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Abstract. The aim of this paper is to provide a formal elucidation of structural mereology and 
to show that it has a bearing on a variety of metaphysical problems, among them the struc-
ture of complex states of affairs and the appropriate definitions of wholes. The account of 
structural mereology presented in this paper takes its inspiration from the concept of struc-
ture as it has been developed in modern mathematics. The point of departure is David Lewis’s 
account of the mereology of sets. It is shown that the mereology of sets naturally generalizes 
to a more general structural mereology of structured sets which takes into account the 
structure of mereological wholes for structure-specific concepts of parthood and composition. 
Usually, the resulting systems of structural parts are not Boolean. This enables us to shed new 
light on a variety of metaphysical concepts such as the structure of complex states of affairs, 
structural universals, wholes, and quantities.    
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1. Introduction. The basic idea of structural mereology is that mereological concepts such as  

parthood and composition should be conceived as structure-related concepts that take into 

account the structure of the objects that mereologists are studying in their investigations. 

This vague description may be interpreted in many different ways. Conceived in this broad 

sense, one may assert that structural mereology may be even traced back to the mereological 

considerations of Plato and Aristotle who attempted to take into account the concepts of 

structure or form in their mereological considerations in one way or other. The pertinent texts 

of this classical dispute on matters of structural mereology are Socrates’ Dream in the 

Theaetetus and Aristotle’s Metaphysics Z 17, respectively (cf. Scaltsas 1994, chapter 4, 

60ff). Plato held that the whole is identical with its parts. Accordingly, he claimed that the 

syllable “BA” is identical to the letters “B” and “A”.   

In contrast to Plato, Aristotle maintained that the whole and its parts are different.1 The 

syllable “BA”, said Aristotle, is not just the letters “B” and “A” but something else, too, since 

when the syllable is “dissolved, the whole, i.e. the syllable, no longer exists, but the elements 
                                                
1 Perhaps the positions of Plato and Aristotle may not be separated in such a neat and clear-cut 
manner, see Harte (2002). But this is of no concern for the present paper. 



 2 

of the syllable exist.” Hence, he concluded, the syllable consists of the elements plus a further 

item, which is of a completely different type than the elements, namely, its substance.  

The dispute between Plato and Aristotle on structural mereology has found a certain rehearsal 

in the dispute between Armstrong, Lewis and other contemporary philosophers on the 

possibility of non-mereological composition of structural universals (cf. Armstrong 1980, 

Lewis 1984). Moreover, this contemporary discussion enables us to tap another source of ins-

piration for the elaboration of a modern account of structural mereology, namely, the theory 

of structures in the sense of modern mathematics.  

In this paper, we only need some rudiments of the elementary theory of structures, for a more 

sophisticated account the reader may consult Awodey (1996). According to this theory, a 

structured set is a system (X, R), X being a set and R a set of relations defined on some sets 

derived from X by some familiar operations such as taking subsets, constructing Cartesian 

products or power sets. Structured sets abound in mathematics: order structures, topological 

spaces, differentiable manifolds, groups, vectorspaces, and virtually all objects studied in 

modern mathematics may be conceived as structured sets in this sense. By conceiving mathe-

matical entities as structured sets the theory of sets obtains a prominent role in mathematics 

as a foundational theory of all of mathematics.  

As David Lewis pointed out that sets provide natural examples for Boolean mereological 

systems in that the (non-empty) subsets of a set X may be considered as the parts of X in the 

sense of mereology. In this way, every set X defines in a canonical way a classical Boolean 

mereological system PX – {Ø}, PX the powerset of X, and Ø the empty set. Having at our 

disposal a mereological system for every set X, one may expect that also structured sets (X, 

R) may possess a reasonable theory of parthood and composition, i.e. a mereology. More 

precisely, if the parts of a set X are its subsets, one may expect that the parts of a structured 

set (X, R) be its structured subsets – the latter concept to be defined in an appropriate way. 

As will be shown, this is indeed the case. Thereby structural mereology may be described as 

the study of mereological concepts such as parthood and composition for structured sets (X, 

R).  

For the moment it may not be clear how this structural mereology, based on the concept of 

structure in the sense of modern mathematics, is related to the structural mereology favored 

by Plato, Aristotle, or Husserl, to mention the classical protagonists of this approach. Although 

the main aim of this paper is not to make a direct contribution to the “metaphysics of struc-

ture” (cf. Harte 2002) in the following I hope to show that the modern mathematical concept 
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of structure helps elucidate the classical approach by bringing to the fore hitherto unnoticed 

conceptual possibilities and variations. 

The outline of this paper is as follows. As a first step toward a general structural mereology in 

the next section we consider the mereology of inhomogeneous sets. Inhomogeneous sets have 

appeared in the literature under many names, tolerance spaces, similarity structures, or simple 

undirected graphs, to name just three. The term „inhomogeneous sets“ was coined by Carnap 

in an unpublished manuscript of the 1920s that may be considered as the origin of his famous 

method of „quasianalysis“. Informally speaking, an inhomogeneous set is a set endowed with a 

reflexive and symmetric relation to be interpreted as a binary similarity relation. Ordinary 

„homogeneous“ sets may be conceived as special inhomogeneous sets whose similarity is 

trivial, i.e. the identity. 

Following David Lewis, the mereological systems of ordinary („homogeneous“) sets are 

Boolean algebras. More precisely, the parts of a set are its subsets. Generalizing Lewis’s recipe 

in a natural way, it turns out that the mereological systems of inhomogeneous sets are non-

Boolean Heyting algebras. As an application of the mereology of inhomogeneous sets it is 

shown that the mereological structure of many complex states of affairs in the sense of 

Armstrong’s factual ontology (cf. Armstrong 1986, 1992, Mormann 2010) can be described 

in terms Heyting algebras. Thereby the usage of the problematic notion of structured unive-

rsals can be avoided.  

Structurally the relation between the mereologies of homogeneous and inhomogeneous sets is 

analogous to that between classical (Boolean) and intuitive (Heyting) propositional logic. Thus 

one may be inclined to assess their differences as not too impressive.2 In order to show that 

mereological systems of structured sets may indeed considerably differ from classical systems 

in the next section we deal with some mereological systems that naturally arise from Euclidean 

geometry. It is shown that the mereology of  Cartesian rectangles  of the Euclidean plane 

defines a complete non-distributive and non-orthocomplemented lattice. Mereological systems 

of this kind exhibit metaphysically interesting phenomena of „creative fusion“ according to 

which the mereological fusion of two (or more) objects may be considerably larger than the 

collection of the fused objects taken separately. Turning upside down the traditional 

classification mereological systems with „creative fusions“ become the generic case, while 

those with non-creative Boolean fusions are an exception. In the final section it is shown that 

the approach of generalized mereology developed so far does not depend on the theory of 

                                                
2 A second look reveals that the mereological systems of inhomogeneous sets differ from that of ordi-
nary sets in that they do not satisfy the so-called supplementation principles that some authors con-
sider as essential for „real“ mereological systems. 
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structured sets or relational systems but can be set up in a more general setting that does not 

depend on set theory at all. Rather, the appropriate framework for mereology as a general 

theory of the parthood relation is category theory in the sense of Mac Lane and Eilenberg (cf. 

Lawvere and Rosebrugh 2001).  

My point is not so much to argue for or against Aristotelian metaphysics, or to put forward a 

more or less novel interpretation of Aristotle’s doctrines of substance and form etc.3 Rather, 

I’d like to offer some formal elucidations, i.e., the task of this paper is not to give a formal 

reconstruction of Aristotelian mereology as such. Rather, I’d like to pursue some motifs of 

Aristotelian mereology in the framework of a structural mereology inspired by the concept of 

structure as used in modern mathematics. It may be that this kind of structural mereology 

may help elucidate some issues of Aristotelian mereology proper. But the interpretation of 

classical metaphysical concepts such as „form“ and „substance“ is not the task of this paper. 

  

 

2. Homogeneous and Inhomogeneous Sets. From a set-theoretical point of view sets exhibit a 

totally homogeneous structure in that all elements of a set are on an equal footing; for any 

two elements x and y of a set S, there is nothing to say about them than that either they are 

equal or that they are different. Tertium non datur. In contrast, an inhomogeneous set S may 

be thought as a set whose elements are not all on an equal footing in that they may be 

compared with each other in a way that goes beyond the binary distinction that they differ or 

do not differ, namely that they are, or they are not, neighbors of each other in some sense. 

The idea of inhomogenity may be rendered precise in various ways. Perhaps the simplest and 

most natural way is via similarity structures.  

A similarity structure (S, ~) is defined as a set S endowed with a reflexive and symmetric 

binary relation ~ ⊆ S × S. Two elements are said to be similar iff (a, b) ∈ ~. As usual this is 

denoted by a ~ b. Similarity structures may be conceived as undirected simple graphs: the 

vertices of the graph are the elements of S and two different vertices are similar iff they are 

the vertices of the same edge. For instance, for S = {1, 2, 3, 4, 5} the graph  

                                                            3     
                                                              
(2.1)                                            125  
                                                              
                                                            4     
  

                                                
3 For a detailed discussion of the more subtle features of a(n) (Neo)Aristotelian mereology see Koslicki 
(2006, 2008) and and the many contributions of Kit Fine to this field, for instance Fine (1999). 
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represents the similarity structure (S, ~) according to which each of the elements 1, 2, 3, 4, 5 

is similar to itself, 1 and 2 are similar, 2 and 3 are similar, 2 and 5 are similar, 2 and 4 are 

similar, and no other similarities between the elements of S occur. For instance, 1 and 4 are 

not similar. In other words, the graph structure is to be interpreted in such a way that it gives 

complete information concerning the similarity and dissimilarity of its elements. If we deal with 

several similarity structures and have to distinguish their similarity relations, they are denoted 

by (S, ~S) and (T, ~T). More formally, a similarity structure (S, ~S) may be characterized as a 

structured set or a relational systems. Then structural parts of inhomogeneous sets alias 

similarity structures can be defined as follows:   

  
(2.2) Definition. A structural part of a similarity structure (S, ~S) is a similarity structure (T, 

~T) such that T ⊆ S and ~T ⊆ ~S. The set of structural parts of (S, ~S) is denoted by PART(S, 

~). A partial order ≤ on PART(S, ~) is defined by  

 
                          (U, ~U) ≤ (V, ~V) := U ⊆ V and ~U ⊆ ~V             (U, V ⊆ S)  
 
(U, ~U) is a part of (V, ~V) iff (U, ~U) ≤ (V, ~V). The top element of the partial order PART(S, 

~), ≤) is (S, ~S) and the bottom element is the empty similarity structure (Ø, ~Ø).♦   

  

Definition (2.2) is a natural generalization of Lewis’s definition of parts of sets (cf. Lewis 

1991, 3ff). It may look innocent enough, nevertheless, it ushers us outside the realm of 

classical Boolean mereology, since the mereological systems PART(S, ~) are non-Boolean 

Heyting algebras (cf. Mormann (2010)). In other words, Boolean mereology is too narrow a 

framework to capture all kinds of reasonable mereological systems, in particular, the Boolean 

frame does not include the mereological systems arising from similarity structures, i.e., inho-

mogeneous sets.  

Moving from Boolean to Heyting algebras should not be considered, however, simply as a 

weakening of the formal requirements imposed on mereological systems. In the following 

section it will be shown that the Heyting framework enables us to make metaphysically 

important distinctions that disappear for Boolean systems. For instance, for Heyting algebras 

there is natural distinction between connected and non-connected objects that vanishes for 

Boolean algebras. In other words, Boolean algebras turn out not to be the most appropriate 

framework for certain metaphysical applications.  

 

3. Complex States of Affairs and Structural Wholes. Now let us apply the apparatus of the 

mereology of similarity structure for the elucidation of the structure of complex states of 
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affairs (cf. Armstrong 1997, Mormann 2010). Looking at structural formulas of elementary 

chemistry such as HOH, HCH, OO, NaOH and at graphs of similarity structures 

such as (2.1) it is more or less obvious that similarity structures and structural formulas of 

chemistry are closely related to each other. One further definition is necessary to make this 

relation explicit:     

  
(3.1) Definition. Let S1, S2, …, Sn  be non-empty, mutually disjoint sets and S := S1 ∪ S2 ∪ … ∪ 

Sn, n = 1, 2, 3, …. Then a similarity structure (S, ~) is called an n-sorted similarity structure. 

The Si are called the sorts of (S, ~). ♦  

  
A similarity structure as defined in section 2 is just a 1-sorted similarity structure. In the 

following we will only deal with 2-sorted similarity structures but all arguments go through for 

n-sorted structures with n ≥ 3.   

A 2-sorted similarity structure (S1 ∪ S2, ~) may be graphically represented as a “labeled” graph 

in such a way that the vertices of S1 are labeled, say, by the letter H, and the vertices of S2 

are labeled by the letter C, respectively:  

  
                                   H                                          H      H      H       H  
                                                                                                     
(3.2)         (i)     H  CH           (ii)         H  CCC  C H       
                                                                                                                                                      
                                   H                                          H     H      H        H  
  
Obviously, the 2-sorted graphs of (3.2)(i) and (3.2)(ii) correspond to the structure formulas 

of methane and butane, respectively. More complex molecules involving more than two sorts 

of atoms may be described analogously with the help of n-sorted graphs, n ≥ 3.   

What has been said about the mereological structure of 1-sorted similarity structures (S, ~) in 

section 2 directly applies to n-sorted similarity structures since the labeling does not affect 

the mereological structure of a graph. In particular, n-sorted similarity structures S give rise to 

mereological systems PART(S, ~) of structural parts in the same way as 1-sorted structures 

do. In particular, the mereological systems PARTS(S, ~) in general are non-Boolean Heyting 

systems (cf. Mormann (2010), Theorem (2.10)). 

As an example of how the formal apparatus of non-classical mereology developed so far may 

be put to work we offer the following elucidation of the structure of complex states of affairs 

such as “being a methane molecule” and similar ones. For extensive discussion of these and 

similar issues see (Armstrong 1997, Lewis 1986, Mormann). For the following we only need 

some rudiments of Armstrong’s factual ontology. According to this approach, the world is a 
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world of states of affairs. States of affairs are constituted by (thin) particulars a, b, …, and 

(relational) universals H, C, N, etc. Then the states of affairs that the particulars a, and b, are 

hydrogen atoms, and c and d are oxygene atoms that form an oxygene molecule are denoted 

by Ha, Hb, and cOd, respectively. The more complex state of affairs of being a methane 

molecule can be analyzed as follows: 

 

(3.3) Mereological Analysis of Methane. Assume a, b, c, d, e to be particulars, H the universal 

hydrogen and C the universal carbon. Define S1 = {Ha, Hb, Hc, Hd}, S2 = {Ce} and S := S1 ∪ S2. 

Denote by  the binary bonding universal, and define a similarity relation ~ on S by   

 
               ~ := {HaCe, CeHa, HbCe, CeHb, HcCe, CeHe, HdCe, CeHd} 
 
Then the similarity structure (S, ~) is the state of affairs that the particulars a, b, c, d, e 

instantiate a methane molecule such that a, b, c, and d instantiate the universal H, e 

instantiates the universal C, and the binary bonding universal  is instantiated by the set 

{HaCe, CeHa, HbCe, CeHb, HcCe, CeHe, HdCe, CeHd}.♦ 

 
Since bonding is symmetric the complex state of affairs of being methane may be displayed in 

the apparently familiar way as    

 

                                                          Hb  
                                                            |  
(3.4)                                            HaCeHc                       
                                                            |  
                                                          Hd  
  
Denoting the similarity structure (3.4) by (M, ~) the lattice PART(M, ~) of its structural parts 

can be calculated by (2.2). Before we give an explicit calculation one should note that the 

graphs (3.2) and (3.4) are conceptually quite different. Actually, according to Armstrong’s 

factual ontology graphs like (3.2) are not ontologically well-defined. According to the very 

definition of universals it does not make sense to assume that a universal such as H appears 

twice or more times in any context. Thus, even if one assumes that there is a kind of second-

order relational bonding universal  that bonds universals such as H and C, symbols such as 

HCH in which the universal H appears twice do not make sense – if we want to keep the 

original sense of what universals are. On the other hand, symbols like (3.4) are not plagued by 

such difficulties. States of affairs such as Ha, …, Hd, and Ce are particulars, more precisely, 

they are thick particulars (cf. Armstrong 1997). The only thing to note is that the relational 

universal  is to be conceived as defined for thick particulars such as Ha and Ce. But there is 
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no particular conceptual difficulty to make such an assumption, at least not for Armstrong’s 

factual ontology. In sum, while similarity structures such as (3.4) are meaningful in the 

framework of an Armstrongian factual ontology, symbols such as (3.2) strictly are not.  

After these general remarks let us engage in the task of calculating the mereological structure 

of “being methane” explicitly. First, one observes that PART(M, ~) has five atoms, to wit, Ha, 

Hb, Hc, Hd, Ce. It should be noted that the states of affairs HaCe, …, HdCe are neither 

atoms nor are generated by atoms in that they are suprema of atoms. Nevertheless they are 

mereologically not trivial in that they have non-trivial parts. Using (2.2) one calculates  

 
(3.5)     Hj, Ce < Hj & Ce < HjCe < (HjCe) & Hk < HjCeHk       (j, k ∈ {a, b, c, d}, j ≠ k) 

 
The important point of (3.5) is that parts such as Hj & Ce and HjCe are different, but there 

are no atoms that make a difference between these parts.4 More precisely, HjCe is neither an 

atom nor is generated by atoms. Analogously one shows that other parts of M such as 

HjCeHk (j ≠ k) are neither atoms nor are generated by atoms in the sense that they are 

fusions of atoms. This evidences that PART(M, ~) is not a Boolean lattice. As has been shown 

in Mormann (2010) this fact can be used to yield the “correct” mereological analyses of 

methane, butane and iso-butane without using the problematic notion of structural universals. 

Rather, structural universals turn out as a convenient façon de parler but they lack any 

ontological weight. The state of affairs “x is a methane molecule” is analysed as a complex 

state of affairs whose parts are other states of affairs whose ultimate parts are atomic states 

of affairs that are constituted by (thin) particulars and simple universals. Through this 

reductive analysis alleged structural universals such as H2O or CH4 that in an ontologically 

superficial analysis of water or methane seem to play an analogous role to that of basic 

universals such as H or C play in the analysis of hydrogen atoms or carbon atoms Ha or Ce, are 

to be considered as a convenient shorthand of the non-Boolean mereological structures that 

actually do the real work.   

The structural mereology of inhomogeneous sets is not only useful for elucidating the 

structure of complex states of affairs. It may be used also to shed some new light on a 

fundamental, albeit neglected notion of mereology, to wit, the notion of whole. According to 

the standard lexicographic definition, mereology is the theory of parts and wholes. Never-

theless, although much has been written about parts, parthood relations and its relatives, 

                                                
4 Evidently, the difference between HdCe and Hd & Ce is analogous to the difference between the 
syllable „BA“ and the separated letters „B“ and „A“. Hence, in the debate between Plato and Aristotle 
on the relation between parts and wholes we side with the latter. 
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much less can be found on the notion of wholes. Standard mereology has not much to say 

about the fundamental question of how to distinguish a scattered object from a whole, or so it 

seems. For similarity structures (S, ~) the following definition singles out in a naturally way 

those parts (T, ~) of (S, ~) that may be conceived as (relative) wholes (with respect to the 

universal whole (S, ~)):  

 

(3.6) Definition. A part (T, ~T) of a similarity structure (S, ~S) is a whole part of (S, ~S) iff for 

a, b ∈ T a ~T b iff a ~S b.♦   

  

Obviously, (S, ~S) is a whole part of itself. Moreover, the the singleton subgraphfs {a} defined 

by elements a ∈ S are whole parts of (S, ~S). For the similarity structure of methane (3.4) the 

subgraphs HjCe are whole parts, j = a, b, c, or d, while the subgraphs Hj & Ce are not whole 

parts. For reason of vividness, they may be called scattered parts. Generally, arbitrary 

intersections of whole parts are again whole parts. Hence, since (S, ~) is a whole part for every 

part (T, ~T) there is a smallest whole part (WH(T), ~W(T)) that contains (T, ~T) defined by 

 
(3.7)          (WH(T), ~) := ∩{(K, ~); (T, ~) ≤ (K, ~) and (K, ~) is a whole part of (S, ~)} 
 
(WH(T), ~) may be called the whole hull of (T, ~). It is the smallest whole that contains (T, ~).  

For instance, one easily calculated WH(Hj & Ce) = HjCe and WH(Hj & Ce & Hk) = HjCeHk 

etc. With the help of the operator WH one may single out among the parts of (S, ~) a special 

class of parts WH(T) that may be characterized as wholes in so far as they exhibit maximal 

coherence in that two elements a, b ∈WH(T) are similar relative WH(T) iff they are similar 

relative to the similarity relation valid in S: a ~W(T) b ⇔ a ~S b. 

For T ∈ PART(S, ~) the part WH(T) may be conceived as sort of completion of T that exhibit 

the highest possible degree of coherence or cohesiveness that the elements of T can possess 

in the context of (S, ~). This completion may be conceived of in a natural way as an operator 

PART(S, ~)WH>PART(S, ~) that maps a part (T, ~) to its completion (WH(T), ~WH(T)):    

 

(3.8) Lemma. The operator PART(S, ~)WH>PART(S, ~) has the following properties: 

 
(WH1)   T ≤ WH(T). 

(WH2)  T≤ T’ ⇒ WH(T) ≤ WH(T’). 

(WH3)  WH(T) = WH(WH(T)). 

(WH4)  WH(T ∩ T’) = WH(T) ∩ WH(T’). 
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An operator satisfying (WH1) – (WH3) is called a closure operator. A closure operator that 

also satisfies (WH4) is called a nucleus (cf. Johnstone 1982, Borceux 1994).♦ 

 

For our purposes it is not necessary to delve into the details of the theory of nuclei. Let us be 

content to state the following easily proved proposition: 

 

(3.9) Proposition. Let (S, ~) be a similarity structure. Then the set WHPART(S, ~)) of whole 

parts of (S, ~) is a (complete) Boolean algebra. The whole parts are exactly those parts that 

are invariant under the closure operator WH: 

 
    T ∈ WHPART(S, ~)) ⇔ T = WH(T) 
 
For a trivial similarity structure (S, ~), i.e. a set S, one has PS = PART(S, ~) = WHPART(S, ~).♦ 

 
Proof. Use the properties (WH1) - (WH4) of the completion operator WH and the definitions 

(2.2) and (2.7) to show that the natural order relation ≤ defined on WHPART(S, ~)) defines a 

Boolean structure (cf. Davey and Priestley 1990).♦ 

  

The distinction between whole parts and scattered parts is possible not only for parts of simi-

larity structures (S, ~). Rather, for many a structure one may define an approporiate closure 

operator W that can be used to single out a class of whole parts from the larger class of parts 

of that structure. Moreover, if (S, ~S) is a trivial similarity structure (~S = idS), then any subset 

T ⊆ S turns out to be a whole part, i.e. T = WH(T), and the distinction between whole parts 

and non-whole parts breaks down and we obtain PART(S, ~) = WH(PARTS(S, ~)) = PS. In other 

words, exactly the non-Booleaness of the mereological systems of most similarity structures 

enables us to define the distinction between scattered and non-scattered parts. 

Definition (3.6) is not the only option to distinguish scattered parts from non-scattered ones. 

Another plausible option is based on the intuition that wholes should be connected in some 

sense. Since PART(S, ~) uses to be a non-Boolean Heyting algebra the following definition – 

mimicking the standard definition of connectedness in topology - offers a reasonable characte-

rization of connectedness: 

 

(3.10) Definition . Let (S, ~) be a similarity structure. A structural part (T, ~T) of (S, ~) is 

connected if and only if it is not the union of two (non-trivial) disjoint structural parts.♦ 
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(3.11) Example. Consider the similarity structure (M, ~) of (3.4) characterizing a methane 

molecule. Then the parts Hb and HaCeHc of M are connected, while Ha & Hd is not con-

nected, since it is the union of the non-trivial disjoint parts Ha and Hb.♦   

 
It seems plausible then to assume that “real wholes” should be connected wholes in the sense 

of (3.2) and (3.10). One should note, however, that the intersection of “real wholes” in this 

sense need be no longer a “real whole”, i.e. the algebraic structure of “real wholes” is less 

comfortable than that of not necessarily connected wholes. Moreover, the ring-shaped 

molecule of benzene (C6H6) shows that there is no logical relation between wholeness and 

connectedness: 

 

 

                           whole and non-connected                                  non-whole and connected 

 
 
In sum, moving from homogeneous to inhomogeneous sets enables us to distinguish between 

whole parts and scattered parts, and between connected and non-connected parts in a natural 

way. The basic ingredient for this distinction is provided by the structural component of a 

similarity relation. Traditional mereology of (homogeneous) sets turns out to be a very special 

case of the mereology of inhomogeneous sets, namely, in which these structural distinctions 

become trivial. Or, to put it differently, Aristotelian Non-Boolean structural mereology turns 

out to be a refinement of the non-structural traditional Boolean mereology. In the next section 

we will discuss two further examples of structural mereologies. The first arises from the 

geometrical structure of Euclidean space, the second may be considered as a prototypical 

algebraic structure. For both structures the resulting mereological systems are highly non-

Boolean (not even Heyting), both support interesting non-trivial notions of connectedness and 

wholeness analogous to the case of similarity structures.  

4. The Mereologies of Rectangles. Already the mereological systems of inhomogeneous sets 

indicate that the framework of Boolean mereology is too narrow to describe all kinds of 

mereological phenomena. Nevertheless, it may be expedient to explore in detail the mereo-

(3.12)  
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logical systems of some other kinds of structured sets in order to strengthen evidence that 

their mereologies may wildly differ from the familiar Boolean mereological systems of sets. For 

this purpose in this section the mereological system Cartesian rectangles of the Euclidean 

plane are studied in some detail.  

Let E(x, y) be the Euclidean plane E endowed with a distinguished (orthogonal) Cartesian 

coordinate system (x, y), i.e. x and y are two orthogonal lines of E. Let A, B, ... be rectangles 

of E whose sides are parallel to x and y, respectively. These rectangles, together with the sets 

E and Ø, are called Cartesian rectangles. I propose to take Cartesian rectangles as the 

structural parts of the structured set E(x, y). This class of structural parts of E(x, y) is 

denoted by PART(E(x, y)).5 Evidently, there is a well-defined and natural notion of parthood 

between Cartesian rectangles. If the the Cartesian rectangle A is a part of the Cartesian 

rectangle B this is denoted by A ≤ B. The plane E itself may be considered as an „infinite“ 

Cartesian rectangle that comprises all other Cartesian rectangles as its parts. For technical 

reasons we also consider the empty set Ø as an element of CART. Ø is called the trivial 

rectangle and is contained in all elements of PART(E(x, y)). Clearly, the relation ≤ thereby 

defined on PART(E(x, y)) is a partial order relation, i.e. ≤ is reflexive, antisymmetric, and 

transitive. Moreover, the bottom element of PART(E(x, y)) is Ø and its top element 1 is the 

whole Euclidean plane E. Hence PART(E(x, y)) is a plausible candidate for a structural 

mereological system. It not only depends on the set-theoretical structure of the Euclidean 

plane E but takes into account also some aspects of its rich geometrical structure, to wit, the 

Cartesian coordinates x and y. 

 

 

As can be seen immediately from this diagram, for any two Cartesian rectangles A and B, there 

exist a unique smallest Cartesian rectangle A ∨ B that contains them both. As is easily seen, A 

∨ B is just the intersection of all Cartesian rectangles C that contain A and B, i.e. A ∨ B is the 
                                                
5 In the following it is assumed throughout that all Cartesian rectangles are non-degenerate in that their 
sides both have positive lengths. No other subsets of E are considered as structural parts of E(x, y). In 
particular, points or line segments are not considered as structural parts of E. 

(4.1)  
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supremum of A and B. The same is true for infinitely many Cartesian rectangles Ai, i ∈ I. Hence 

for any set of Cartesian rectangles Ai there is a well-defined supremum VAi. In other words, 

(PART(E(x, y)), ≤) is complete sup-semilattice.  

It should be noted that in (PART(E(x, y)), ≤) the supremum A ∨ B of A and B behaves 

differently than the set-theoretical union X ∪ Y of subsets X and Y. The supremum A ∨ B may 

contain parts C ≤ A ∨ B that do not overlap neither with A or B. In contrast, every non-empty 

subset W of X ∪ Y either overlaps non-trivially with X or Y (or with both). The following 

diagram gives an example: 

 

 

This fact distinguishes systems like (PART(E(x, y)), ≤) from Boolean mereological systems 

such as (PX, ⊆). A subtler difference between the two kinds of mereological systems comes to 

the fore when we consider the relation of overlapping in PART(E(x, y)). Given two Cartesian 

rectangles A and B clearly there is either a uniquely determined largest Cartesian rectangle C 

that is part of both A and B, or there is no proper Cartesian rectangle contained in A and B. 

Hence any pair of Cartesian rectangles A and B has an infimum (A, B), denoted, as usual, by A 

∧ B. Note, that the Cartesian rectangle A ∧ B need not always be the set-theoretical 

intersection of the point sets that represent A and B.6   

Summing up these pedestrian and informal considerations one concludes that (PART(E(x, y)), 

≤) is a lattice (cf. Davey and Priestley 1990). Characterizing (PART(E(x, y)), ≤) as a lattice is 

not the whole story to be told about this structure. It is natural to ask what type of lattice 

(PART(E(x, y)), ≤) is. Perhaps the most important general question concerning a given lattice 

is whether it is distributive or not. Recall that a lattice L is distributive if for all A, B, C ∈ L 

 
 

                                                
6 Rather, not only set-theoretical operations but also the topological structure of gets involved in the 
calculation of the infimum A ∧ B in PART(E(x, y)). Indeed, A ∧ B = cl(int(A ∩ B)), cl and int being the 
closure operator and the interior kernel operator of the topological structure. 

(4.2)  
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(4.3)        A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C). 
 
 
As (4.1) shows, PART(E(x, y)) is not distributive. Moreover, all proper Cartesian rectangles A 

lack complements, i.e. there is no Cartesian rectangle A* such that A ∧ A* = Ø, A ∨ A* = E, 

and A** = A. This shows that in a certain sense mereological systems like PART(E(x, y)) are 

less similar to classical Boolean systems than Heyting systems PART(S, ~). On the other hand, 

PART(E(x, y)) satisfies some requirements that locate it closer to traditional mereological 

systems than Heyting algebras:  

 

(4.4) Definition. (Axiom of Strong Supplementation (SSP), (Simons 1987, 29). A mereological 

system (M, ≤) satisfies (SSP) if for all x, y ∈ M one has: If x is not a part of y, then there is a 

part z of x such that z and y are disjoint: 

                                         (x)(y)(NOT(x ≤ y) ⇒∃z(z ≤ x and z ∧ y = Ø).♦ 
 
(4.5) Theorem.   

(1)  The mereological system (PART(E(x, y), ≤) satisfies (SSP).  

(2)  Mereological systems (PART(S, ~), ≤) in general do not satisfy (SSP). 

 

Proof. (1) Direct inspection of the Euclidean plane, (2) already the similarity structure xy 

shows that PART(S, ~) need not satisfy (SSP).♦  

 

Structural mereologies like PART(S, ~) satisfy only the weaker so called proper part axiom that 

may be conceived as a sort of extensionality principle. It asserts that if the proper parts of an 

object are all proper parts of a second object then it is a part of the second object: 

 

(4.6) Definition (Proper Part Principle (PPP), (Simons 1987, 28). A mereological system (M, ≤) 

satisfies the proper part principle (PPP) if for all x, y ∈ M one has: 

 
                                      IF (∃z(z < x AND (u)(u < x ⇒ u < y)) THEN x ≤ y.♦ 

 
By definition Heyting systems satisfy (PPP). Moreover, according to (Simons 1987, 29) the 

axiom (SSP) entails (PPP), but, of course, the reverse implication does not hold.  

In order to structurally distinguish lattices such as (PART(E(x, y)), ≤) from other types of 

structural mereological systems the following definition will be useful: 

 



 15 

(4.7) Definition.  A lattice (L, ≤) is modular iff for all A, B, C ∈ L with C ≤ B entails that (C ∨ A) 

∧ B)  = C ∨ (A ∧ B).♦ 

 
The smallest non-modular lattice is the so-called pentagon: 

 

                                                           1 
                                                     b          a 
                                                     c 
                                                           0 
 
One can show that the pentagon is typical for non-modular lattices since a lattice L is modular 

if and only if it does not contain a pentagon as a sublattice. For our purposes the important 

thing to note is that distributivity entails modularity. This is seen as follows: Assuming C ≤ B 

the application of the distributive law yields (C ∨ A) ∧ B)  = (C ∧ B) ∨ (A ∧ B)  = C ∨ (A ∧ B). 

Hence every distributive lattice is modular. The opposite implication does not hold as the 

classical counter-example of the „diamond“ shows: 

As is easily calculated, the diamond is modular, but not distributive. Now let us show that the 

Cartesian rectangles also usher us in the realm of non-modular systems. For this purpose 

consider the following constellation of elements of PART(E(x, y)) characterized by the 

relations C ≤ B, and A and B disjoint: 

 

 

(4.8) Theorem. The lattice (PART(E(x, y)), ≤) is NOT modular.  

 

Proof. Direct inspection yields that the triple A, B, and C violate the law of modularity.♦   
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To round up our presentation of structural mereological systems such as PART(E(x, y) let us 

observe that PART(E(x, y) is only one of a family of more or less similar systems. Evidently 

PART(E(x, y)) has n-dimensional analogues PART(En(x1, ..., xn)) for n-dimensional Euclidean 

spaces En for all natural numbers n ≥ 1. Particularly simple is the 1-dimensional analogue 

PART(R1) whose elements are just the closed intervals of the real line R. The join of two 

intervals [a, b], [c, d] ⊆ R is the interval [min(a, c), max(b, d)], or, in terms of convex 

geometry, its convex hull. Two typical cases are the following ones: 

 
(4.9)               abcd 

 cadb 
 
In the same vein as PART(E(x, y)), all these mereological systems turn out to be non-distribu-

tive and being without complements. 

Bounded variants of mereological systems of Cartesian parts are obtained if one considers 

instead of the entire Euclidean plane E a Cartesian rectangle F ∈ PART(E(x, y)) and its 

Cartesian parts: 

 
(4.10)    PART(F(x, y)) := {A; A ∈ PART(E(x, y)) and A ⊆ F} 
 
An other variant of the structural mereological system PART(E(x, y)) is obtained by admitting 

only Cartesian rectangles [n, n+k] × [m, m+l] as structural parts, n, m, l, k ∈ Z. This 

mereological system of discrete structural parts may be denoted by PARTDIS(E(x,y)). Again, 

PARTDIS(E(x,y)) is non-modular and lacks complements. As a structural bonus, however, the 

lattice PARTDIS(E(x,y)) is atomistic, i.e. all element are the suprema of finitely many atoms [n, 

n+1] × [m, m+1].  

Finally, as a far-reaching generalization, let us mention the mereological system of the Eucli-

dean plane E that takes all closed convex subsets of E as structural parts. Recall that a set X is 

convex iff with two points a, b ∈ X one always has [a, b] ⊆ X. The plane E endowed with the 

canonical convex structure may be conceived as a structured set (E, []) for which a structural 

mereological system (PART(E, []), ≤) can be defined whose structural parts are the convex 

subsets of E.   

 

 

 

5. A Mereological Analysis of Quantities. Some twenty years ago David Armstrong proposed to 
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conceive quantities as structural universals (cf. Armstrong 1988). Since then, his proposal has 

beed widely discussed. Recently, it came under heavy attack from various sides (cf. Eddon 

2007, Gibb 2007, Morganti 2010 among others). The aim of this section is to use the insights 

that we have gained from the study of non-classical mereological systems such as a special 

case of mereological systems such as (PART(E(x, y)), ≤) to defend a version of Armstrong’s 

account of quantities as universals. It follows the lines of the reductive account of structural 

universals given in section 3. There, the state of affairs „x is a methane molecule“ that 

apparently involves the structural universal „being methane“ is analysed in the framework of 

Armstrong’s factual ontology as follows: „x is a methane molecule“ is a thick particular whose 

parts are other states of affairs as described in (3.3) and (3.4). The smallest parts of „x is a 

methane molecule“ are atomic states of affairs that are constituted from thin particulars and 

simple universals.  

The aim of this section is to give a similar reductive account of structural universals as they 

allegedly occur in Armstrong’s analysis of quantities. For this purpose first we consider a 

canonical model of real-valued quantities that emerges in a natural way from the system of „1-

dimensional rectangles“ PART(E1(x)). The Euclidean line E1 endowed with a Cartesian 

coordinate may be canonically identified with the real numbers R.  Then we may define the 

following structural mereological systems: 

 

(5.1) Lemma. Denote by R* := {a; 0 ≤ a ∈ R} the set of non-negative real numbers. 

 
(i)  For a ∈ R* define PART*([0, a]) := {[0, b]; b ≤ a}. Then (PART*([0, a]), ≤) is a (linear) 

Heyting algebra with bottom element [0, 0] and top element [0, a]. (PART*([0, a]) is 

order isomorphic to the interval of real numbers [0, a] by the canonical isomorphism 

that for 0 ≤ b ≤ a maps the subinterval [0, b] of [0, b] onto its endpoint b.♦  

 

(ii)  Define PART*(R*) := ∪a ∈ R*PART*([0, a])= {[0, a]; a ∈ R*}. The set-theoretical inclusion 

of intervals defines a partial order ≤ on PART*(R*) with bottom element [0,0]. 

 
Obviously, PART*([0, a], ≤) does not satisfy (SSP) but, as every Heyting algebra does, it 

satisfies (PPP). ...  

Let A*, B*, C*, ... be a family of length universals and a, b, c particulars such that states of 

affairs A*a, A*b, B*c, ... obtain in case the particular a instantiates the length universal A*, the 

particular b instantiates the length universal B*, etc.  As Armstrong pointed out states of af-

fairs, in particular such states as A*a, B*b, ... are particulars. More precisely they may be cha-



 18 

racterized as „thick particulars.“ In Armstrong’s factual ontology (Armstrong 1997) there may 

exist monadic or relational universals V, W, ... that can be instantiated by thick particulars. 

Thereby, complex states of affairs are constituted, e.g. VA*a, WB*aC*c, ... to be interpreted 

as the states of affairs that V is instantiated by A*a, and that the state of affairs B*a and C*c 

(as particulars) are related to each other by the binary universal W etc. Hence, states of affairs 

such as A*a, B*b, etc. may occur as structural parts in more complex states of affairs in the 

same way as the states of affairs such as Ha (a is a hydrogen atom), Ce (e is a carbon atom), 

... occur in the complex state of affairs „being methane“ as described in section 3.  

The details are as follows. Assume that for „length universals“ such as A*, B*, ... there is a 

binary universal „K“ such that the complex state of affairs „A*a K B*b“ to be interpreted as 

„The length A* of a is smaller than the length B* of b“. In order that K be a reasonable length 

comparison „smaller than“ it should satisfy the following adequacy conditions: 

 

(5.2) Assumption (Continuity of Length Universals).7 The particulars a, b, ..., the length 

universals A*, B*, ... and the binary universal K defined for atomic states of affairs A*a, B*b, ... 

are assumed to satisfy the following requirements: 

 

(1)   IF A*a AND B < A THEN B*b for some b < a. 
 
(2)   IF (A*a AND B*a) THEN (A = B).   

(3)   IF (A*a K B*b) THEN (A < B).♦  

The first condition guarantees a „continuous“ instantiation: if an object a instantiates a length 

A* it has parts that instantiate all smaller lengths. If length were quantized, this would not 

hold, of course. It is a matter of empirical research, so to speak, whether one should assume  

(5.2)(1) or not. Thus, subscribing to (5.2)(1) corresponds to the classical case of a continu-

ous length in a continuous Newtonian world (cf. Davies 2001).  

Condition (5.2)(2) ensures that the length of a particular a is well defined, i.e. no particular a 

can instantiate different length universals A* and B*; finally (5.2)(3) ensures that the compa-

rison between length states of affairs by the binary universal K covaries with the arithmetical 

relation <. Thereby a strict correlation between the binary universal K and the arithmetical 

relation < is guaranteed. 
                                                
7 In some sense it is an empirical question, whether length or any other quantity is continuous or not. If it 
would turn out that length is quantized, instead of (5.2) different stipulations had to be made. This 
would, of course, influence the mereological structure of complex states of affairs A*a. I hope to deal 
with this issue in detail in another paper. For now, be it sufficient to say that instead of R* the natural 
numbers N would determine the relations between length states of affairs. 
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Now we are prepared to give the following mereological analysis of length state of affairs 

analogous to the mereological analysis of methane: 

 

(5.3) Mereological Analysis of quantitative states of affairs. Let a be a particular with a 

mereological system PART(a, ≤). Then the instantiation A*a of the simple length universal A* 

by the particular a is a complex state of affairs that gives rise to the mereological system 

PART(A*a, ≤) defined as follows: 

 
(1)  PART(A*a)  := {B*b; B ≤ A and b ≤ a}         

(2)  B’*b’ ≤ B’’*b’’ := B’ ≤ B’’ and b’ ≤ b’’            (B’*b’, B’’*b’’ ∈ PART(A*a)) 

 
The bottom element 0 of PART(A*a, ≤)) is 0*Ø and the top element 1 is A*a.♦ 

 

One should note that the universal K instantiating relations between state of affairs A*a, B*b is 

a first-order universal for thick particulars in the same way as the bonding universal  

instantiated by chemical states of affairs Hc, Ce, ... . If one is prepared to admit second-order 

universals that are instantiated by first-order universals, one may assume K to be an 

asymmetric and transitive binary universal for length universals A*, B*, ... such that if A*KB* 

obtains then A < B. This may be more elegant than the procedure described in (5.2) but 

depends on the contingent fact, so to speak, that K – as a strict order relation – is necessarily 

asymmetric. Hence no universal shows up more than once, as would be the case for alleged 

complex „chemical universals“ such as H2O. Compared with the second-order account the one 

of (5.2) is ontologically more austere.    

 

 

6. Modular Mereological Systems. Let us come back to the topic of modular versus non-

modular mereological systems discussed in section 4. Only announcing that PART(E(x, y)) does 

not satisfy the axiom of modularity, may not be considered as a sufficient reason for intro-

ducing this concept. The reader may rightly expect some positive application of modularity, i.e. 

an example of some nice mereological systems that do satisfy the axiom of modularity. Here it 

comes.   

Recall that a group in the sense of mathematics is a set G endowed with a multiplication •: G x 

G ⇒ G that is associative, (for all a, b, c one has (a•(b•c) = (a•b)•c) and each element a has an 

inverse a-1 such that a • a-1 = e, e being a distinguished element called the neutral element of 

G. A group G is commutative or abelian if for all a, b one has a • b = b • a. 
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Groups abound in mathematics, physics, and elsewhere. Perhaps the best known example is 

the group (Z, +) of integers ..., -1, 0, 1, 2, ... with ordinary addition + as multiplication and 0 

as neutral element. 

A natural choice for the structural parts of groups are subgroups: a subgroup H of a group G is 

a subset H of G that contains the unit e, is closed under multiplication, and for every element h 

of H the inverse h-1 also belongs to H. Thus for every group G there is a structural mereological 

system SUB((G, •) ≤) of subgroups, the parthood relation ≤ is just ordinary set-theoretical 

inclusion ⊆. As is easily seen all subgroups of the group of integers Z have the form  

 
(6.1)                                  (nZ, +) := {..., -n, 0, n, 2n, ...}              n ∈ N  
 
Then an elementary calculation yields that SUB((Z, +), ≤)) is a modular mereological system. 

More generally, one can show that for every abelian group G the mereological system SUB((G, 

•) ≤) is modular. For general groups this is no longer valid. To get a neat and palatable result 

for general groups one has to require something more for a structural part than just being a 

subgroup. Rather, structural parts of general groups should be normal subgroups, or, at least, 

this choice leads to a neat and elementary result. 

For any subgroup H of G and any g ∈ G define the set gHg-1 := {ghg-1; h ∈ H} is again a 

subgroup, usually different from H. If H = gHg-1 for all g ∈ G, then H is called a normal 

subgroup. Clearly, if G is abelian all of ist subgroups are normal. Technically speaking, normal 

subgroups are stable under the inner automorphisms of G. Every subgroup H can be embedded 

canonically in a normal subgroups, its normalisator N(H).8 Hence we may consider the 

structural mereological system SUBN((G, •) ≤) of normal subgroups of G.  For this system one 

has the following classical result:  

 

(6.2) Theorem (Schmidt 1994, 2.1.4 Theorem, p. 43). The partial order (PART(G, •), ≤) of 

normal subgroups of a group G is a modular lattice. The bottom element 0 of PART(G, •), is 

the unit group {e} of G and the top element 1 is G itself.♦ 

 

Groups abound in mathematics, physics, and elsewhere. Elementary examples show that 

PART(G, •), is not always distributive (cf. Mormann 2010). Thus, in some sense, Theorem 

(6.2) is a best possible result. This theorem may be conceived as an important theorem of 

structural mereology, although, of course, mathematicians did not conceive it as such. It gives 

                                                
8 In an analogous way as the completion WH of subgraphs in (3.8) „normalization“ of subgroups may be 
conceived as a closure operator N. 
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us a profusion of structural mereological systems that essentially differ from the familiar 

Boolean systems. Modular lattices have a rich and interesting structural theory (REF, REF). So 

it may be conceived as an important result of structural mereology. The investigation of the 

structure of the lattices of subgroups is still a living subject of contemporary mathematics (cf. 

Schmidt 1994). This evidences that the investigations of structural mereology need not be 

trivial, even for those apparently simple structures such as groups. 

 

7. Structural Mereology and The Problem of False Axioms. Some time ago Mark Johnston 

blamed classical mereology as a „telling case of misplaced generality“ (Johnston 2002) quali-

fying most of its axioms as simply „false.“ He proposed to reinterpret classical mereology in a 

radical way to save it reserving to it at least a small place in the more comprehensive field of 

ontology by reinterpreting it as a theory of mereological sums and not as a theory of 

ontological constitution (ibid., 130).  

In this paper we have pursued another way to overcome the „misplaced generality“ of tradi-

tional mereology, namely, to conceive traditional mereology as a special case of the general 

discipline of structural mereology that deals with a plurality of structural mereological systems 

in an analogous way as Euclidean geometry may be conceived as a special limiting case of the 

much more comprehensive field of Riemannian geometry. 

In a sense, the approach of this paper is a generalization of the one that David Lewis pursued 

some twenty years ago when he pointed out that sets have a natural mereological structure 

(Lewis 1991). While Lewis tapped set theory as a source for mereological systems, in this 

paper I propose to use geometry, topology or, even more generally, relational systems, as rich 

and variegated sources for structured mereological systems. Depending on the specifics of the 

structured systems under consideration the mereologies of these systems more or less 

resemble classical Boolean mereologies. More precisely, Boolean mereologies come out as 

limiting cases of structured mereologies analogously as sets may be conceived as limiting 

cases of structured sets. 

Arguably, geometry and topology are more useful to feed our mereological intuitions con-

cerning real world systems than set theory. After all, we live in a spatio-temporally structured 

universe. Hence it is only natural that geometrical and topological structures play a role for 

mereological considerations. The primacy of geometry and topology over set theory can be 

formulated as the maxim that set theory is to be conceived as an abstraction or a limiting case 

in which the geometrical and the topological structure becomes trivial. This can be rendered 

precise in many different ways. For instance, from a topological point of view, a set X may be 
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conceived as a special topological space endowed with the trivial topology, to wit, either with 

the discrete or the indiscrete topology (cf. Willard 1970, chapter 2). As has been explained 

elsewhere, one may take the (regular) open sets OX (O*X) of the topological space X as its 

structural parts; another option would be to the (regular) closed subsets CX (C*X) of X as 

structural parts. For the the special case X endowed with the discrete topology all these 

options boil down to the same. This means, the topological perspective gives us a richer 

spectrum of what may be conceived as a part of X than the set-theoretical one.   

The variety of structural mereologies such as PART(S, ~), PART(E(x, y)), PART(R*, ≤), and 

PART(G, •), which could be continued ad libitum, hopefully suffices to render plausible the 

thesis that the mereological concepts of part, whole and their relatives are inexorably 

plurivalent in that they depend to a large extent on the structural context where they occur. 

Searching for „the“ axioms of mereological systems is a futile enterprise. There is no need to 

determine the boundaries of the variety of admissible mereological systems once and for all by 

elaborating a closed list of types that contains all of them. Rather, the concept of a 

(structural) mereological system is bound to become a variable in the same way as the 

concepts of „number“ or „space“ have acquired a variable meaning.9 
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