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Abstract . The first aim of this paper is to elucidate Russell’s construction of spatial points, which is to be 

considered as a paradigmatic case of the "logical constructions" that played a central role in his episte-

mology and theory of science. Comparing it with parallel endeavours carried out by Carnap and Stone it 

is argued that Russell’s construction is best understood as a structural representation. It is shown that 

Russell’s and Carnap’s representational constructions may be considered as incomplete and sketchy 

harbingers of Stone’s representation theorems. The representational program inaugurated by Stone’s 

theorems was one of the success stories of 20th century’s mathematics. This suggests that 

representational constructions à la Stone could also be important for epistemology and  philosophy of 

science. More specifically it is argued that the issues proposed by Russellian definite descriptions, logical 

constructions, and structural representations still have a place on the agenda of contemporary 

epistemology and philosophy of science. Finally, the representational interpretation of Russell’s logical 

constructivism is used to shed some new light on the recently vigorously discussed topic of his structural 

realism. 
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1. Introduction . According to Russell "[t]he subject of denoting is of very great importance, not only in 

logic and mathematics, but also in the theory of knowledge" (On Denoting, 41). As one of the great 

achievements of Russell's essay one may consider the fact that he showed how "definite descriptions" 

help clarify the meaning of otherwise obscure denoting phrases such as "the present king of France", or 

"the centre of mass of the solar system at the first instant of the 21st century". Definite descriptions are a 

special kind of logical constructions. In this paper I’d like to concentrate on a type of logical construction 

that was especially important for Russell’s epistemology and philosophy of science, namely the 

constructions of what may be called in non-Russellian terms theoretical entities such as spatial points, 

temporal instants, or particles. More precisely, in this paper I’ll deal with Russell’s construction of space 

points as sketched in Our Knowledge of the External World  (Russell 1914) and carried out more fully in 

Analysis of Matter (1927).1  

For Russell, the role of logical constructions in all areas of philosophy and science was guided by two 

principles, the "fundamental epistemological principle" and the "supreme maxim of scientific philo-

sophizing". According to the first the following holds:  
 

"In every proposition that we can apprehend (i.e. not only in those whose truth or 
falsehood we can judge of, but in all that we can think about), all the constituents are 
really entities with which we have immediate acquaintance." (On Denoting, 56).  
 

Not all we know we know by acquaintance. Particularly in science, a large part of our knowledge is 

indirect knowledge, or, as Russell put it, knowledge by description. The principal means to reach things 

for which we cannot obtain direct knowledge of, i.e., knowledge by acquaintance, are denoting phrases 

which, through logical analysis, can be reconstructed as a special kind of logical constructions, to wit, as 

definite descriptions.  Although science has  often been hailed to be the domain of knowledge par 

exellence, most scientific knowledge is (indirect) knowledge by description, whose role Russell described 

as follows:  

  
"The chief importance of knowledge by description is that it enables us to pass beyond 
the limits of our private experience. In spite of the fact that we can only know truths 
which are wholly composed of terms which we have experienced in acquaintance, we 
can yet have knowledge by description of things which we have never experienced. In 
view of the very narrow range of our immediate experience, this result is vital, and until it 
is understood, much of our knowledge must remain mysterious therefore doubtful." 
(Problems of Philosophy , 32). 
  

Similarly as for denoting phrases the meaning of apparently irreducibly theoretical terms in physics such 

as "point", "instant", or "electron" are claimed to be logically reconstructible in terms of components we 

                                                 
1 For a detailed discussion of Russell’s construction of temporal points, i.e., instants, see Anderson (1989). 

 2
 
 



are acquainted with. This was expressed by the second principle of his epistemology, the "supreme 

maxim of scientific philosophizing", first stated explicitly in The Relation of Sense-Data to Physics: 

"Wherever possible, logical constructions are to be substituted for inferred entities." (Russell 1914, 149). 

The "supreme maxim" served as a kind of Occam’s razor that cut the class of inferred entities to a 

minimum ensuring thereby that our claims for indirect knowledge by description were more than mere 

metaphysical speculations.  

Russell’s theory of scientific knowledge may be characterized in general terms as aiming to secure the 

move from perception to the objects of physical theory. As such, this aim was hardly original. Many a 

philosopher in those days subscribed to it in one way or other. For instance, the logical empiricists were 

struggling for decades to elucidate the intricate relation between the observational and the theoretical, but 

already the Neokantian philosopher of science Cassirer had claimed that the essential problem of 

philosophy of science was to understand how to move from "percepts" to "concepts" (cf. Cassirer 1910). 

The originality of Russell’s theory of knowledge  resided in the emphasis he laid upon the role of logic and 

mathematics for this endeavour.  

Following Grayling one may distinguish two ways of how Russell thought this aim could be achieved: 

"[Either this move must] be inferential, in which it takes us from the incorrigible data of sense to 

something else, or it is analytic, that is, it consists in a process of constructing physical entities out of 

percepts." (Grayling 2003, 468). In this paper I’ll concentrate on  the analytic approach as Grayling calls 

it, which dealt with the construction of physical entities out of entities we are acquainted with. Recently, 

Demopoulos made the interesting proposal to conceive Russell’s method of logical construction in terms 

of representation (Demopoulos 2003, 412f). For spacetime theories this requires that every abstract 

model  of such a theory have an isomorphic representation constructed in terms of compresent (more 

precisely, copunctual) events. Thus reformulated, "the program of logical construction is a now familar 

part of the nature and methodology of representation theorems, a part which Russell understood very 

well." (ibidem). I do not fully share Demopoulos’s positive assessment with respect to Russell’s 

understanding of the representational paradigm. As I’ll argue in this paper, Russell’s representational 

construction of space-time points was mathematically flawed and sometimes conceptually obscure.  

Hence, it is well worth the effort to attempt a clarification of the concept of structural representation 

Russell and other philosophers  such as Carnap were after in the first decades of the last century. I 

contend that the concept of structural representation and its conceptual ramifications were not too well 

understood in the early 20th century, not even in mathematics, to say nothing about philosophy. More 

specifically, I contend that the first profound theorem on matters representational ever proved in 

mathematics was Stone’s Topological Representation Theorem of Boolean Algebras in his epoch-making 

papers The Theory of Representation of Boolean Algebras  (Stone 1936) and Applications of the Theory 
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of Boolean Rings to General Topology  (Stone 1937).2 The point I want to make is that Russell’s con-

struction of spatial points as well as Carnap’s construction of qualities out of elementary experiences are 

best understood as sketchy and incomplete forerunners of what was carried out sucessfully by Stone a 

few years later.3 To put it bluntly, from that time onwards Stone’s work had set the benchmark of what 

was to be understood by structural representation. Russell’s construction of points out of "events" and 

Carnap’s constitution of quasiproperties out of "elementary experiences" aimed at something similar, but 

achieved it only partially. 

While Stone’s representational program was extremely sucessful in mathematics (cf. Johnstone (1982), 

Mac Lane (1970), the fledgling representational current in philosophy fared less well. Today, the program 

of logical or mathematical constructions as inaugurated by Russell in Our Knowledge of the External 

World  and and pushed further by Carnap’s The Logical Structure of the World  is generally thought to be 

a proven failure. Maybe this dismissal was a bit too hasty, due to a too superficial assessment of the 

conceptual possibilities of the representational approach. Since Stone representational reconstruction 

has become  a complex and intricate concept that can hardly be dismissed in the chivalresque manner 

many philosophers seem to believe, or so I want to argue.  

The outline of this paper is as follows. To set the stage  we  succinctly present Stone's trail-blazing 

construction of a set-theoretical representation of Boolean algebras in section 2. Stone's  representational 

account provides a precise conceptual framework in which the achievements and deficiencies of the 

representational enterprises of Carnap and Russell can be discussed in detail. That is to say, I propose to 

assess the fragmentary and sometimes obscure representational endevours of Russell and Carnap from 

the perspective of Stone’s mathematically and conceptually mature account. In section 3 it is shown that 

Carnap’s early construction of (quasi)qualities of 1923 can be interpreted as a fragment of Stone’s 

representation of 1936. The topic of section 4 is Russell’s sketch of the logical construction of points out 

of a system of "events" as carried out in Analysis of Matter. It can be shown that Russell’s construction 

bears a striking similarity with that Stone carried out a decade later, in particular with his topological re-

presentation of 1937. Moreover, some of the shortcomings that plagued Russell’s account can be 

attributed directly to his too close observance to the principle that logical constructions have to be based 

                                                 
2 Of course, this contention has to be taken with a grain of salt: beside Stone there were other mathematicians who 
can claim to have made substantial contributions to matters representational, e.g. Birkhoff. In this paper, I am not 
interested in historical accuracy in the first line. Rather I propose to consider Stone as a paradigmatic example.  
3 As far as I know, no philosopher ever took notice of Stone’s work during his lifetime. The closest link between Stone 
on the one hand, and logic and analytic philosophy on the other, seems to have been Tarski who knew Stone’s work 
on Boolean algebras well. Indeed, Tarski’s investigations on relational algebras (Tarski 1941) may be understood as a 
far-reaching generalization of Stone’s work. Tarski mentioned the representation problem for relational algebras with 
direct reference to Stone’s representation (ibidem, 546). One might expect a closer relation between the work of 
Stone and Whitehead, but I have not been able to find evidence for this. Without doubt, Whitehead had a profound 
influence on Russell in matters of logical constructions. For reasons of space, I cannot deal with it in this paper. 
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upon entities we know by acquaintance. In contrast to Russell’s, Carnap’s approach was less hampered 

by philosophical prejudices, but rather by its excessive generality which rendered it impossible to fully 

exploit the representational resources available. In section 5 the representational perspective on logical 

constructions is used to shed new light on some of the epistemological and metaphysical questions 

concerning Russell’s constructional program, in particular on the recently vigorously debated problem of 

how to assess Newman’s anti-structuralist argument against the feasibility of Russell’s structural realism. 

We close with some general remarks on the feasibility of a representational approach in section 6. 

 

 

2. Stone's Representation of Boolean Algebras,4 In this section I'd like to present as succinctly as 

possible one of the most important theorems of 20th century's mathematics, to wit, Stone's representation 

theorem of Boolean algebras.5 According to it every abstract Boolean algebra can be represented as 

subalgebra of a set-theoretical Boolean algebra such that the Boolean operations of meet, join and 

complement are represented by the set-theoretical operations of intersection, union, and set-theoretical 

complement. The reason for outlining a modernized version6 of Stone’s representational account is to 

show what Russell and Carnap could have achieved if the modern conceptual apparatus had been 

available to them. Stone's representational account offers a perspective to better understand what Rus-

sell and Carnap were after in their representational constructions. To put it in a nutshell, in matters repre-

sentational Carnap and Russell were Stone's precursors without knowing it.   

There are essentially two (equivalent) ways of defining Boolean algebras: either as special posets (B, ≤) 

or as a relational structures of type (B, ∧,∨), ∧ and ∨ being the binary operations of meet and join 

satisfying some familiar axioms.7 Both characterizations are related by the equivalence a ≤ b ⇔ a = a ∧ b. 

                                                 
4 For this section I am very much indebted to Hannah Mormann. She helped me to get acquainted with  Stone's The 
Theory of Representation of Boolean Algebras (1936) and Applications of the Theory of Boolean Rings to General 
Topology (1937). 
5 For some compelling arguments for this assessment, see Johnstone (1982).   
6 As is well known, the representation theory of Boolean algebras can be carried out either in terms of ideals or filters. 
Both accounts are strictly equivalent, since for Boolean algebras a maximal filter is just the set-theoretical 
complement of a maximal ideal. In his papers Stone used throughout the language of ideals. In particular he proved 
the crucial result that a Boolean algebra has enough prime ideals to ensure the existence of a faithful set-theoretical 
representation. In his (2003) Demopoulos asserts that Stone proved what today is often called the Ultrafilter Theorem 
for Boolean algebras (ibidem, Footnote 26). Strictly speaking, this is not the case: Stone proved the corresponding  
theorem for maximal ideals (cf. Stone 1936, Theorem 64, 105). Demopoulos rightly asserts that Russell’s theorem on 
the existence of points as maximal classes of compresent events has a striking similarity with the Ultrafilter theorem. 
Since Russell’s "points" and Carnap’s "similarity circles" closely resemble maximal filters, it is expedient to present 
Stone’s account in the garb of filters and not in its original version based on ideals. A slick presentation of Stone’s 
results in terms of filters can be found in Koppelberg (1985), a more leisurely pace in terms of ideals is offered to the 
reader in Davey and Priestley (1990). Today, the topological applications of Stone’s theorem, which established deep 
but quite unexpected relations between algebra and topology are considered as the most spectacular ones (cf. Stone 
1937). Surprisingly, Russell’s construction of points snugly fits in this topological version of Stone’s theorem.     
7 For precise definitions one may consult any textbook, e.g.  Davey and Priestley (1990), Halmos (1963), or Koppel-
berg (1989). 
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A Boolean algebra defined in one of these ways may be called an abstract8 Boolean algebra because its 

order relation and its operations are defined abstractly in purely relational terms.  Concrete Boolean 

algebras arise in the following way: If X is any set denote the set of all subsets of X by PX. The set PX 

becomes a Boolean algebra (PX, ≤) by defining the set-theoretical inclusion ⊆ as the order relation ≤. A 

Boolean algebra B isomorphic to a subalgebra of the powerset PX of some set X is called a concrete or 

set-theoretical Boolean algebra. All finite Boolean algebras are concrete Boolean algebras. More 

precisely, if B is a Boolean algebra with 2n elements it is isomorphic to the power set P({1, 2, …, n}) of the 

set {1, 2, …, n}. Hence, it is natural to ask if every Boolean algebra is isomorphic to a subalgebra of a 

Boolean algebra of type PX. Stone’s representation theorem for Boolean algebras answers this question 

positively. More precisely it constructs for any abstract Boolean algebra B a set X and a structure-

preserving representation B---r--->PX such that B  is isomorphic to the subalgebra r(B) of PX. Before we 

discuss the proof of Stone’s theorem in some detail it should be noted that the representation theorem is 

a non-elementary theorem in the sense that for its proof the axiom of choice (AC) or some similar 

principle such as Zorn’s Lemma has to be used. The first step for the proof of the theorem is the 

introduction of the concept of a filter: 

 

(2.1) Definition  . Let (B, ≤) be a Boolean algebra. A subset F ⊆ B is a filter if and only if the following 

conditions are satisfied:  

(1) Ø ≠ F. 

(2) F is upward closed, i.e., x ∈ F and x ≤ y imply y ∈  F. 

(3) F satisfies the finite intersection property, i.e., x, y ∈ F entails x ∧ y ∈ F.  

A maximal filter (ultrafilter) is a filter that is not properly contained in any other filter. 

 

Every b ∈ B defines a filter called the principal filter F(b) defined by F(b) := {x; b ≤ x ∈  B}. In general, F(b) 

is not a maximal filter. Without further assumptions it is not at all clear that a given Boolean algebra has 

any maximal filter. To ensure the existence of maximal filters one has to rely on the axiom of choice or a 

similar principle (cf. Davey and Priestley 1990, chapter 9). With the help of such a principle it is possible 

to prove the following proposition that is crucial for the construction of Stone’s representation: 

 

(2.2) Proposition . Any filter of a Boolean algebra B is contained in a maximal filter. 

 

                                                 
8  This terminology can be traced back to Stone. 
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Now we are able to describe the basic ingredient of Stone’s representation theorem, to wit, the set of 

points some of whose distinguished subsets will serve as set theoretical representatives of the elements 

of B.  By definition (2.1) a maximal filter of B is an element of the power set PB of B. Hence one may 

define a set-theoretical representation B-------r----->PPB by defining 

 
(2.3)         r(b) := {F; b ∈F, F is a maximal filter of B}.  
 

The map (2.3) is often called the Stone map. According to  (2.2) r(b)≠ Ø for all b ∈ B: by definition b ∈ 

F(b) ⊆ F, F some  maximal fillter. Before we go on, the following remark may  be in order. At first look, this 

representation, based on the elusive concept of maximal filter, looks to be a rather unwieldy construction. 

It is therefore remarkable that Carnap and Russell, apparently independent of each other and almost ten 

years before Stone, used exactly the same construction.  

Informally, an element b of B is represented by the set of all maximal filters that contain it. This 

representation is order-preserving in the sense that if b ≤ c then F(b) ⊆ F(c) by (2.1)(ii). Order-

preservation alone, however, is no guarantee that the representation r in (2.3) is interesting. As long as 

we do not know that B has enough maximal filters, it may happen that r is pretty trivial. Fortunately, 

proposition (2.2) can be strengthened to ensure that there are sufficiently many maximal filters in the 

sense that for two distinct elements of there is a maximal filter F that contains one of them but not the 

other. It should be noted that already Russell was aware that is was necessary to prove the existence of 

certain maximal classes of compresent events that could serve as logical constructions of "points" (cf. 

AMA, 299/300). Indeed, he proved his existence theorem with the aid of Zermelo’s well-ordering theorem 

(which is well-known to be equivalent with the axiom of transcendental induction used by Stone). On the 

other hand, Carnap took the existence of maximal similarity classes (his analogues of maximal filters) for 

granted.  

Having established the fact that there are enough maximal filters one proves that the representation r is a 

monomorphism in the sense that r(b) = r(c) entails b = c. Next we have to show that r not only preserves 

the order relation ≤, but also the Boolean operators ∧, ∨, and *. This is done by exploiting the fact that for 

Boolean algebras maximal filters are prime (cf. Davey and Priestley 1990, Theorem 9.8, 186). Thereby 

we eventually can prove  

 

(2.4) Theorem (Stone’s Representation Theorem (Set-theoretical Version) . Let B be a Boolean algebra. 

Denote the set of maximal filters of B by MAX(B) and the Stone map as defined in (2.3) by r. Then B has  

a faithful set-theoretical representation B-----r----->P(MAX(B)) with the following properties: 
 

(1)  r is an order-preserving 1-1 map,i.e., a ≤ b if and only if r(a) ⊆ r(b). 
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(2) r is a Boolean homomorphism in that the Boolean operations ∧, ∨, and * of B are represented by 

the corresponding set-theoretical operations. 
 

Actually these assertions only form a part of Stone's results in his (1936). Moreover, in his (1937) he 

showed that the representing sets r(b), b ∈ B, could be characterized topologically. More precisely, he 

pointed out that the r(b) figured as the open and closed ("clopen") sets of a certain topology. In other 

words, the representation r was not only a set-theoretical representation but actually a topological 

representation. This result has no counter-part in Carnap’s representational construction of qualities, but, 

as we shall see, traces of a topological interpretation of event structures may be found in Russell’s repre-

sentational construction of points.  

 

  

3. Carnap's Representational Construction of Qualities . Russell’s influence on early Carnap, and particu-

larly on the Aufbau  is a matter of dispute. While Quine did not hesitate to interpret the Aufbau  as an at-

tempt to execute the epistemological program Russell had layed out in Our Knowledge of the External 

World  a more careful reading of the Aufbau  shows that it is positively misleading to "Russell" Carnap’s 

Aufbau in the straight-forward way advertised by Quine and other empiricists (cf. Richardson 1990). More 

recently, Pincock argued that Quine as well as the revisionist exegetes  such as Richardson 

misconstrued the complex relation between the Aufbau  and Russell’s reconstructivist program (cf. 

Pincock 2002). In this paper I don’t want to take side in this issue. Rather, I’d like to concentrate on an 

early (unpublished) manuscript of Carnap’s (Carnap 1923) that may be considered as precursor of the 

Aufbau and that does square quite well with Russell’s program. It may be considered as a direct 

application of his "supreme maxim of scientific philosophizing". This assessment is not intended to 

contend anything concerning the more complex problem of how to characaterize the intricate relation 

between Carnap’s and Russell’s philosophical stances in general. 

After these disclaimers let us begin with the real thing, to wit, a representational interpretation of Carnap’s 

earliest attempt of a logical construction of qualities (cf. Mormann 1994). This endeavour was set out in 

his unpublished manuscript Die Quasizerlegung - Ein Verfahren zur Ordnung nichthomogener Mengen 

mit den Mitteln der Beziehungslehre  (Quasi-Division - A Method for Ordering Non-Homogeneous Sets by 

Means of the Theory of Relations)  (Carnap 1923). The task of the method proposed by Carnap is best 

explained by invoking the "principle of abstraction" as explained in Our Knowledge of the External World:  

 
"When a group of objects have that kind of similarity which we are inclined to attribute to 
possession of a common quality, the principle in question (i.e. the principle of 
abstraction, T. M.) shows that membership of the group will serve all the purposes of the 
supposed common quality, and that therefore, ... the group or class of similar objects 
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may be used to replace the common quality, which need not be assumed to exist." 
(OKEW, p. 51).  
 

In line with Russell’s program Carnap described the aim of Quasizerlegung  in more detail as follows: 
 
"Suppose there is given a set of elements, and for each element the specification to 
which it is similar. We aim at a description of the set which only uses this information but 
ascribes to these elements  quasicomponents or quasiqualities in such a way that it is 
possible to deal with each element separately using only the quasiqualities, without 
referene to other elements." (Carnap 1923) 
 

More formally the task of Quasizerlegung  can be described as follows: Given a similarity structure (S, ~), 

i.e., a set of objects endowed with a reflexive and symmetric relation ~. The relation ~ is to be interpreted 

as a similarity relation: a  ~ b this is to be interpreted as the fact that a and b are similar. Then the task is 

to construe qualities q such that any two elements a and b of S that are similar to each other share a 

common quality q;  if, however, a and b are not similar, they do not share a quality q. In line with the 

supreme maxim of scientifique philosophizing these qualities should not simply be inferred, rather they 

have to be constructed. This meant they had to be characterized extensionally, i.e., as sets of elements 

that have this quality. Denoting the power set of S by PS the correspondence between elements of S and 

their qualities may be conceived as a function S----r--->PPS by which every element a ∈ S is represented 

by the set r(a) := {q; q quality of r}. Up to now we have only said that a quality q is to be characterized 

extensionally as a subset of S. This is quite vague. Not any subset of S will be acknowledged as a 

quality. Rather, a quality q is to be characterized as a subset q ⊆ S that is compatible (in a sense to be 

specified in a moment) with the similarity relation ~ defined on S. Carnap proposed to take as qualities so 

called similarity circles:  
 

(3.1) Definition . Let (S, ~) be a similarity structure.   A subset q ⊆ S is a similarity circle of (S, ~) iff it is a 

maximal set of similar elements, i.e., iff it satisfies the two conditions:  
 
(1)  All elements of q are similar. 

(2)   No element outside q is similar to every element of q. 
 

Carnap took the existence of similarity circles for granted. This is justified only for finite similarity 

structures. To prove the existence of similarity circles for similarity structures with infinitely many 

elements, one has to rely on the axiom of choice, or, equivalently and conceptually simpler, on Zorn’s 

Lemma. The proof is elementary and we need go into it here. Rather, under the assumption that the 

existence of similarity circles has been ensured in one way or other, the main result of Quasizerlegung  

can be stated as follows:   
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(3.2) Theorem . Let (S, ~) be a similarity structure, and a, b ∈ S. Define the map S ----r----> PPS by r(a) :=  

{q| q is a similarity circle and a ∈ q}. Then a and b are similar if and only r(a) ∩ r(b) ≠ Ø. Moreover, if a is 

similar to all elements to which b is similar, then r(a) ⊆ r(b).    
 
 

The first thing to note is that this theorem is to be read as a representation theorem. It asserts that every 

abstract similarity structure (S, ~), as Stone might have said, has a faithful set-theoretical representation 

S----r----->PPS in the sense that the abstract similarity relation a ~ b is represented by the concrete set-

theoretical relation of non-empty intersection r(a) ∩ r(b) ≠ Ø of elements as defined in PPS. Already this 

observation suggests that Carnap‘s project bears a certain similarity with that of Stone. Indeed, it can be 

shown that Carnap’s  theorem (3.2) is a fragment of Stone’s representation theorem (2.4). In order to 

understand why this is the case the following remarks may be in order: First observe that Boolean 

algebras (B, ≤) may be considered as a special class of Carnapian similarity structures:  Every Boolean 

algebra (B, ≤) gives rise to a similarity structure (B, ~) by defining a ~ b := a ∧ b ≠ 0 or a = b = 0.9 Then 

the Boolean partial order ≤  can be reconstructed from the similarity relation ~ by defining a  ≤ b := {x; x ~ 

a} ⊆  {x; x ~ b}. Hence, Boolean algebras may be conceived as special similarity structures. Moreover, 

the relation between maximal filters (defined on Boolean algebras (B, ≤) and similarity circles (defined for 

similarity structures (B, ~)) can be explicated as follows: 
 

(3.3) Proposition . Let (B, ≤) be a Boolean algebra and (B, ~) be the corresponding similarity structure. 

Then a maximal filter F of (B, ≤) is a  similarity circle of (B, ~) which satisfies the finite intersection 

property, i.e., that a, b ∈ F entails a ∧ b ∈ F.   
 

(3.4) Corollary . Conceiving a Boolean algebra (B, ≤)  as a similarity structure (B, ~) Stone’s represen-

tation B---r--->PMAX(B) is a special case of Carnap’s representation B-----> PPB mapping the elements b 

of B to the sets r(b) of maximal similarity circles containing them and satisfying the finite intersection 

property. 
 

Thus, conceiving Boolean algebras as special similarity structures reveals that Carnap and Stone were 

engaged in essentially the same project, to wit, the construction of set-theoretical representations of 

similarity structures. Their projects differed in that Stone’s was much more specific: he was interested in a 

special class of similarity structures, to wit, Boolean algebras.10 Moreover his representations were more 

                                                 
9 As we shall see in the next section, this similarity relation corresponds exactly to Russell‘s relation of "overlapping". 
10  As a direct effect of this concentration on "Boolean similarity structures" one may consider the introduction of the 
finite intersection requirement as an explicit condition on "admissible" similarity circles. 
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sophisticated since he went on to show that they were not just a set-theoretical representations but topo-

logical ones  that described the represented elements in topological terms (cf. Stone 1937).   

To rule out any misunderstandings: Corollary (3.4) does not contend that Carnap was Stone’s forerunner 

in giving a full-fledged proof of the latter’s representation theorem for Boolean algebras. Carnap never 

considered Boolean algebras as a special case of similarity structures and he never undertook the 

slightest efforts to couch his representation in topological terms. Moreover, Stone was well aware of the 

fact that he was engaged in "building a general abstract theory [of representation] and must accordingly 

be occupied to a considerable extent with the elaboration of technical devices" (Stone 1937, 376). In 

contrast, Carnap in his representational entreprises employed only a rather modest formal apparatus. 

Nevertheless it seems justified to ascribe to him the achievement of having proved a fragment of Stone’s 

representation theorem. By hindsight, one may say that the main drawback of Carnap’s quasi-analytical 

constructional system put forward in Quasizerlegung  was its excessive generality. He should considered  

more specific kinds of similarity structures for which more specific results could have been obtained.  

  

 

4. Russell's Representational Construction of Points .  It is not easy  to fairly treat Russell’s "construction 

of points" as set out in chapter xviii of The Analysis of Matter. His mathematical contentions are often 

vague and sometimes strictly interpreted outright mistaken.   On the other hand, his programmatic 

statements concerning the tasks his logical constructions were to achieve are lucidly formulated and 

sometimes far ahead of his times. In order to come to grips mathematically with Russell sketch of  a 

representational constitution of space points in terms of events I propose to cast his approach in terms of 

Stone’s representational theory.  This needs some preparation.  

Russell’s starting point for the representational constitution is a class of "events" characterized vaguely as 

a class of well-formed spacetime regions. In the terminology of the Aufbau  "events" correspond to 

Carnap’s "Elementarerlebnisse". They may be considered as the "Grundelemente" of Russell’s system. 

On the set E of events there is defined the relation of overlapping ("compresence"). This relation enjoys 

the relational properties that are to be expected intuitively from such a relation, i.e. compresence is a 

reflexive and symmetric relation. Hence, ignoring its implicit geometrical connotations, Russell’s system E 

of events, endowed with the relation of overlapping, is just a similarity structure (E, ~) in Carnap’s sense. 

Recalling that also Boolean algebras can be conceived as special similarity structures one may say that 

Stone, Carnap, and Russell grounded their representational constructions on the very same formal base. 

Not only this, Russell started his constructional endevour by proposing to define a "point" as a maximal 

group of compresent events in the same way as Carnap had defined a quality as a maximal similarity 

circle: 
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(4.1) Definition . A point is a group G of events having the following properties: 
 

(1)  Any two members of the G are compresent. 

(2) No event outside G is compresent with every member of G. 
 

According to Russell, this definition works for the 1-dimensional case in the sense that for a group of 

compresent 1-dimensional events (conceived as intervals of the real line) "there will be some place ... 

which is occupied by all of them." (AMA, 294). The following example shows that this is not the case: 
 

(4.2) Example . Let R be the real line endowed with the standard topology, and assume the class E of 

events to be the class of open intervals of R. Denote by G to the class of open intervals {x; -a < x < +b} 

and {x; 0 < x < +c), a, b, c positive real numbers. Then any finite intersection of members of G has a non-

empty intersection, but there is no point ("place") occupied by all of them, since there is no y with 0 < y 

contained in the intersection of all {x; -a < x < +b}.  

 

Russell used a 2-dimensional example to show that (4.1) does not suffice to ensure a non-empty 

intersection when we pass beyond 1-dimensional manifolds (cf. (AMA, 295). Hence, in order to ensure 

non-empty intersection for the 4-dimensional space-time manifold he proposed to replace definition (4.1) 

by the following apparently stronger requirement: 
 

(4.3) Definition . A point is (or is represented by) a group G of events having the following properties: 
 

(1)  Any five members of G  are compresent. 

(2) No event outside G is compresent with any four members of G. 
  

As far as I can see he gave no compelling reason why "five" should work better than "two". Somehow he 

seemed to have believed that the number n necessary to ensure that a group of compresent events , 

conceived as regions of a manifold M of dimension k, had a point in common, was k +1. Since he was 

interested in the logical construction of 4-dimensional spacetime he came to adopt n = 4 + 1 = 5, since for 

the 1-dimensional manifold R the number n = 1 +1 = 2 allegedly worked. In any case, the example (4.2) 

for the 1-dimensional case satisfies (4.3) and even the stronger requirement 
 
(4.4)               Any n members of the group are compresent, n any finite number.  
 

By the light of Stone’s proof  of the set-theoretical representation of Boolean algebras (4.4) is not yet the 

"correct" constraint. Rather, what is suggested by Stone’s proof is that systems of set if they are to serve 
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as points for a set-theoretical representation of Boolean algebras, should be maximal filters, i.e., they 

should satisfy the finite intersection property (2.1)(3) ensuring that  a,  b ∈ F entails a ∧ b ∈ F. Evidently, 

(2.1)(3) implies (4.4) but not vice versa. The finite intersection property (2.1)(3) has become the 

unanimously accepted one in mathematics. For philosophical reasons, however, Russell could not 

swallow this condition. According to him, all events involved in the logical construction of points had to be 

of a certain minimal size, since otherwise they could not be known by acquaintance. If the overlapping of 

any two events was again an event, then any finite intersection of events counts as an event whereby an 

event might eventually lose the quality of being known by acquaintance. At least, this was Russell’s 

argument against Whitehead’s sketch of constructing points by his method of "enclosure-series" (cf. 

AMA, 291). Russell’s argument is problematic for several reasons, in particular since it seems to smuggle 

in the concept of size of events as a new primitive. In any case, Russell left the relational structure of the 

domain of events utterly underdetermined and never defined what relational properties the basic relation 

of overlapping was assumed to have on which his construction of points was based. This distinguished 

his constructional sketch from that of Carnap and Stone who both defined their constructional bases  

quite carefully.  

On the other hand, his construction went beyond that of Carnap’s insofar as his attempted construction of 

points anticipated in a certain sense the topological version of Stone’s representation theorem (cf. Stone 

1937). While in his (1936) Stone had constructed only a set-theoretical representation of Boolean 

algebras, in (1937) he went on and proved that this set-theoretical construction had a natural topological 

interpretation. In some more detail, this may be explained as follows. Given the set-theoretical represen-

tation B----r---->PMAX(B) as  defined in (2.4) in the line of Stone11 it could be shown that MAX(B) of 

maximal filters was not just a set but carried a natural topological structure so that the images r(b) of the 

elements of the Boolean algebra B could be neatly characterized in topological terms. More precisely, the 

sets r(b) were not just contrived subsets of MAX(B) but turned out to be a so called "clopen", i.e., closed 

and open sets with respect to the topological structure defined on MAX(B), later to be called the Stone 

topology. Thus, Stone’s construction had shown that every Boolean algebra not only had a set-theoretical 

but actually a topological representation.  

On the one hand, Stone spaces  are topologically well-behaved being compact Hausdorff spaces, on the 

other hand, they have some rather bizarre topological features, e.g. they were totally disconnected. Their 

discovery profoundly changed the mathematicians’s ideas of what was to be understood by topology. By 

hindsight one may even say that Stone’s topological representation of Boolean algebras paved the way 

for a new conceptualization of topology, later to be called "pointless topology" (cf. Johnstone 1982). In the 

traditional perspective point set topology, a topological space X was conceptualized as a set endowed 
                                                 
11 Recall that Stone actually used ideals. 
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with some extra "topological" structure. This structure gave rise to certain lattices such as the Heyting 

lattice of open subsets or the Boolean lattice of regular open subsets of X. Stone’s representation 

suggested a quite different conceptualization. Starting with a Boolean algebra B, one could construct a 

topological space X(B) that fitted B in the sense that B was isomorphic to the Boolean algebra of regular 

open subsets of X(B). Thereby the "essence" of a topological space was shown to lay in the algebraic 

structure B points turned out to be derivated entities. This opened up a completely novel perspective on 

topology.  

The surprising fact is that in (AMA) we find Russell engaged in formulating just this program of a 

"pointless topology" or "pointless geometry" that came into being only several decades later.12  

Contrasting it with the more familiar point-set topology ("analysis situs") he explicitly stated the ambitious 

agenda of such an invisaged  discipline as follows: 

 
"In analysis situs, both points and neighborhoods are given. We, on the other hand, 
wish to define our points in terms of "events", where "events" will have a one-one 
correspondence with certain neighborhoods. We want our "events" to correspond with 
neighborhoods which are above a certain minimum and below a certain maximum 
when, at a later stage, the empirical metric is introduced. We have to assign to our 
events such properties as will enable us to define the points of a topological space as 
classes of events. But we have to remember that we do not want to construct merely a 
topological space: what we want to construct is the four-dimensional space-time of the 
general theory of relativity." (AMA, 298). 

 

The following remarks on his program may be in order. Russell’s constraint that we are allowed to use 

only neighborhoods of limited size is due to his  "principal epistemological principle" according to which 

we can only use components we are acquainted with. Too large or too small regions are rejected as 

entities we cannot be acquainted with. Implicitly, this distinction introduces a further undefined primitive 

term, namely, the size of a region. As has been shown by Roeper (1997), at least the exclusion of "too 

large" regions can be formulated in a precise way. As far as I know, nobody has ever followed Russell in 

excluding too small regions as well.  In the following reconstructional sketch his size complication will be 

ignored. Also Russell’s introduction of an empirical metric is too sketchy to deserve detailed 

reconsideration. 

The most charitable way  of interpreting Russell’s proposal is to ignore his flawed "construction by 

quintets" reading his attempted construction of points instead in terms of Stone’s topological 

representation of Boolean algebras (cf. Stone (1937)). In order to keep things as simple as possible, let 

us consider the specific example of the 2-dimensional Euclidean plane E. Assume E to be endowed with 

                                                 
12 Russell credits Whitehead for the basic ideas of this approach. Indeed, Whitehead’s sketch of constructing points in 
his Process and Reality  may be considered as a forerunner of "pointless topology". As it seems, however, his work 
was not very influential in mathematical quarters. 
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its standard topological structure.  Recall that the topological structure of E gives rise in a canonical way 

to the complete Boolean algebra O*E of regular open regions. These regions are to be considered as 

Russelian events - ignoring Russell’s size restrictions. Two regions are defined to overlap if and only if 

there is a non-empty region contained in both. Then Boolean structure of O*E can be defined in terms of 

the overlapping relation by imposing appropriate axioms on it (cf. Lewis 1991, Chapter 3.4) In terms of 

Carnapian similarity structures, this amounts to define a similarity structure (O*E, ~) as  the basic level of 

Russell’s construction system. Following Stone’s construction,  the set O*E of events is assumed a 

complete Boolean algebra. The task, then, is to define "points" for O*E in the sense that events are 

represented as sets of points in such a way that the overlapping relation for events corresponds to the 

set-theoretial intersection of the point sets. In line with Stone,  Russell, reinterpreted in the light of Stone, 

may be said to represent an event e ∈ O*E by the set of maximal filters F of  O*E containing it:  
 
(4.5)    e ≡ {F; e ∈ F, F is a maximal filter on O*E}.  
 

This corresponds to Carnap‘s quasi-analytical representation of an element a of the similarity structure 

(O*E, ~) by the set of similarity circles containing it: 
 
(4.6)    a ≡  {F; a ∈ F, F is a similarity circle on O*E}.  
 

Russell claimed to have reconstructed thereby the points of the Euclidean plane E as maximal filters of 

O*E and the topological structure of E in the usual sense of point set topology. For several reasons, this 

claim is untenable. One can object that in Russell constructed at most a point set, namely, the set of 

maximal filters of O*E. He did not prove how this set is to be endowed  with a topology.  He simply 

assumed that this set should carry the "same topology" as E. Unfortunately this is mistaken. Looking at 

Stone’s proof it is evident that the topological structure of the point set constructed by Stone’s method  is 

not that of the Euclidean plane E. Rather, the topological space constructed from O*E is not E but the 

Stone space SE of E that is quite different from E. For instance, SE is compact and totally disconnected, 

while E is not compact and connected (cf. Stone 1937, Theorem 1, 378). In  short, what Russell could 

have achieved by his method,  was the construction of the Stone space S(E) but not that of E itself.13  

Nevertheless, Russell was not too far off the mark: By more refined methods that cannot be discussed 

here it is indeed possible to reconstruct E from O*E (endowed with a more sophisticated overlapping 

relation) more or less in the sense Russell adumbrated. Hence one may say that in the light of Stone’s 

achievements and the advent of modern "pointless" topology in the seventies and eighties of the last 

                                                 
13 E and SE are not unrelated to each other: SE may be conceived as a kind of algebraic version of the space E. It is 
sometimes called "the absolute of E". 
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century Russell’s program eventually has become feasible, although his own sketchy execution of it was 

less than perfect.  

 

 

5. Representations, Ramsey-Sentences, and Structural Realism . As stated already in the introduction, 

for Russell there were two paths to move from the level of perceptions to the level of the objects of 

physics, either the inferential path or the representational one, as we may call it now. In general, the 

inferential option has attracted  more attention than the representational one. In particular it has been 

pointed out that Russell’s account may be seen in line with subsequent developments inaugurated by 

Ramsey, and later pursued further Carnap, Lewis, and others (cf. Carnap 1956, Lewis 1970). One may 

consider as one of the main achievements of Russell’s theory of definite descriptions that it avoids 

reference to anything not known by acquaintance.  If one provisionally equates knowledge by 

acquaintance with empirical knowledge Russell’s and Ramsey’s reconstructional aims become close 

neighbors. Both rely on the assumption that what really matters is the empirical content of a theory, and 

not its theoretical garb. Although scientists typically use theoretical terms and predicates in presenting a 

theory, these need not be treated as names. One can consider the theoretical terms and predicates as 

variables bound by existential quantifiers. Thereby one obtains the Ramsey sentence  of a theory T as a 

sentence of  the form 

 
(5.1)                              R(T):=  ∃x1 ... ∃xn  T(x1, ..., xn, o1, ...., om) 
 
Here T(t1, ..., tn, o1, ...., om) is a complex conjunction stating T’s axioms in which empirical terms o1, ...., 

om  and theoretical terms t1, ..., tn are entangled in some way or other. Thereby, the Ramsey sentence  

can be interpreted as a kind of  global and simultaneous definite description of all theoretical terms as 

sketched by Russell already in On Denoting.  

The Ramsey sentence R(T) of a theory T provides a neat and elegant description of the theory’s layer 

structure. Nevertheless it did not help much to solve the many controversies concerning the problem of 

how the relation between the theoretical and the empirical is to be conceptualized.  This is evidenced by 

the recent debates on the issue of "structural realism" in which the discussion on the correct interpretation 

of the theory’s Ramsey-sentence occupies a prominent place. Discussion about epistemological and 

ontological consequences of the Ramsey sentence of an empirical theory suffer from an extreme degree 

of abstractness. Usually not much more is told about the Ramsey sentence of a theory than that it is a 

quantified sentence of the form given above. Often, the "indissoluble entanglement" of the observational 

and the theoretical terms is alluded to (e.g. Zahar 2004, 10), but a detailed presentation of it is usually 

missing. This would be OK, if no serious difference concerning the interpretation of R(T) threatened. But it 
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does.  Quite incompatible interpretations of the Ramsey-sentence have put forward. In some sense they 

rehearse the classical debate  Newman and Russell had on the (non)triviality of structural realism some 

seventy years ago.  

Russell had put forward the radical claim that all we can validly infer from perceptions is the mathematical 

structure of the world (cf. (AMA, 254) which had for him the consequence  that "[t]he only legitimate 

attitude about the physical world seems to be one of complete agnosticism as regards all but its 

mathematical properties." (ibidem, 270/271). To this extravagant claim that only the structure of the world 

can be known, Newman had rightly objected that ignoring some mild constraints of cardinality just any 

structure can be imposed on the world (cf. Newman 1928, 144). Hence, Russell’s radical structuralist 

claim that only structure can be known, boils down to an extremely implausible agnosticism concerning 

the nature and scope of scientific knowledge about the world. Russell readily admitted that Newman had 

made a point: 

 
"It was  quite clear to me, as I read your article, that I had not really intended to say 
what in fact I did say, that nothing is known about the physical world except its 
structure. I had always assumed spacio-temporal continuity with the world of percepts, 
that is to say, I had assumed that there might be co-punctuality between percepts and 
non-percepts, … . And co-punctuality I regarded as a relation which might exist 
among percepts and is itself perceptible." (Russell 1928 (1991), 413)  

  

This argument is dismissed by Demopoulos and Friedman as not compatible with Russell’s theory of 

knowledge by acquaintance, since one cannot assume acquaintance with "a cross category notion such 

as spatiotemporal contiguity or causality" (cf. Demopoulos and Friedman 1985, 192) as Russell did in his 

answer to Newman. It may be that Demopoulos and Friedman are right. To assess their verdict would 

require to delve deeper into the subtleties of Russell’s theory of acquaintance. It should be noted, 

however, that Russell offers a second, more elementary argument to ensure a more plausible interpreta-

tion of his structuralism. Demopoulos and Friedman ignore this argument.  Put forward in the last 

sentence  quoted above  it contends that copunctuality is a perceptible relation among concepts. This 

claim is compatible with his theory of acquaintance according to which we can be acquainted with 

relations. Cashed out in terms of structural representation it asserts we can assume to be acquainted with 

the similarity structure (E, ~) consisting of events cum compresence  (or, more precisely, co-punctuality). 

In the light of this quite natural representational interpretation of Russell’s claim it is then a non-trivial task 

to construct a point-set or a topological representation of (E,~) as explained in the previous section.  

Summarizing one may say that Russell’s structural realism, correctly interpreted, still seems a viable 

option, pace Newman's criticism.    
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This conclusion is not unanimously accepted by those who consider the Ramsey sentence as a useful 

tool for describing a theory’s structure. Demopoulos and Friedman maintain that Newman’s argument can 

be couched in terms of the theory’s Ramsey-sentence rendering it essentially trivial: 
 

 "…[I]f our theory is consistent and if all its purely observational consequences are 
true, then the truth of the Ramsey-sentence follows as a theorem of set-theory or 
second order logic, provided our initial domain has the right cardinality - if it does not, 
then the consistency condition of our theory again implies the existence of a domain 
that does." (Demopoulos and Friedman1985, 635) 

 

Zahar vigorously disagrees (cf. Zahar 2004). According to him Newman’s criticism, as well as that of 

Demopoulos and Friedman miss the point of Russell’s structural realism (properly understood as a partial 

structuralism) since it ignored the crucial distinction between the observational predicates and the 

theoretical ones: 

 
"No serious version of structuralist realism can get going without some distinction 
between the theoretical and the empirical. If all predicates of a scientific theory are 
taken to be interpreted only within the context of the claims made by the theory, it, that 
is, none is taken to be firmly anchored in experience independently of our attempted 
descriptions of the universe, then the constraints imposed by the Ramsey sentence 
would be hopelessly weak." (Zahar 2004, 10).  

 

I think Zahar is right, and I take the divergent interpretations of the Ramsey-sentence as evidence that 

the Ramsey-sentence is rather a description of the problem than its solution. In this respect, the 

representational reconstruction of Russell’s theory has an advantage. It clearly brings out that the 

existence of a structure-preserving representation is not a matter of cardinality, but depends on the 

structural kind of empirical system represented. To explain why, it is expedient to go back once again to 

Stone’s representation and consider one of its important later ramifications as exhibited in Tarski’s work 

on relational algebras (Tarski 1941). Relational algebras may be conceived as enriched Boolean 

algebras in the sense that they are Boolean algebras endowed with some further structure. With direct 

reference to Stone’s representation, Tarski posed the problem to find out if relational algebras  had a 

representation in the sense of Stone. He himself was not able to solve this problem, and only much later 

it could be shown that relational algebras in general do not have set-theoretical representations. The 

proof of this important theorem  has, of course, nothing to do with trivial cardinality considerations. This 

may be taken as evidence that the traditional Ramsey account does not do full justice to representational 

constructions. Hence it may be expedient to modify it in such a way that the importance of structure-

preserving representations becomes more visible. A not too far-fetched way would be this: Denote the 

empirical base system by E ("events") and the theoretically completed system by T(E) ("events cum 

points"). The task is to find a structure-preserving representation E---r--->T(E). To have specific examples 
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at hand, consider Stone’s representation B---r--->PMAX(B) or Russell’s E----r---->PPE. Asserting that this 

task can be achieved is to claim that such an r exists. For Stone’s representation theorem this claim can 

be expressed in terms of the following "representational Ramsey-sentence": 

 
(5.2)       ∃r[(x)(y) (x,y ∈ E ⇒ (x = y ⇔ r(x) = r(y) &  x ≤ y ⇔ r(x) ≤ r(y) & ....] 
 

The bounded variable of this "Ramsey-sentence" is running over all all representations r and it is immune 

against trivializations à la Newman, since it amounts to the claim that there is a structure-preserving 

representation r, and this claim is, as has been explained above, definitively non-trivial.   

The representational constructions, carried out explicitly by Stone and propagated by Russell as the core 

of his theory of physics exhibit a feature that distinguishes them from "arbitrary" constructions: 
 

"[S]tarting from hypotheses concerning undefined objects, … we have reason to 
believe that there are objects fulfilling these hypotheses, although, initially, we are 
unable to point out any such objects with certainty. Usually, in such cases, although 
many different sets are abstractly available as fulfilling the hypotheses, there is one 
such set which is much more important than the others … . The substitution of such a 
set for the undefined objects is "interpretation". This process is essential in 
discovering the philosophical import of physics." (AMA, 4 - 5)  

 

For instance,  the importance of Stone’s representational construction of points as maximal filters is not 

exhausted by the fact that it yields for each Boolean algebra B an isomorphic point-set algebra r(B). 

Rather, beyond the fact that it offered an isomorphic set-theoretical model of B, it opened the path to 

conceptual reinterpretations of the represented and the representing domains that had been literally 

unthinkable without it. This is amply confirmed by the tremendous impact of Stone’s representation that 

virtually reshaped the theories of Boolean algebras and topology. In order that this is possible even on a 

modest scale there has to exist a certain intensional affinity between the representing and the 

represented level that goes beyond a mere isomorphism. Carnap was after something similar when he 

characterized the range of the variables of the Ramsey sentence as follows: 
 

"The entities to which the variables in the Ramsey-sentence refer are characterized 
not purely logically, but in a descriptive way; and this is the essential point. These 
entities are identical with mathematical entities only in the customary extensional way 
of speaking. … In an intensional language there is an important difference between 
the intension 9 and the intension n(p) (number of planets). The former is L-
determinate, the latter is not. Thus, if by "logical" or "mathematical" we mean "L-
determinate" then the entities to which the variables in the Ramsey-sentence refer are 
not logical." (Carnap 1958, RC 102-07-05, quoted after Psillos 1999, p. 55) 
 

The sketchy remarks of this section on the relations between the Ramsey-sentence, the representational 

constructions à la Stone, and structural realism certainly do not exhaust these topics, but at it should 
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have been made clear that the case of Russell’s "structuralism" is more intricate than one might have 

thought.  

  

  

6. Concluding Remarks . The philosophical prospects of Russell’s structuralist program of 

representational (re)constructions use to be assessed as rather bleak. For instance, Deomopoulos 

asserts that even the sucessful execution of this program in terms of representation theory  "lends no 

support to the central epistemological contention of structuralism: from the fact that the representation is 

purely structure-preserving, it by no means follows that the knowledge expressed by the original theory - 

in this case, the theory of space-time - is purely structural." (Demopoulos 2003, 413). He is certainly right 

in contending  that the thesis of radical structuralism according to which knowledge is purely structural 

cannot be maintained. But this is not the issue as has been admitted already by Russell himself in his 

answer to Newman. It is quite another thing, however, to maintain that the concept of structural 

representation in general is philosophically unimportant. A closer look at the theories of representations 

developed in the sciences reveals that representation is a "difficult" concept that up to now as been only 

partially understood by epistemologists and philosophers of science. As I wanted to show in this paper, 

the issue of definite descriptions, logical constructions, and structural representations may still have a 

place on the agenda of contemporary epistemology and philosophy of science. These disciplines could 

learn a lot by looking more closely to mathematics and the other sciences for their conceptual resources 

and technical tools  (cf. Richardson 2003, 165). More specifically, the concept of structural 

representation, which unfolded in the evolution of 20th century’s logic and mathematics in a spectacular 

manner, has been digested only partially by philosophy up to now. Perhaps the best example is the 

emergence of category theory14, for which one of the decisive factors was Stone’s representation 

theorem15 (cf. Johnstone 1982, Mac Lane 1970). Studying in a Russellian spirit the concept of 

representational constructions may help overcome this less than optimal state of affairs.   
 

References: 
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philosophers. 
15 The topological version of Stone’s representation provided one of the earliest non-trivial examples of a functor, 
which is a fundamental concept of category theory. Almost explicitly, this is already contained in Stone’s Theorem 4, 
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are mathematically equivalent." (More precisely, Stone’s functor is a duality.) 
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