitive,  evolutionary,  metabolic  or  collective  systems
and  models  subject  to  empirical  manipulation  and
introduced  on  the  traditional  scientific  hypothetico-
deductive method. 

Conceptual ALMs are used in a number of stereotyped
ways. Proofs of concept are a use of these models in which
the  possibility  to  produce  a  particular  behaviour  is
demonstrated  in  the  model  given  a  set  of  mechanisms
previously  considered  incapable  to  produce  such
behaviour or functionality (Seth 1996, Beer 2003). On the
other hand models are often used to illustrate, formalize or
quantify  a  previously  ill-defined  concept  (such  as



emergence, hierarchy). Here the model acts as a simplified
environment  in  which  (given  that  the  competing
theoreticians accept the assumptions on which the model is
based) disputes over a conceptual definition can be solved
in  virtue  of  their  viability,  accuracy,  correlation  with
expected  classification,  etc.  Conceptual  models  are  also
often  used  to  study  interactions  happening  between
different  levels of organization or different scales, which
are  often  studied  by  different  disciplines,  with  different
theories  and  tools.  Examples  of  this  levels  that  appear
merged in the same simulation are neural mechanism and
behaviour,  genotype  and  phenotype,  ontogenetic
development  and  evolution,  individual  and  collective
behaviour, etc.

Functional models
Traditional  explanatory  strategies  are  based  on
functional/task  decomposition  and  structural  localization
of such function so that the functioning of a system can be
understood  by  the  aggregation of  such  component
functional parts (Bechtel & Richardson, 1993). Complex
systems, on the contrary are not amenable to this cognitive
strategy,  they  are  integrated  systems  where  the  overall
functionality  of  the  system  emerges  out  of  internal
recursive  interactions  between  components  and  system-
environment interactions. That is  why functional models
become  necessary  tools  to  study  a  complex  integrated
behaviour.   These models are  tested against  a  particular
behaviour  or  functionality  exhibited  by  some  natural
system  but  where  the  mechanisms  that  produce  this
functionality  in  the  natural  process  are  unknown,
controversial  or  incompletely understood.  Unlike
conceptual  models  empirical  functional  models  must
include  constraints which are specific of the phenomena
under  investigation  (a  particular  metabolic  reaction,
collective  behaviour,  etc.).  These  models  are  used  to
discover candidate mechanisms or local rules that produce
or contribute to the observed and simulated global pattern
or  behaviour,  to  asses  the  performance  of  existing
hypothesized  candidate  mechanisms,  to  asses  which
enviornmental factors participate in the causal structure of
the behaviour, etc. 

A paradigmatic example of functional models is found
among research on swarm-intelligence (Deneubourg et al
1991,  Liviu  and  Luke  2004),  where  colonies' foraging
capacities  are  reproduced  and  studied  as  a  result  of
stigmergic  and  cooperative  interactions.   Particularly
interesting instances of functional models are given by the
use  of  CTRNNs  (and  its  variants)  as  universal  smooth
dynamical  system  approximators  (independently  of  any
attributed  resemblance  with  real  neuronal  architectures).
Artificial evolution is applied to a CTRNN control system
to achieve a particular  embodied behaviour on a simulated
robot (Beer 2003,  Vickerstaff   and Di Paolo 2005). The
dynamic  causal  structure  of  the  resulting behaviour  can
then be analysed independently of the natural mechanism
that  could  support  it.  Halfway  between  conceptual  and

functional modelling this research strategy leads to a kind
of   emergent  functionalism  in  which  it  is  the  dynamic
organization  of  behaviour  what  captures  the  essential
features  of  cognitive  processes  as  oppossed  to  the
representational  properties  of  propositional  rules  (as  in
cognitivist or computational functionalism).

Mechanistic models
In complete mechanistic models there is a correspondence
between  the  variables  in  the  model  and  a  set  of
observables  of  the  modelled  natural  system  (synaptic
connections, metabolic pathways, number of genes, etc.);
the model is meant to be realistic, at least to a particular
level  of  mechanistic  accuracy.  This  mechanistic
correspondence with the modelled object is exploited to
discover which variables and parameter values are crucial
to  achieve  a  particular  behaviour  or  functionality,  to
manipulate  the  model  in  ways  not  accessible to  the
manipulation of the modelled system and, once the model
is  adjusted  to  its  object,  it  might  even  be  used  for
predictive  purposes.  Realistic  mechanistic  models  need
integrate  many  different  contingencies  and  parallel
mechanisms that altogether contribute to the production of
the  phenomena  under  study.  Most  of  these  models  are
generally  incorporated  to  existing  scientific  fields  and
research programs (microbiology, ethology, neuroscience,
etc.) and, although inspired in previous ALife models and
modelling  techniques,  they  are  not  commonly  seen  in
ALife  meetings  or  publications  due  to  their  high
specificity.  Some  of  these  models  represent  the  most
complete understanding of a given natural systems we can
nowadays hope to achieve: maximally simplified (but still
complex), manipulable and predictive artefacts that unfold
the  causal  structure  of  a  particular  living  phenomena.
Examples  of  realistic  and  mechanistic  models  can  be
found  at  Webb  and  colleagues'   detailed  model  of  a
crickets phonotaxis (Horchler et al 2004) or Shimizu et al's
(2004) model of bacterial chemotaxis.

Conclusions

Almost 20 years after its birth back in 1987s foundational
meeting  in  Los  Alamos,  Alife  is  still  alive.  Its
contributions  have  been  many  and  have  spread  over
different  fields  (cognitive  science,  origin  of  life,
evolutionary thinking, linguistics, robot engineering, etc.)
the  most  important  of  which  has  been  the  toolkit  of
simulation and modeling techniques that Alife has brought
forth;  accompanied  by  the  conceptual  and  theoretical
transformations that these tools have permitted. The Alife
research program has produced a new way to do science,
where computers are used to explore the implications of
conceptual theories and models, largely in the absence of
any  direct  empirical  evaluation.  In  order  to  avoid  a
dissapointing itineracy within a playground of virtual-toy-
worlds  ALife  Models  need  to  be  carefully  designed,
contextualized  and  manipulated  within  an  epistemic



framework that explicitly addresess how and with which
purpose the model should be evaluated.
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