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2.1 THE M WORD

‘Model' is a term of the working scientist’s self-explanatory and sell-justifying vocabulary. "Here
is my model of the phenomenon’, ‘it follows from our model that . .." ‘our model does not
capture the following aspects of the data. but this is no problem since it is just a model . . A e
model the data we have made the following assumptions . . . (*We are modelling the river as a
drunken snake’, ‘the 3000% discrepancy between predicted sedimentation and observation is
very satisfactory for a purely theoretical model.’) In some such assertions the word ‘model could
be replaced with ‘theory’ or *hypothesis’ with no big loss of meaning. But in many it could not.
There are examples of both in the chapters in this volume. as we argue in Section 2.3. When
scientists describe their creations as models they often intend Lo take advantage of some of the
following features of models. as opposed to theories:

Two models can be inconsistent with each other, and both can be good models.

A model can contradict some aspects of the observed phenomena and not be refuted.

A model can contain assumptions which there are theoretical reasons to helieve to be lalse.
« A model can contain assumptions which observation shows to be false.

That makes it sound as if making models is just doing sloppy science. But models are also
supposed to have these further features:

« Models are evaluated in accordance with the available data, and rejected il they are
inadequale.
» A good model informs us about important properties of its subject matter.

How can we have the features on the second list and also those on the first? How do we get our
cake and eat it? It may not be as difficult as it seems, de pending on how we interpret the ideas of
evaluation (and its variants confirmation and validation or vindication — see Section 2.2) and
explanation (and its cousins prediction and derivation). One aspect of modelling builds on the
familiar idea of a harmless idealisation. with objects as point masses in Newtonian mechanics.
gases as homogeneous fluids or as collections of randomly distributed point masses. It is clear
that we can use such idealisations in formulating hypotheses which have explanatory value and
can be tested. But some of the false consequences of such hypotheses are not to count as refuting
them: those that are direct results of the idealisation rather than ol those aspects of the
hypothesis that is intended as a description of the subject matter.
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would be worth having, but it could be had without any use of the M word )

We strongly agree with Bates and Anderson’s arguments i this volume (chapter 13) that
models are typically propositional and truth-valued — and thos that they can and must be
empirically tested and verified. It is very important to remind ourselves of that. An old
philosophical tradition used to take it that models were merely interpretations ol theories, and
thercfore could neither be verified nor falsified empirically. Models could not be tested. only
theories could. This is a tradition that we oppose, and that we have independently criticised
elsewhere. Typically. in putting forward a model, we claim, a scientist (among other things) puts
forward a hypothesis — i.e. a set of claims that are subject to empirical scrutiny. But we do not
believe that ‘model’ just means “theory” (or *hypothesis’, or “assumption’). Modelling is a distinct
activity from mere theorising: in addition to putting forward hypotheses, in talking of models,
scientists usually are signalling that they are making some very specific uses ol idealising
assumptions. The problem is that there are many different such signals they can be sending. Here
are some worthwhile non-redundant claims that can be intended when a scientists describes her
creation as a model:

(i) Madels as tamed theories. Often there are theoretical reasons for thinking that the laws
governing a certain domain should take a certain form, but the result is a theory that is very
hard to work with. The difficulty can take the form of problems in deriving practical
consequences or problems deriving the kinds of observable predictions which could be
evidence lor the theory. Then simplifications or idealisations are needed. Fluid mechanics is
the obvious example. Newtonian physics conceives of physical systems as complexes of
discrete particles, so that when we apply this way of thinking to continua it is not surprising
that we get such intractable monsters as the Navier-Stokes equations. (So modelling in
hydrology inevitably runs into the hard questions.) A model in this case will be obtained by
taking the background theory and changing some of the assumptions that make it badly
behaved or hard to understand, hoping that the particular changes made will not produce
inaccurate results in the particular application that one has in mind.

In [act there are two distinct directions in which one can tame a theory. One direction is
towards intelligibility or intuitive understanding. For example, the equations of general
relativity permit mind-bogglingly many solutions. So expositions of the theory usually
subtly restrict the range of solutions so that only those that are cosmologically plausible or
geometrically manageable are considered. The other direction is towards the deduction of
observable consequences. This can be motivated by the need to test the background theory
or by practical applications. Most of the models in this book that are tamed models are of
this second kind, which we shall refer to as theory-based models.

(b} Models us analogies with other (real) systems. We model the atom as a planctary system
(warily); we model gases as fluids; we model an economy as a collection of independent
sell-interested perfectly rational agents. In each of these cases we know perfectly well that
our assumptions are lalse. Electrons are much more unlike planets than they are like them,
and electrostatic force and gravitation are lundamentally different. Gases are composed of
molecules with empty space between them. Economies consist of people of limited ration-
ality who group into coalitions and care very much aboul the wellare of particular others.
We make these false assumptions in part to reduce the possibilities enough that we can
begin to describe and explain, in part to make it possible to apply known theories or
theory-making techmques, and m part to siimulate our imaginations, The result is then
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models discnssed under (ad there s o cracial and problemate distimetion between discon-
firming evidence which merely shows the obviouos fact that the modelling assumptions are
not literally true, and more worrying evidence which shows that even taken on its own
terms there is something wrong with the model.

Sometimes, though, the attempt to model one kind of phenomena in terms ol ideas taken

from a different domain produces a result that is far from simple. Thinking in Newtonian
terms about fluids results in the Navier-Stokes equations. So then a model of the (a) kind
may be needed to tame the results of (b)-type modelling.
Muodels as images of data. Just as a theory can be intractable taken on 1ts own, so can the
data that a theory is supposed Lo explain. A macroeconomic theory, for example, may have
as its empirical base the entire statistical corpus of a nation’s financial data. There is too
much there to begin to explain. So one has to pre-digest the data into a manageable [orm.
Two forms of data models which are so familiar that they might escape notice are
generalisations and statistics. A theory might be asked to explain why all businesses over a
cerlain size in a certain sector of the economy were subject to take-over bids, or why the
variance of the life-expectancy of new firms in a sector had declined. At first these look like
raw data, but in fact they are several steps removed from it. In fact, such assertions are
rarely literally true. Thus we say that clementary physics explains why all unsupported
bodics near the surface of the earth accelerate downwards at 980 m/sec”, quile ignoring
birds and balloons. We arc not lying; we do not really mean that absolutely literally all
bodies behave in this way. We mean that for the purposes of understanding the world
through physical theory it is 4 not too misleading summary of the data to represent it in this
way. Similarly, mutatis mutandis, for sophisticated statistical summaries of data.

Some dala models work in a much less obvious way. Quantilies that cannot be directly

observed, organised in ways that beg questions about their relations, are essential to much
ol science (see Suppes 1969).
Mudels as instances of theories. Only the very simplest theories are ever completely stated.
PPut the equations or the axioms, even assuming they exist in a standard form, in [ront ol an
intelligent person who knows nothing about the area, and they will usually fall far short of
grasping the theory, without all the necessary background facts and unstated assumptions,
And there is no uniform way of stating these. They may not all even be stateable in any
familiar language. So what is a theory? One fashionable suggestion — see Giere (1988) - is (o
take a theory to be a collection of abstract objects, such that the theory would be true il the
real world resembles any of them. So, for example, we can take a theory in dynamics (o
consist of a set of Lrajectories in an abstract space, which is true of real objects in real spaceil
they actually follow trajectories corresponding to those in one model of (or, constituting)
the theory. (The model in question may not be one that anyone has described or can
imiagine, perhaps resulting from initial conditions and forces that are beyond our ken.)

These models are like (a)-models in that they represent reality (and like all representa-
tions are selective in what they represent), and like (¢)-models in that they are abstract
objects, typically mathematical entities, rather than material objects. But in [act (d)-models
are very unlike the other kinds of models. They are not shaped by theories - they are
(constitutive of) theories. They do nol abstract from data — they represent the causal facts
nol the available observalions.

Who cares about a word? These lfour kinds of models are very dilferent. and used for very

different scientilic purposes. So there is room for a verbal debunking strategy. That line would
run: there are at least four different ways to use the word ‘model’, with very little in common; it is
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Fhus s e o take seronsly. Science consists o a ot more than theories bearing explanatory
relations to bare data, And ench of the purposes that one of the model types (i) to (d) serves is i
real and necessary one. But that does not mean that the seme objects doall these things, or even
that it s possible for the siime objeets to do them. The constraints are oo different,

[t is possible that this is the end of the story. We should stop studying modelling techniques
and validation of models in general, perhaps, and start differentiating between the techniques
and validations appropriate to diflerent kinds of models. We think there is a lot of truth in this
moral. But it is also an exaggeration. To bring out the ways in which it is exaggerated consider
the connections between the kinds of models.

One connection has already been mentioned. (b)-type modelling (model-as-analogy) may
result 1n a complexity which needs to be simplified by an (a)-type modelling (model-as-tamed-
theory). Moreover, a need for (c)-type modelling (data models) can be created by (a)- or (b)-type
modelling. The structures that result from such modelling will by their very nature simplify,
abstract away [rom, or simply ignore some of the causal processes at work in the given domain.
As a result there will almost always be evidence with which they are not consistent. So it would
be inappropriate to apply to them a ‘one strike and you're out” evidential methodology (such as
onc might get from the writings of Karl Popper or other classic philosophers of science). Instead,
the evidence will have to be massaged before it can fairly be compared with the model. It has to
be structured in such a way that some of the phenomena, that the model aims to capture, are
highlighted, and others hidden. So starting with (a) or (b) we are pushed towards (c).

There are links between other kinds of modelling and the rather dissimilar (d)-type modelling
(models-as-instances), too. The range of models that constitute a theory is typically enormous
and hard to grasp. So as an approximation to understanding the theory (rather than using it as
in (a) or testing it as in (a) or (c)) one takes a small number of relatively easily described models
and uses them as paradigms. So with mechanics one uses planetary systems and harmonic
oscillators, But even these may be hard to handle or grasp, or more importantly hard to apply to
i specific subject matter, so one can make explicit simplifications or idealisations, with a
particular application or form of evidence in mind. Therefore, thinking of theories in terms of
(d)-type models invites us to make (a)-type models.

Modelling is like sin. Once you begin with one form of it you are pushed to others. In fact, as
with sin, once you begin with one form you ought to consider other forms. (You have lied to your
best [riend, to avoid hurting his feelings. Now you have to break a promise to tell him what a
third person said aboul him, in order to keep up the benevolent deception.) But unlike sin — or at
any rate unlike sin as a moral purist conceives of it — modelling is the best reaction to the
situation in which we find ourselves. Given the meagreness of our intelligence in comparison
with the complexity and subtlety of nature, if we want to say things which are true, as well as
things that are useful and things which are testable, then we had better relate our bids for truth,
application and testability in some [airly sophisticated ways. This is what modelling does.

2.2 MODEL VALIDATION

We now turn to the concept of validation. Oreskes and Belitz suggest in this volume (chapter 3)
that the notion is unhelpflul, and that the term ‘validation’ should be abandoned in favour of
maore neutral lerms such as ‘evaluation’ and *assessment’. All scientific knowledge is provisional,
and at most we can aspire to link a particular model to current modelling practice elsewhere, or
to justily the model by appeal to our best theories of natural processes, or 1o ground the model
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on i neh and highly constrinmmg set ol abundant data (See Oreskes and Behitz, this volume,
chapter 3)

Our clatms in this paper are in a sense complementary to theirs: we agree that scientific
knowledge 1s provisional, and that this makes the notion of validation initially suspect. But
mstead of rejecting the notion, we preler to fine-grain, by analysing the notion of validation
down into five different categories, and showing all of them to be in one way or another
legitimate.

Broadly speaking, validation has two different meanings. Validating a model is sometimes
taken to involve calibrating it to fit a particular set of data, or physical system, and sometimes it
1s laken Lo involve providing a vindication of the model by appeal to high-level theory. Then
model calibration can take one of two forms: fixing the parameters, and refining the description.
And there are three types of vindication of a model by theory: logical deduction from theory.
physical derivation from theory and consistency with theory.

2.2.1 Calibration

A model may be calibrated in order to apply it to either (i) a concrete physical system, or (ii) a
specific phenomenon. Examples of calibration in this volume are provided by, among others,
Dietrich, Germann and Refsgaard (chapters 6, 10 and 18). Calibration may take one or both of
fwo mathematical forms. The first consists of fixing the parameters in the model in order to fit
the data that result from experiments or observations on the system, or to fit the main
characteristics of interest of the phenomenon in question. This is typically just a matter of
specifying the boundary conditions for the equations in the model. and it is relatively straight-
forward. It is arguable that the data can never suffice to fix all parameters, especially so when the
it is statistical, but it nonetheless constrains the values that the parameters can take. So this
type of calibration, let us call it calibration-1, consists of explicitly introducing formal constraints
on the values of the parameters in the model.

I'he second form that calibration may take is the introduction of correction factors in the
model to account for causal variables known to be part of the physical system, or to be
¢ilicacious in the phenomenon. This involves actually tinkering with the equations in the model,
or it least making additional assumptions beyond those strictly speaking contained in the
model about the real system to be modelled. The goal of this process is a refinement ol the model,
in order to bring it closer to the physical situation at hand.

I'his second form of calibration, or calibration-2, is philosophically and methodologically the
most interesting. It involves a process of concretisation: an abstract model 1s made more
conerete by introducing causal factors that permit its application to a particular system or
specific phenomenon. The important fact to note, however, is that for a correct calibration these
correction factors need not be suggested by any well-established theory; they may instead be
suggested by tacit knowledge of past model-building practice, or specific knowledge of the
ciusil properties of the system or phenomenon at hand. (For example, Germann - this volume,
Section 10.3 - in discussing the ‘validation of momentum dissipation approach’ introduces a
number of causal hypothesis, such as ‘recognising that some of the input water may get stuck
between the surface and the depth of observation’),

It 1s important to distinguish here between idealisation and abstraction (see Cartwright 1989,
chapter 5). A model is idealised if it says something literally false about some of the features of the
system that itis intended for, and it is abstract il it remains silent about a number of its features,
and says nothing literally false. Everything turns on the presuppositions: [rom the formal poini
ol view these two models may look identical. Consider some classical mechanical models of a
pendulum. The simple harmonic oscillator, for instance, has no term to represent the slowing
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A uselul way to characterise this difference is due to Ronald Ciere fsee Liere [URK, chapter 3.
and Gicre 1999, chapter 6). We say that an idealised model speaks about the real world, and that
i makes some false claims about it. The classical mechanical model of o simple harmonic
ascillator. the SHO. if an idealisation. makes claims about real-lile pendulums. but not all the
claims it makes are true  for instance it makes the false claim that real-life pendulums arc
subject 1o no air-friction. An abstract model. on the other hand, does not lic. But this is because it
does nor speak about any object in the real world. only aboul an abstract object, the one implicitly
defined by the equations in the model. Considered as an abstraction, thus, the SHO model
would speak truly about an abstract object. namely the simple harmonic oscillator. defined
implicitly by its equation of motion.

We can employ Giere's framework to make further headway on the relation between models
and theories. and to understand the kind of procedure involved in calibration. Idealisation
requires that there be a (true) theory, available to us, describing the corrections needed to apply
the model to every concrete system and specific phenomenon. For only then can we be sure that
the model makes false claims about the system, and can we try to correct these claims. Classical
mechanics. for instance. recommends modelling air-friction as a linear function of velocity. So it
tells us exactly the way in which the SHO idealises. It is because of this that the SHO is, properly
speaking, an idealisation, not an abstraction.

But in most cases of calibration — such as those discussed by Dietrich, Germann and
Refsgaard in this volume - no such theory is available. The corrections come from a varied
mixture of theoretical and non-theoretical modelling techniques. We have no established body
of knowledge to compare the model with, and thus we have no means Lo tell il the model 1s
speaking falsely about the world. It is the availability of such background knowledge that turns
an equation into an idealisation; as we have seen there is nothing in the formal description a
model M that will tell us that M is an idealisation of some phenomenon P. So, properly
speaking. most of the models that require validation in the calibration-2 sense are not idealised.
but ubstract. And calibration-2 is a process that makes an abstract model concrete.

2.2.2 Theory Vindication

A model can also be said to be validated if it can be shown to be a consequence (logical or a
physical consequence) of some established theory. or if it can be shown to be consistent with
some established theory,

Let us carefully define these terms. A logical consequence of a theory is a statement that is
consistent with the theory and whose contrary is inconsistent with the theory. In other words, as
a theory logically dictates all of its logical consequences. a contradiction can only be a logical
consequence of an inconsistent theory. Logical deduction provides the strongest type of theor-
ctical vindication: let us call this vindication-1. But genuine examples of vindication-1 in science
are surprisingly hard to find. Astronomy provides some: Kepler's laws. which describe the ratios
of the planets’ periods and distances from the sun. for instance, follow deductively from
Newlon's theory, and they are thus validated by Newtonian mechanics.

On the other hand, the contrary of a theory’s physical consequence. as we wish to define the
notion here, is not necessarily inconsistent with the theory. The theory cannol logically dictate,
but merely suggest. its physical consequences, and a contradiction may be a “physical conse-
quence’ of u perfectly logically consistent theory.
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assumphion of deternumsm stides that atits most fundamental level nature is always determimes-
heostabisties only enters the picture m order (o account for our lack of knowledge. But consider
penumely irreducible statistical theories. Quantum theory. for instance, even il complete, 1s only
able to el us that the electron just created in i cascade experiment in the laboratory will be
found ot end E of the lab with probability p. or at end E* with probability p*; where, say,
P b p* Then the statements the electron will be at E' and *the electron will be af F* are
both physical consequences of the theory. even if, of course, when the experiment is performed.
the electron appears either at E or at E*, but never simultaneously at E and E*. Thus a model of
the cleetron in E may be vindicated by showing it to be a physical consequence of the
lindamental quantum theory, even if another model of the inconsistent claim that the clectron is
Al B* can similarly be vindicated.

We claim that this type of vindication of a model as ‘physical consequence’ of a theory (let us
cull it vindication-2) is not unigue to statistical theories. It is by now common lore that the
relition of theory and evidence is rather more subtle and complex than simple logical deduction,
even lor deterministic theories. There is a gap between theory and evidence that, we claim, the
notion of physical consequence can fill. This is because the theory does not describe all the facts
that are conditions for the occurrence of its physical consequences. The theory, in other words. is
not complete. As a result of this. the theory cannot logically dictate its physical consequences
but. it most, suggest them. The assumption of completeness would rule out theories that are not
able 1o describe all the relevant facts in their domain. Combined with the assumption of
determimsm this gives us the result that all consequences of a theory must be consistent with
cach other. But the result does not follow if any of these two assumptions is abandoned. And
there are good reasons to think that our best theories reject not just determinism but also
completeness. (For arguments against determinism. see, for instance, Dupre (1993) and Suppes
CLORA) Tor arguments against completeness see Cartwright (1999).)

Why is this relevant? Vindication of a model by a theory of which it is shown to be a logical
vomseguence provides confirmation for the theory. In those instances. the model. if true.
confiemes the theory. and, if false, falsifies it. This is a strong relation, and difficult 1o ever find in
practice When it s found. the model that the theory vindicates provides a resounding verifica-
Lo tor Balstlication, if the model turns out to be incorrect) of the theory, and vice versa. The
vhwervational correctness of Kepler's laws verifies Newtonian mechanics. and Newtonian
mechimes lends confirmation to Kepler's laws. However. very often a theory does not logically
dictite o model of o phenomenon; at most. and with some luck. it suggests it. The model may
then merease the probability of the theory being true. If it does (i.e. if Prob (T/M) = Prob(T/nol
Min we can still say that the model confirms the theory, although only by constituting evidence
lor T Bayesianism explains well how this works. The theory is more likely to be true if the model
i true fand vice versa). But il the model turns out to be false the theory could still be true; the
theory and the contrary of the model are not logically inconsistent. (This is so unless (i) Prob
(Enot M) = 0 and (i) Prob (T) > 0.) The quantum mechanical example of the position of an
clectron s arguably such a case. Both the observation that “the electron is at F and the
vhservation that 5itis at E* can constitute positive evidence for the theory, even if they are
vontrary

Ihe lopical consequences of i theory may increase its confirmation. But so can the physical
vomsequences of a theory, Both can inerease the degree of confirmation of the theory. These
possibilities are well known to philosophers, and they are well understood. Bul sometimes,
pethaps often, the truth of the model does not inerease the probability of the theory being true
even b the theory vindicates, and in this sense validates, the model. Even if it theory can be
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applied to 2 model of a phenomenon, it may not be able to suggest the corrections required for
the application. (See Sudrez (1999), where an example from the physics of superconductivity is
discussed.) If the theory does not even suggest a model, then the success of the model will not
provide any confirmation for the theory.

To many philosophers this is deeply puzzling ~ how is it possible? The contrast that we drew
carlier between idealisation and concretisation may help here. A model M that can only be
applied to a phenomenon P by introducing corrections into M that are not suggested by any
established theory T is not an idealisation of P (or not an idealisation relative to P). M is, at best,
an abstraction relative to P. And the process of correction of the model is therefore not a
de-idealisation, but a concretisation of the model. It follows that the model does not speak about
P, and therefore T cannot be confirmed by M, either by strict verification or by the Bayesian
methods of probabilistic confirmation. What this entails is that, in this case, M is neither a
logical conssquence nor a physical consequence of T. The most we can do is to show that M and
T are consistent. This proof of consistency is, we claim, a legitimate form of theoretical
vindication - and in fact a most interesting and common one. Let us refer to it as vindication-3.
Examples of vindication-3 in the present volume are the non-cobesive sediment transport
models by Garcia (chapter 15), the more general among the snow models described by Davis et
al. (chapter 11), and some of the simulations in Booltink (chapter 9). The conceptual and
physics-based models of Young (chapter 7) may be employing vindication-3 or vindication-2.

This completes our analysis of the notion of model validation. We have seen that validation
may take onc of five forms: (i) calibration by fixing boundary conditions; (ii) calibration by
refinement, (iii) vindication by logical deduction (from a theory), (iv) vindication by physical
detivation (from a theory), and (v) vindication by proof of consistency (with a theory).

223 When Vindication is Calibration

Even if these five forms of validation are clearly distinet, presenting different practical difficulties
and requiring different solutions, they have often been conflated, We think that we can diagnose
why. It turns out that the most common and complex form of calibration, calibration-2, is
methodologically very similar to the most common and complex form of vindication, vindica-
tion-3, Vindication-3 and calibration-2 are alike in that they do not involve idealisation, but
concretisation. Even if there is a body of theoretical knowledge available to us that we can
compare our model to, we are nonctheless unable to use it in order to correct our model to make
it applicable to the phenomenon. The corrections required to apply the model come from other
sources. This is true of calibration-2 by definition. It turns out to be true also of vindication-3,
Remember that in vindicating-3 a model by appeal to a theory, we show the mode! and theory to
be consistent because we cannot show the theory to suggest the model, or the corrections
required to apply the model to & particular physical system. It follows that the corrections
required to apply the model to the physical system are suggested by other sousces.

In both cases the same broad methodology is used: consider the model, consider the object to
be modelled, and with patience and ingenuity bring to bear on the modelling situation whatever
knowledge you may have — knowledge that is typically not already contained in the high-level
theory assumed o be true in the domain. So, even if fluid dynamics is the underlying true theory
of hydrological phenomena, validation in hydrological models must follow a course that
essentially ignores fluid dynamics, and takes it at most as one more tool in model-building. And
what we have been arguing is that this is neither exceptional nor uncommon in the practice of
modcl-building in science at large.
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Il chapter s been an exercise in distinetion-making, There are distinet things one can mean
iy nodel” and distinet enterprises of model validation. Tn fact there are five ol cach. So any
s ticnhar model validation should find a place in one of the cells of a five by five grid. And il
i account of modelling is along the right lines  the characteristic diliculties of modelling
lonld respect the distinetions between the cells. Difficulties characteristic of one calegory
Swenld ol there is anything to what we are saying - be largely absent in another. (Just about any
St can be squeezed and shoved into just about any purely descriplive framework; a stricter lest
o hether the framework captures significant causal generalisations.) Let us consider some dutic
die chapters on hydrological modelling in this book. But before we conlront the data, u
amphification of the account is in order.

[ begin, as remarked in Section 2.1, models in hydrological science are very rarely tamed
Meories where the taming is motivated by the need for understanding or exposition. For
hyvdrology does not aim to challenge Auid dynamics. Tt assumes fuid dynamics is fundamentally
(ieht though not much use in its pure form for predicting and explaining actual lows of water in
sctual geological conditions. Moreover, hydrological scientists rarely worry about models as
istances of thearies. That is not to say that philosophers or psychologists of science may not
iterpret their patterns of thought in terms of them. But the scientists themselves rarely take such
(hings as conscious objects of concern. (Nor should they.) And while models as analogies may
pliay an important role in the exposition and motivation of hydrological theories, hydrological
wientists do not spend a lot of time trying to fix their exact form or decide between rivals. IT
metaphoneal models do their job of suggesting or communicating, they will be used, and
questions of their accuracy or uniqueness will not arouse much concern. And this, too, is as i
Diowld be, as uniqueness can be expected to reside only in what actual water Aows do and in
whit the underlying laws of fluid motion are.

[t lenves us with just two large categories of models: what in Section 2.1 we called
Meaty based models. models as theories tamed for evidence and prediction, and data models. If
wliat we nre saying is right, there should be different kinds of problems which arise in the four
an possibilities: theory-based /calibration, theory-based/vindication, data model/calibration
ol it model vindication. And indeed there do seem to be lwo characteristic methodological
problems, cach of which arises in just one cell of the grid.

[ he tirst problem is that of simulation. As argued in the chapters by Beven and by Young
(Chapters 4 and 7), one frequent hydrological situation is that one has a predictive model that
does not generate good simulations. That is, one has a model in which the values of crucial
parameters have been fixed in such a way that it predicts the output of a particular physical
wstem quite accurately, But when one tries to generale data for different related systems
problems anise. Either the predictions that emerge are clearly wrong, or there is no clear way of
deternining the appropriate values of the parameters. It is as if the predictively adequate model
works beciuse of a specific combination of parameter values, bul once one parameter is vared
antable combinations of the others are not forthcoming.

I'he simulation problem is a crucial hazard of data models, as is clear from Beven and Young,
With theory-based models, though simulation may be problematic, there will not typically be i
predicnion simulation asymmetry. Neither need be easy, but the problems should be the same.
v+ Ciermann's chapter (10) argues, the problem that arises with theory-based models is not
Comprehensive prediction for one system that does not transfer to others, but adequate predic-
Hon and simulation for one kind of data that does not transfer to other kinds of data.

I'he simulation problem is moreover a problem primarily of vindication rather than of
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cobibabienn N vo o prvenr phiysical system the given praramete s sadues e b, bkl they
o ot generate teasonable comterfactual conseguences speacthcations ol what the system
worklld have done under other cocumstances  then they cannot be taken as o way of deseribing
the real conses of the phenomena, (Lo this connection see Seetion 11 ol Dietrich’s chapter (6),)
Without some stmulatory power a power is “only o desenption of the date The other character-
istie problem s best illustrated by Garena's chapter (15), on sediment transport (though particu-
lar models desceribed in several other chapters would also have made the point). Here the model
consists of a highly theoretical treatment of a widespread phenomenon and the problem is to
muke a connection between the some undetermined theoretical quantity and some guantity
whose value can be estimated [rom the behaviour ol a particular system, using either raw data or
a suitable data model. The problem is essentially a statistical one, of inferring the true value ol
some quantity which. if the theoretical assumptions are right. will correspond to an unknown in
anequation derived by artful simplification from the underlying physics. Call this the problem of
truthlul estimation.

Truthful estimation problems will occur primarily in connection with theory-based models.
For given that the underlying theory characterises correctly the underlying reality, the value of
the unknowns to be filled in is what they actually are (or what an infinite set of them are, as when
one is specifying a boundary condition). And such problems will occur primarily when the aim s
calibration rather than vindication. For vindication is conceptually simple with theory-based
models: it consists of showing that the model is deducible [rom, physically derivable [rom, or
consistent with the underlying physics. These may not be simple tasks. but their nature is clear,
and they do not involve any pure estimation.

The lour cells are thus characterised as follows:

* theory-based/calibration = (+ truthful estimation, — simulation)
* theory-based/vindication = (— truthful estimation, — simulation)
* data model/calibration = (= truthful estimation. — simulation)
* data model/vindication = ( — truthful estimation, 4 simulation)

Of the four combinations of kinds of model and kinds of validation, two receive unique
characterisations in this way, and two are not distinguished. Appeal to these two kinds of
problem does not distinguish ‘theory-based/vindication” from ‘data model/calibration’. But
those two are distinguished in other ways. For, as remarked above. the characteristic problems
ol ‘theory-based /vindication” are those of theoretical ingenuity and mathematical sophistica-
tion, while those of ‘data model/calibration” are those of physical intuition, and experimental
skill and ingenuity. In other words. in the first case one is looking for assurance that a model is
an accurate portrayal of reality as characterised by a background theory. so the basic question is
just “does it follow? (or, since these are models *how closely does it follow?). and in the second
one the basic question is just *how can we find out”. (Note that the situation described is one
where one already has a data model and is trying to calibrate its parameters. In the construction
of data models, on the other hand. no end of theoretical ingenuity and mathematical sophistica-
tion can enter.) So. representing this dimension, admittedly rather crudely, as the relevance or
not of empirical data, we can complete the grid as follows.

* theory-based /calibration = (+ truthful estimation, — simulation, + empincal)
* theory-based/vindication = ( — truthful estimation, — simulation, — empirical)
* data model/calibration = ( — truthful estimation, — simulation, + empirical)
* data model/vindication = ( — truthful estimation, + simulation, + empirical)

As model of modelhing, this can only be a fiest attempt. The most general conclusion to draw s
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et eode Mg oy screntihie domanm s aovery vied as wellas aovery chiallengmg activity The
cattabaliey s as important as the challenge, sinee the kinds of dithenlnes thar modellers e are
aot tandomly distributed. DifTerent kinds of models lead to different kinds of challenge.
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