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Abstract

Studying the neural correlates of conscious awareness depends on a reliable comparison between activations associated with
awareness and unawareness. One particularly difficult confound to remove is task performance capacity, i.e. the difference in
performance between the conditions of interest. While ideally task performance capacity should be matched across different
conditions, this is difficult to achieve experimentally. However, differences in performance could theoretically be corrected for
mathematically. One such proposal is found in a recent paper by Lamy, Salti and Bar-Haim [Lamy D, Salti M, Bar-Haim Y.
Neural correlates of subjective awareness and unconscious processing: an ERP study. J Cognitive Neurosci 2009,21:1435-46], who
put forward a corrective method for an electroencephalography experiment. We argue that their analysis is essentially
grounded in a version of High Threshold Theory, which has been shown to be inferior in general to Signal Detection Theory.
We show through a series of computer simulations that their correction method only partially removes the influence of perfor-
mance capacity, which can yield misleading results. We present a mathematical correction method based on Signal Detection
Theory that is theoretically capable of removing performance capacity confounds. We discuss the limitations of mathemati-
cally correcting for performance capacity confounds in imaging studies and its impact for theories about consciousness.
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Performance confound in studies of
consciousness

In the search of neural correlates of consciousness (NCC), sub-
jects’ response to the presentation of a visual stimulus can be
assessed by subjective or objective measures (Snodgrass and
Shevrin, 2006; Seth et al., 2008; Sandberg et al., 2010; Irvine,
2013). Researchers who use subjective reports as measures of
the state of awareness of subjects recognize the importance of
controlling for confounding factors (Merikle et al., 2001;
Bachmann, 2009; Dehaene and Changeux, 2011; Sergent et al.,
2013; Li et al., 2014; Bachmann, 2015). Ideally, when comparing a

condition where subjects report consciously seeing a target
against a control condition where subjects report not con-
sciously seeing it, the difference between these two conditions
should be conscious awareness only.

When looking for objective measures of conscious aware-
ness, it is common that some researchers treat performance at
chance level as a reliable indicator of unconscious processing
(Eriksen, 1960; Dehaene et al., 1998; Kouider and Dehaene, 2007).
The inability to distinguish a stimulus from noise or from an-
other stimulus, however, should not be immediately equated
with lack of awareness. Performance, at any level, should rather
be treated as a potential confound in consciousness research
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(Weiskrantz et al., 1995; Lau and Passingham, 2006; Lau, 2008;
Bachmann, 2009; Dehaene and Changeux, 2011; Aru et al., 2012a;
2012b; Li et al., 2014; Pitts et al., 2014; Bachmann, 2015). In contrast,
subjective reports are indeed a valid measure of conscious aware-
ness. As such, we should isolate the influence of task perfor-
mance capacity in any comparison between different levels of
subjective reports of awareness. However, even among those per-
suaded by this logic, few actually conduct experiments to isolate
performance capacity confounds. The main reason is, probably,
that it is difficult to achieve it experimentally. Usually, when sub-
jective reports of awareness differ, performance capacity also dif-
fers. This is true in most detection and discrimination tasks, as
well as in paradigms like binocular rivalry, in which detecting
changes in the suppressed image is harder (Wales and Fox, 1970).

Nevertheless, some attempts to control for performance ca-
pacity have been recently made in conscious awareness imag-
ing studies. For example, Lau and Passingham (2006) conducted
a study using metacontrast masking. By varying the stimulus
onset asynchrony (SOAs) between stimulus presentation and
mask presentation, they found two SOAs where performance
capacity in a discrimination task was matched for each subject,
and yet subjective reports of awareness differed. They reported
specific hemodynamic activation in the prefrontal cortex in as-
sociation with trials in the condition that generated the higher
percentage of “aware” ratings. This study can be taken as a
proof of concept that performance capacity confounds can be
eliminated. However, the number of trials where subjects
claimed consciously seeing the target differed only by about
10% between the two conditions. Admittedly, a problem with
this approach is that it relies on a specific kind of stimulus:
metacontrast masked shapes. For researchers interested in
other perceptual paradigms, it is hard to see how this method of
performance capacity matching could generalize.

Another study (Persaud et al., 2011) matched performance
between the normal sighted side of the visual field and the sub-
jective blind side of the visual field in a hemianoptic patient, by
presenting stimuli with low contrast to the patient’s normal vi-
sual field and high contrast to the damaged visual field to com-
pensate for the defects in processing sensitivity. But this
opportunity is specific to the availability of a single rare patient.

While these studies effectively eliminated the performance
confound as such, other problems intimately interlinked when
controlling for performance can still arise. For instance, when
performance is matched by varying the stimulation conditions,
as in Persaud et al. (2011), pre- and post-perceptual processing can
obscure the interpretation of awareness-related activations
(Bachmann, 2009). Another potential issue is that subjective re-
ports can differ due to variations in how subjects are probed and
not due to differences in performance or conscious awareness it-
self. Different scales (Sandberg et al., 2010, 2011) or different crite-
rion contents (i.e. different aspects of the experience subjects use
for report) (Bachmann and Francis, 2014; Bachmann, 2015) can
hinder contrastive analyses in imaging studies. Finally, another
potential problem is that markers of specific conscious contents
corresponding to the target stimulus have to be distinguished
both conceptually and experimentally from the markers of con-
scious processes nonspecific to the target. When attempting to
eliminate performance confounds, this distinction is relevant be-
cause nonspecific conscious processes can be shared by both cor-
rect and incorrect trials (Bachmann, 2015). Unfortunately, it
would be complicated to control experimentally for all these po-
tential confounds at once.

In an attempt to overcome these difficulties, Lamy et al.
(2009) proposed a general method to control for the influence of

performance capacity by comparing between subjectively con-
scious and unconscious conditions during an electroencephalog-
raphy (EEG) experiment. Instead of trying to match performance
experimentally, they proposed to correct for its influence mathe-
matically, keeping stimuli at threshold constant across aware
and unaware trials. In this article, we focus on this potentially
promising method. We first expand on the logic of their method-
ology, trying to provide an intuitive explanation for the motiva-
tion behind it. Then, we show that the method and its
assumptions are problematic from the perspective of Signal
Detection Theory (SDT) and offer an alternative based on it.

Although we focus on Lamy and colleagues’ proposal, it is im-
portant to note that we do so because it is a useful case study
that has general conceptual and empirical ramifications concern-
ing an appropriate analysis of perceptual signal, performance ca-
pacity confound, and the neural correlates of consciousness.
Thus, the concerns we raise regarding Lamy and colleagues’ cor-
rection method can be generalized to other neuroimaging studies
and techniques, as well as to philosophical debates on conscious-
ness and its relation to performance in general and to attention
in particular (Block, 2007; 2010; Lau and Rosenthal, 2011; Prinz,
2012; Montemayor and Haladjian, 2015). Furthermore, other labo-
ratories have already used their suggested method (Hesselmann
et al., 2011) and leading consciousness researchers like Stanislas
Dehaene have recently praised them for having accomplished
the “remarkable feat” of keeping both performance and stimuli
the same and, thanks to “a perfect control,” having “confirmed [a
neural] signature of conscious access” (2014, pp. 129–30).
However, despite all the merits behind it, their correction method
makes what we think are unsound assumptions about perception
and consciousness. Hence, its limitations have to be considered
when designing and analyzing imagining studies on the neural
correlates of consciousness.

Mathematical correction for performance
confound: unconscious lucky answers

Lamy, Salti and Bar-Haim (2009) (LSB, henceforth) conducted an
event-related potentials (ERPs) study on the neural correlates of
conscious and unconscious visual processing where stimuli
were constant across aware and unaware conditions. Subjects
were presented with a 15� 15 matrix of tilted lines (15�), some
of which were slightly more tilted (25�) forming a 3� 3 target
square in one of four possible quadrants. A 15� 15 matrix with
tilted lines (25�) masked the targets after a short (�25 to 100 ms,
individually adjusted to achieve 25% conscious detection) or a
long (�37 to 112 ms, individually adjusted to achieve 50% con-
scious detection) exposure. Subjects made two judgments. First,
a 4-alternative forced choice (4-AFC) regarding the quadrant
where the target 3� 3 square was presented. Then, a subjective
judgment whether they were aware of the target or whether
they were just guessing. Continuous EEG was recorded from 20
scalp regions during all trials and subjects’ responses were
coded in the four following categories: subjects reported seeing
the stimulus and correctly indicated its location (aware-correct),
subjects reported seeing the stimulus and incorrectly indicated
its location (aware-incorrect), subjects did not report seeing the
stimulus and correctly indicated its location (unaware-correct),
and subjects did not report seeing the stimulus and incorrectly
indicated its location (unaware-incorrect). Note that in the last
two categories subjects reported they were just guessing.

Confirming previous similar results (Sergent et al., 2005; Del
Cul et al., 2007; Koivisto and Revonsuo, 2010; Batterink et al.,
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2012), LSB reported a scalp-wide difference in the P3 waveform
component (a positive voltage in the 300–650 latency range) in
subjects’ ERPs between the aware-correct and unaware-correct
conditions. They took this difference to reflect conscious pro-
cessing. Critically, the comparison was focused on correct trials
only (aware-correct vs. unaware-correct), as a direct comparison
between all the aware and all the unaware trials would have in-
volved a performance capacity confound. That is, awareness
would have been confounded with overall performance since
awareness co-occurred with higher performance rates. By com-
paring correct trials only, LSB matched performance in the
sense that both conditions involve perfect accuracy, enabling
thus a legitimate comparison between awareness and
unawareness.

However, to really match performance between the condi-
tions, LSB correctly realized the need to distinguish between
two possible scenarios for trials in which subjects answered cor-
rectly and did not report seeing the target (the unaware-correct
condition). It is possible that subjects unconsciously processed
the visual stimulus, and therefore answered correctly.
Alternatively, subjects could also have failed to process the
stimulus, i.e. neither consciously nor unconsciously, and yet ar-
rived at the correct answer by chance—in a 4-AFC task, random
responding leads to an expected 25% chance of being
correct. It is important to eliminate the influence of these
correct-by-chance trials, because in comparing aware-correct
and unaware-correct, the hope is not just to match performance
as measured by sheer accuracy (in this case accuracy was 100%
in both conditions). Rather, one would hope to match the un-
derlying performance capacity. Only by removing the influence
of the correct-by-chance trials in the unaware-correct condition
one would be able to compare two conditions where the under-
lying performance capacities are matched (both at ceiling).

Thus, LSB developed a mathematical method to correct for
the influence of those correct-by-chance trials (see
Supplementary Material and LSB’s endnote 2). Their underlying
idea is that by looking at the overall accuracy in unaware trials,
one can estimate what percentage of trials in the unaware-correct
category is correct by chance. In a 4-AFC task we would expect
25% of unaware trials to be correct simply due to chance.

In order to correct for this percentage of unaware-correct-by-
chance trials, LSB further assumed that the ERPs for these trials
should just look like the ERPs for unaware-incorrect trials. The intu-
ition behind their logic is that both types of trial have in common
that subjects’ brains failed to process the target. The only differ-
ence is that subjects were lucky in the correct-by-chance trials.
With this assumption in mind, they attempted to subtract away
the influence of the correct-by-chance trials on the set of un-
aware-correct trials. In summary, they assumed that the ob-
served ERPs for overall unaware-correct is a weighted sum of the
ERPs of the truly correct trials (processed-unaware-correct trials)
and the ERPs of the correct-by-chance trials (unprocessed-un-
aware-correct trials). Thus, their correction method would get at
the underlying ERPs for the processed-unaware-correct trials,
which they call unaware-correct chance-free trials (see
Supplementary Material and LSB’s endnote 2 for details).

After this correction, LSB still found significant differences
in the P3 components of ERPs between the aware-correct and the
unaware-correct chance-free conditions. Because now both condi-
tions were supposed to include only truly correct trials where
subjects processed the targets effectively, they argue that per-
formance capacity was truly matched. Their logic is that their
results now really reflect the signature of conscious processing,
uncorrupted by confounds of performance capacity.

Problematic assumptions of mathematical
correction for correct trials by chance

LSB analysis implicitly incorporates some of the major assump-
tions behind what is often called in psychophysics a High
Threshold Model (HTM) (Swets, 1961; Luce, 1963; Green and
Swets, 1966; Macmillan and Creelman, 2005). In this section, we
discuss a general HTM in the context of detection and discrimi-
nation, and its discrepancies with the more popular methods of
SDT.

High threshold models

A key conceptual component of HTM is that there is a discrete
boundary that separates two distinct conditions: effective pro-
cessing, in which a target is being processed correctly, and inef-
fective processing, in which a target is not being processed at all
(Fig. 1). According to HTM, mere background noise can never
lead to true detection, which means that correct responses dur-
ing unprocessed trials arise only from guessing.

LSB seem to have in mind precisely this kind of model when
discussing their experimental paradigm: “Because localization
performance was clearly above chance, stimulus conditions
were such that observers unconsciously perceived [i.e. pro-
cessed] the target on average. Yet, on those individual trials in
which the observers produced an incorrect response, it is reason-
able to claim that they did not perceive [i.e. processed] the target. Such
trials were therefore defined as ‘no-perception’ trials” (2009, p. 1442;
emphasis added). Incorrect responses are a direct consequence,
according to LSB, of a lack of processing of the target (bottom
stream in Fig. 1) and, hence, of true guessing. LSB accept that
perceptual processing is not sufficient for conscious awareness
and, hence, that there can be processed unconscious targets
(bottom half of top stream in Fig. 1). These trials are the ones
that give rise to a subjective feeling of guessing. Note that in
their framework the unaware processed trials are always cor-
rect (because incorrect trials are no-perception trials). Put sim-
ply, for LSB only targets (i.e. never pure noise) can cross the
processing threshold. Conversely, if a target is not reported ac-
curately it can be inferred that it was not perceptually pro-
cessed. The distinction between processed and unprocessed
stimuli is, then, sharp and clear.

Following this model, the only possible source of ambiguity
is those unprocessed (and hence unaware) responses that
are correct due to chance (upward arrow in bottom stream on
Fig. 1). LSB suggest comparing unaware-correct chance-free and
aware-correct trials to find the true neural correlates of con-
sciousness. We conclude that the sharp distinctions between
unaware-correct by chance, unaware-correct chance-free, and
aware-correct trials that their proposal requires make sense
only if something like HTM is assumed.

SDT

Despite its prima facie intuitiveness, decades of psychophysics
research have favored SDT over HTMs (Luce, 1963; Klein, 2001;
Macmillan and Creelman, 2005). Rather than having binary
“processed” and “unprocessed” internal states, according to
SDT the presentation of a target gives rise in the subject to an
internal perceptual response that lies on a continuum (Fig. 2).
The strength of the internal response is hardly ever exactly at
zero due to the presence of noise. In other words, a stimulus is
hardly ever in an unprocessed state. The signal of a target is al-
ways corrupted by noise, and therefore, performance capacity is
determined by the signal-to-noise ratio of the internal response.
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There is no magical point below which subjects always com-
pletely fail to process the target and above which they always
process it successfully.

According to SDT (Macmillan and Creelman, 2005), the pre-
sentation of a stimulus A or B in a discrimination task gives rise
to an internal response in the subject (Fig. 2). The internal per-
ceptual response varies from trial to trial, falling into one of two
Gaussian distributions with equal variance and different
means, depending on the stimulus presented and the subject’s
internal state (i.e. noise). Subjects set a criterion against which
they compare the internal response, which leads to the classifi-
cation of the signal as being due to the presentation of stimulus
A or B. The placement of the internal decision criterion can be
determined by perceptual biases or by subjects’ response biases
(Witt et al., 2015). These can be influenced by preference, a strat-
egy for maximizing the proportion of correct answers or ex-
pected value, subjective appearance (veridical or not) of the
target, or attentional resources (Macmillan and Creelman, 2005;
Rahnev et al., 2011; Morales et al., 2015). Because the distribu-
tions for the internal responses overlap, it is possible (and quite
common) that stimulus A is mistaken for stimulus B, or vice
versa. Additionally, trials are reported as aware when the inter-
nal perceptual response is strong enough to cross one of the
outermost awareness criteria, and they are reported as unaware
otherwise. Note that this allows for aware-incorrect trials when
the internal response is drawn from the wrong distribution and
yet it is strong enough to cross an awareness criterion (e.g. the
right tail of the stimulus A distribution beyond the awareness
criterion in Fig. 2).

Insofar as SDT rejects this strict dichotomy between per-
fectly processed and unprocessed stimuli, it is incompatible
with HTM. But why prefer one model over the other?

The argument from incorrect conscious trials

A specific problem of HTM regarding consciousness studies is
that it cannot explain the presence of incorrect trials when sub-
jects report being aware of a target. According to the model as
conceived by LSB, if subjects are aware of a target, it has to be

because it was successfully processed. Thus, the presence of
aware-incorrect trials is a problem. LSB report a small, but not
negligible, percentage of this kind of trials: 11% and 3.9% for
short and long exposures, respectively. It is common practice in
psychophysics to take into consideration lapse trials, i.e. trials
where subjects did not witness the signal at all—sneezes or
blinks are often blamed—or trials where nonperceptual prob-
lems, like motoric clumsiness, are accountable for the mistake.
Lapse trials, however, are estimated at rates that go from 0% to
1% in the most lenient cases (Klein, 2001), which leaves LSB’s
empirical results unexplained.

However, aware-incorrect trials are not uncommon and they
can be seen in many other studies (Hesselmann et al., 2011), and

Figure 1. Schematic representation of LSB’s High Threshold Model conceptual framework.

Unprocessed targets lead to some correct responses due to luck. When the signal crosses the processing threshold (dotted line), the target is
processed and it will always lead to a correct response (because ‘processed’ in this context means ‘successfully processed’). Awareness
requires crossing a further threshold (dashed line). We leave out from this schematic representation catch or lure trials (i.e. trials where no tar-
get was presented).

Figure 2. Signal Detection Theory model of perceptual awareness.

The presentation of one of two possible stimuli evokes an internal
response in the subject, falling into one of two Gaussian distribu-
tions. In each trial of a discrimination experiment subjects set a dis-
crimination criterion (solid vertical line) and awareness criteria
(dashed lines) against which they compare their internal response.
Because the distributions overlap (darker area), it is possible (and
quite common) that stimulus A is mistaken for stimulus B, or vice
versa. Wrongly classified trials are reported as conscious if the inter-
nal response crosses the awareness criterion on the wrong side of
the discrimination criterion.
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in some cases in high proportions (Lau and Passingham, 2006).
Hence, the presence of aware-incorrect trials in LSB’s experiment
is in conflict with the core assumptions behind their version of
an HTM. In contrast, as can be noted in Fig. 2, aware-incorrect tri-
als are an expected consequence of the SDT assumptions of our
proposal. These trials are classified as aware and hence, despite
being incorrect, should be accounted for when looking for the
NCC.

Empirical inadequacy of HTM receiving operating
characteristic curves

What really convinced generations of psychophysicists that
SDT is a superior model to HTM is the comparison of theoreti-
cal and empirical ROC (receiver operating characteristic)
curves. An ROC curve is a plot of hit rate against false alarm
rate. In a discrimination task (but the principle generalizes to
yes/no, detection, and forced-choice tasks as well), a subject’s
hit and false alarm rates produce one point on an ROC plot. By
changing the subject’s criterion in different conditions to be
more liberal (more hits and more false alarms) and then more
conservative (less hits and less false alarms), multiple points
on the ROC space can be plotted. According to SDT, when sen-
sitivity is different form zero, an ROC curve should be curvilin-
ear (Fig. 3a), whereas according to HTM the ROC should be a
straight line (Fig. 3b). Most empirical ROC curves from human
subjects in visual experiments typically look like the one pre-
dicted by the SDT model, and hardly ever look like the one pre-
dicted by HTM. This is a strong reason to prefer SDT models
over HTM with respect to human visual perception (Krantz,
1969; Macmillan and Creelman, 2005), auditory perception
(Green and Swets, 1966), and memory (Wixted, 2009; Dube and
Rotello, 2012).

We should note that in the memory literature, HTMs have
enjoyed more popularity than in different perceptual

modalities. In particular, mixed models (Aly and Yonelinas,
2012; Yonelinas and Jacoby, 2012), where recognition responses
follow HTM and familiarity responses conform to SDT, have
been well received, but they have also been criticized from the
perspective of SDT (Wixted and Mickes, 2010). Here we are ag-
nostic to this specific issue. We are not arguing that all HTMs
are necessarily wrong. What we maintain here is that in the
case of vision psychophysics, it is uncontroversial that SDT is
much better supported by empirical data than HTM and that
HTMs are inappropriate for conscious awareness studies. Their
inadequacy lies on how they depict the internal representation
of signal and noise, heavily underestimating the role of the lat-
ter. Analysis methods for vision that assume HTM rather than
SDT are, thus, problematic. But how problematic is LSB’s HTM
for conscious vision? How exactly might it have biased their
results?

A computer simulation to demonstrate the
inadequacy of LSB’s correction method

We performed a computational simulation analysis to evaluate
the degree of inadequacy of the correction method proposed by
LSB. The idea behind it was to determine, assuming SDT is the
correct model of perceptual processing (as the empirical evi-
dence robustly suggests), how results of an idealized ERP experi-
ment would look like using LSB’s correction method. As any
other theoretical model of perception, SDT has explanatory lim-
its. It is only within these limits that we attempt to assess the
effectiveness of LSB’s correction method.

For simplicity, we assumed that subjects performed a two-
choice discrimination task, which is analytically more tractable
than a 4-AFC task and its results are trivially generalizable. The
simulation consisted on distinguishing between two stimulus
alternatives (A and B), and then reporting whether there was
awareness of the target or not. It followed the SDT assumptions

Figure 3. ROC curves comparison.

(a) ROC curve as predicted by SDT. According to SDT, the trade-off between having more hits and false alarms when there is non-zero sensitiv-
ity is a non-linear relationship determined by the signal-to-noise ratio. A zero sensitivity scenario would yield a straight ROC line from zero to
one (diagonal dashed line), where one can only increase hits by increasing the same amount of false alarms. A higher than zero signal-to-noise
ratio means that the ROC curve will be curvilinear, where one can increase hits without increasing false alarms in the same proportion (solid
curve) (i.e. performance above chance). ROC curve obtained from 10,000 simulated criteria for the same sensitivity level (d0¼1). See
Supplementary Material, including Matlab code, for details regarding the simulation. (b) ROC curve as predicted by HTM. According to HTM,
the vertical intercept is determined by the proportion of trials where the subject successfully processes the stimulus. The trade-off between
hits and false alarms follows a linear relationship.
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presented in section 3.2. The presentation of a stimulus along
with noise is assumed to give rise to an internal perceptual re-
sponse that varies from trial to trial and that falls into one of
two Gaussian distributions depending on which stimulus was
presented. Discrimination is made by comparing the internal
response to a criterion. The trial is reported as aware if the
strength of the internal response crosses one of the awareness
criteria. For every trial, we made the strength of the internal
perceptual response correlate with a hypothetical neural re-
sponse and a corresponding ERP of an arbitrary electrode site.
We modeled this ERP as a sinusoidal response over time, scaling
the amplitude of the ERP response by the strength of the inter-
nal perceptual response sampled from either of the Gaussian
distributions (Fig. 4; see Supplementary Material for technical
details).

For computational simplicity, we modeled perceptual pro-
cessing as the ERP response from 0 ms to 333 ms. When the

internal response was strong enough to cross the awareness cri-
teria, the model assumes a constant brain signal is added to it,
which may reflect a putative processing signature of awareness.
For aware trials, then, we added an extra half cycle to the sinu-
soidal response so that there is a third “bump” in the ERP wave-
form (333–500 ms) (Fig. 4a). This extra cycle represents the
differentiating processing uniquely associated with conscious
awareness that is absent in trials without awareness (Fig. 4b
and c). The idea is that by subtracting the unaware mean wave-
form from the aware mean waveform, if the unaware mean
waveform is appropriately corrected for, we should be left just
with activity properly related to awareness (i.e. the “third”
bump). Despite its idealized nature, these simulations can help
us determine the expected effectiveness of a performance cor-
rection method.

We note that neural responses associated with awareness
need not arise late (>333 ms) and they need not be temporally
dissociated from the purely classification processes. Finding
the precise timing and localization of these signatures is the
goal of imagining studies looking for the NCC. Hence, the sim-
ulations assumed the dissociated late timing for mere illustra-
tion purposes. The extra cycle associated with consciousness,
then, could have been added earlier too (e.g. at �100 ms), as
has been reported by different laboratories (Koivisto and
Revonsuo, 2003; Pins and ffytche, 2003; Aru and Bachmann,
2009; Railo et al., 2011; Andersen et al., 2015; Rutiku et al., 2015).
Along with other simplifications (e.g. the use of a sinusoidal
waveform or the fact that wavelength, symmetry and latency
are constant with changes in internal response), these as-
sumptions should not affect the main lesson to be drawn from
this exercise. Its main purpose is to illustrate how a correction
method that assumes HTM performs under reasonable SDT as-
sumptions. To emphasize, we suggest this simple-minded
model for ease of visualization and implementation only.

The results presented in Figures 4 and 5 were obtained after
a 10,000-trial computer simulation (see Supplementary
Material for technical details; the Matlab code used for gener-
ating all the simulations is provided as part of the
Supplementary Materials). Figure 4 shows the ERP average re-
sponses under the different relevant conditions. In Fig. 5, we
implemented the correction as described by Lamy et al. (2009;
specifically, endnote 2). The unaware-correct response (Fig. 4b,
and repeated for ease of comparison in Fig. 5a as the solid
curve) is only marginally different from the unaware-correct
chance-free response (Fig. 5a, dashed curve). This is the wave-
form obtained after applying the correction suggested by LSB’s
method to eliminate performance confounds by lucky guesses.
Hence, the influence of subtracting unaware correct-by-chance
trials from aware-correct activations is only marginal. Both sub-
tractive comparisons, namely, aware-correct minus unaware-
correct (Fig. 5b, solid curve) and aware-correct minus unaware-
correct chance-free (Fig. 5b, dashed curve), turn out to be almost
the same, suggesting that the corrected unaware trials made a
small contribution, if any, for singling out the signal specific to
awareness. Concretely, in the latter comparison (Fig. 5b,
dashed curve) there is still a clear residual activation during
the first sinusoidal period of the ERP (0–333 ms), associated
with the internal perceptual response strength in general, and
not specifically to awareness, which occurs late in our simula-
tions, i.e. from 333 ms to 500 ms (Fig. 4a). An optimal analysis
where only the awareness signature response remains after a
subtractive comparison should cancel out the early response,
leaving just the late response that is specific to awareness. As
it is clear from Fig. 5b, LSB’s method fails to single out the

Figure 4. Average simulated waveforms under different conditions
based on an SDT model.

There is an extra third “bump” in (a), the aware-correct trials, absent
in (b) or (c), the unaware trials. This late activity is meant to reflect
activity that is specific to awareness. Activity intensity in (c), the
unaware-incorrect trials, is reduced compared to the higher activity
in (b), the unaware-correct trials. See Supplementary Material for
details.
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specific response associated with awareness when plausible
SDT assumptions are in place, defeating the purpose for which
it was originally devised.

It is here that we can see the crucial, but flawed, role that
LSB’s High Threshold assumption plays. They assume that
the ERP response of unaware-correct-by-chance trials looks the
same as the ERP response of unaware-incorrect trials (Fig. 4c):
both are taken to be trials with unprocessed targets.
Problematically, unaware-incorrect and unaware-correct do not
look that different in the first place—the former’s amplitude
is only about half smaller than the latter’s—so the unaware-
incorrect waveform cannot have a very big influence on un-
aware-correct anyway. This is also observed in the actual ERP
reported in LSB’s 2009 paper (their Fig. 3). It is of crucial im-
portance to note that their results stayed basically the same
regardless of whether they used unaware-correct or unaware-
correct chance-free trials. In other words, their correction
method affected in a negligible way their analyses, even
though it was designed precisely to compensate for a signifi-
cant underperformance during unawareness. This should be
surprising for LSB since their assumed HTM implies that pro-
cessed and unprocessed trials are radically different.
Furthermore, in the P3 component during long-exposure tri-
als (their Fig. 2) there is no difference between the amplitude
of unaware-correct and unaware-incorrect trials. This is an im-
portant unpredicted fact in their theory that receives no com-
ment. [We note that the difference between unaware-correct
and unaware-incorrect was found to be significant in the P3
component in the parietal region in a follow up study (Salti
et al., 2012)].

On SDT, however, this type of outcome is to be expected be-
cause both unaware-correct and unaware-incorrect are trials that
come from the inner partitions between the awareness criteria,
where signal strength is weak (Fig. 2), and they are not necessar-
ily very different in each of the two partitions. As a matter of
fact, unaware-incorrect trials may even have higher internal re-
sponse strength than unaware-correct trials (due to the overlap
of the Gaussian distributions), making them in the end qualita-
tively similar. Thus, we conclude that LSB’s correction method
only partially, and inadequately, removes the performance ca-
pacity confound.

An SDT-based correction method

Having demonstrated the inadequacy of LSB’s correction
method, we now show a way to perform a theoretically more
adequate analysis based on SDT assumptions. The simulation
presented in the previous section clearly established what the
goal of such a correction should be, namely, to remove the ERP
responses associated with mere processing in order to reveal
the response that is specific to awareness and independent
from performance. Like Lamy and colleagues, we are concerned
with awareness as measured by subjective ratings (akin to con-
fidence ratings as characterized within SDT). The distribution
properties of the internal signal strength during a discrimina-
tion task are known when SDT is assumed, i.e. the internal per-
ceptual response is drawn from one of two overlapping
Gaussian distributions with equal variance and different
means. Then, an appropriate correction for controlling for per-
formance and factoring in any correct-by-chance trials is actu-
ally not difficult to achieve using standard SDT methods.

The primary assumption behind this correction is that acti-
vation intensity is linearly determined by the internal response.
As it is clear from Fig. 2, an SDT model assumes that unaware
trials have a lower mean internal response than aware trials.
This fact can be used to correct for performance confounds be-
tween aware and unaware trials. The ratio of the mean internal
response for aware and unaware trials is used as a scaling factor
of the unaware mean waveform. By scaling up the weaker re-
sponse in the unaware condition to approximately match the
intensity of the stronger response in the aware condition, we
can subtract away any activation due to magnitude difference
in internal response (see Supplementary Material for technical
details). Put simply, waveforms (but this is potentially generaliz-
able to other types of imaging techniques like BOLD activity) of
unaware trials during perceptual processing must be scaled up
to match waveform amplitudes (or activation) of aware trials
before they are subtracted from them.

The correction from unaware-correct to unaware-correct SDT-
adjusted, as we label it to distinguish it from LSB’s chance-free
terminology, is presented in Fig. 6a (dashed curve). The sub-
traction of the scaled up unaware waveform should leave us
mainly with the activations relevant to awareness (i.e. the

Figure 5. Simulated neural responses after LSB’s correction method.

(a) Simulated unaware-correct (solid curve) and unaware-correct chance-free (dashed curve) activation using LSB’s (2009) suggested correction
method. (b) The wave function result of subtracting the unaware-correct wave function (solid curve) and the unaware-correct chance-free
wave function (dashed curve), respectively, from the awareness-correct wave function (Fig. 4a). It is evident from visual inspection that the
influence of lucky responses was not sufficiently removed. Also, the activity during the early period was only marginally subtracted away with
or without LSB’s correction method.
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third “bump”) in the simulated ERPs. Figure 6b shows the re-
sult of this process. For comparison, the subtraction aware-cor-
rect minus unaware-correct presented in Fig. 5b (solid curves) is
repeated in Fig. 6b as well. Unlike LSB’s method, this adjust-
ment method allows a significant difference between

subtracting unaware-correct trials and unaware-correct SDT-ad-
justed trials.

For the sake of completeness, we include in Fig. 7 results per-
forming the same analysis with a different selection of parame-
ters: better and worse performance (sensitivity d’) as well as more

Figure 6. SDT-based correction method.

(a) Simulated unaware-correct (solid curve) and unaware-correct SDT-adjusted (dashed curve) activations using our proposed SDT-based cor-
rection method (see Supplementary Material for details). (b) Aware-correct activation curve corrected by subtracting unaware-correct wave
function (solid curve; identical to solid curve in Fig. 5b, repeated here for ease of comparison) and unaware-correct SDT-adjusted curve (dashed
curve), respectively. When comparing the corrected aware-correct curve in this figure to the one in Fig. 5b (dashed curve), it can be easily
noticed by visual inspection that the proposed SDT-based adjustment method robustly removes the task performance capacity confound dur-
ing early processing stages, leaving just the awareness activation signature.

Figure 7. LSB’s and SDT-based correction methods stimulation results under different parametric assumptions.

We ran 10,000-trial simulations changing the parameters for awareness criteria and sensitivity (d0). The solid curves represent the subtraction
of unaware-correct chance-free from aware-correct activation (i.e. LSB’s method), and the dashed curves represent the subtraction of
unaware-correct SDT-adjusted from aware-correct activation (i.e. our SDT-based correction method). (a) Sensitivity was kept constant and
identical to previous simulations (d0¼1). We assigned very conservative awareness criteria, i.e. the internal response strength had to cross 63
on the x-axis of Fig. 2 for a trial to be classified as aware. (b) Sensitivity was as in (a), but we assigned very liberal awareness criteria (60.5). (c)
We held awareness criteria constant and identical to previous simulations (62) and we assigned a higher sensitivity of d0¼2. (d) Awareness cri-
teria were as in (c), but sensitivity was set to a low level of d0¼0.5. The results for all four variations look qualitatively the same to the simula-
tion results presented in Figures 5–6. See Supplementary Material for details.
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conservative and more liberal awareness criteria (see Fig. 7 cap-
tion and Supplementary Material for details on the parameters
used). Even though there is a slight numerical variation, changing
simulated sensitivity or awareness criteria left qualitatively intact
the results thus far presented. The chance-free correction sug-
gested by LSB is insufficient to isolate an awareness signature in
the simulated ERP activation waveforms, while our SDT-based
method is more robust to that end at the same time that it signifi-
cantly reduces the worries regarding performance confound.

Discussion

In order to discover the neural correlates of the exclusively sub-
jective aspects of conscious awareness, eliminating perfor-
mance capacity confound is a critical step. Lamy and
colleagues’ effort should be commended for recognizing the im-
portance of this issue, and for providing a novel and general
method for dealing with this problem in a formal way. We rec-
ognize the intuitive appeal of its core logic as well as the impor-
tance and the potential impact that methods of its kind may
have on the field. Unfortunately, whereas the overall concept
behind the analysis is, prima facie, intuitive and appealing, it
fails on a technical level due to its problematic assumptions.

The fact that the correction method proposed by LSB only
minimally removes the performance capacity confound once
plausible signal detection theoretic assumptions are made
means that results based on it or on similar approaches have to
be reassessed less optimistically. For instance, in their own
study, LSB associated awareness with widespread activations. It
would not be surprising that some of those activations are due
to the failure to thoroughly remove the performance capacity
confound. Other laboratories (e.g. Hesselmann et al., 2011) have
used LSB’s method trying to control for performance capacity
and they found in an fMRI study that BOLD activity in the occip-
ital and temporal areas was associated with awareness. But we
know activity in some of these areas reflect internal response
strength anyway (as they also predict task performance capac-
ity), so their results may be merely due to the lack of complete
removal of the influence of performance capacity. If this were
the case, the view that these authors put forward, namely, that
awareness may be associated with widely distributed activity in
the whole brain, including visual areas, would be undermined.
If an awareness signature response were correctly isolated,
however, their findings may even turn out to be compatible
with the view that awareness is associated with specific activity
in a set of brain regions outside of the visual cortex, not directly
involved in the generation of the internal perceptual response
itself (Lau and Passingham, 2006; Lau and Rosenthal, 2011).

Our simulation results are not presented without misgiv-
ings. They are highly idealized and they make strong parametric
assumptions regarding neural data. For instance, they assume
that the internal perceptual response follows strictly Gaussian
distributions and that the strength of the ERP (or whatever other
neural response is analyzed, like BOLD activity) follows the ex-
act same distributions. We know that SDT models are appropri-
ate for human perceptual behavior because the underlying
parametric assumptions have been validated by psychophysical
measurements of ROC curves, which show that the Gaussian
distribution assumption is empirically justified in most cases of
visual perception. Nevertheless, when it comes to ERP data, rel-
atively little is known about their statistical nature. If awareness
modulates neural activity nonlinearly (Friston et al., 1996), both
the HTM and SDT corrections presented in this article would fail
to reveal the corresponding neural correlates properly.

Another limitation of the present work, shared by LSB’s
analyses, is that when contrasting unconscious and conscious
activations, the latter could be revealing more than just the
neural correlates of consciousness. These could also indicate
brain activity present during conscious trials but unrelated to
consciousness per se, like post-perceptual processing, working
memory, or response preparation (Bachmann, 2009; Aru et al.,
2012b; Li et al., 2014; Pitts et al., 2014).

Finally, another limitation is that we assumed only one
awareness criterion. This was done mainly for the sake of sim-
plicity and computational tractability and it should not sug-
gest that awareness is an on-off step function. Future work
could pursue the effectiveness of this method with multiple
criteria, which may more realistically capture the nature
of subjective ratings. (Note that with enough criteria, the sug-
gested type of modeling would, in practice, approximate a truly
continuous scale.) Relatedly, it may be argued that there are sub-
tle differences between confidence ratings (commonly used in
SDT contexts) and awareness judgments (Overgaard and
Sandberg, 2012). We acknowledge there are potential differences,
but within the framework of SDT these two have been given simi-
lar treatments, in that they are both subjective ratings that can be
modeled as responses separated by criteria.

With these caveats in mind, we think the conceptual ideas
behind our SDT model are useful for the study of consciousness
in both behavioral and imaging studies. Because this model is
based on the localization of criteria along a decision axis, rat-
ings of awareness can be dissociated from performance capac-
ity, just as response bias can be dissociated from discrimination
sensitivity (Ko and Lau, 2012; Maniscalco and Lau, 2012).
Furthermore, for a single trial, given the internal response
strength, the same stimulus could end up being classified as
aware or unaware depending on where the criteria for awareness
are placed. This is where HTM and SDT depart from each other
more dramatically. Within SDT, for the same stimulus and the
same internal response strength, the same subject could clas-
sify a trial as aware on one occasion and as unaware in a differ-
ent occasion, depending on the localization of the subject’s
awareness criterion. This boundary is determined by fixating a
criterion that changes from subject to subject, from experiment
to experiment, and most likely it even jitters from trial to trial.

Perhaps, the most important take-home message of the exer-
cise of focusing on LSB is not methodological in nature. Rather,
there is a broader conceptual point that we are hoping to advo-
cate here. When controlling for performance capacity in imaging
studies, researchers should focus on controlling for the internal
response strength, and not just for adjusting the influence of
mere flukes. In imaging studies of consciousness, this means iso-
lating some kind of further processing which only happens dur-
ing trials crossing the awareness criteria. Such is the logic behind
our proposed correction method. Given the complexity of
this problem as revealed by the limitations of our correction
method described here, we believe that in order to address the is-
sue of performance capacity as a confound, the best method so
far is to create task conditions in which task performance is em-
pirically matched, and yet reported subjective levels of awareness
differ (Lau and Passingham, 2006; Rounis et al., 2010). Though this
may be difficult to achieve experimentally, we hope future
research may be able to meet this important challenge.
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