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1. Introduction . Although Lakatos’s Proofs and  Refutations (henceforth (PR)) 

is one of the classics of philosophy of mathematics in the twentieth century 

few attempts have been made to build on its ideas.1 Rather, quite often (PR) 

has become the object of respectful reference and detailed exegetical efforts. -

Of course, Lakatos is credited for having taught philosophers that philosophy 

of mathematics has to take into account the history and practice of 

mathematics. This orientation  towards the history and practice of the 

discipline is certainly  a definite progress over the ahistorical traditions of 

logicism, formalism, platonism, and intuitionism. It should help to get rid of the 

most pernicious vice philosophy of mathematics is plagued with, to wit,  ele-

mentarism which considers elementary arithmetics of natural numbers or 

Euclidean geometry as typical for all of mathematics. I think, however, there is 

more to learn from Lakatos than just a general orientation towards history and 

practice of real-life mathematics.  As I want to show in this paper, these 

insights concern the role of inventing and varying mathematical concepts. More 

precisely, I want to use Lakatos’s ideas of “concept-formation” and “concept-

stretching” to sketch an evolutionary theory of mathematical knowledge which 

takes axiomatic variation of concepts as the fundamental driving force of the 

ongoing evolution of mathematics (PR, 83ff).2  

Although Lakatos considers concept-stretching only for informal, not axio-

maticed mathematics, I contend that it is not restricted to this realm. Rather, 

                                                

1 There are, of course, exceptions. For instance, Fine (1981) attempts to embed Lakatos’s 

account of concept-formation and concept-stretching as pursued in (PR) in a more general 
theory of concept-refinement not restricted to mathematical concepts only but embracing the 
conceptual development of all kinds of scientific concepts. As it seems, his sketchy outline has 
not been taken up by other authors.   

 
2 Of course, an evolutionary theory of (scientific) concepts is not new at all. For instance, 
Toulmin offers an evolutionary description of the historical development of theories, and, more 
generally, intellectual disciplines, in the framework of a population model (Toulmin 1972, Part II). 
Toulmin’s account, however, is deliberately general. He is interested in the general mechanisms 
of the evolution of ideas, not in the specific mechanisms of a special discipline such as 
mathematics. The point I want to make in the following is that the mechanism of axiomatic 
concept variation is characteristic for the development of mathematical concepts and deserves a 
closer study than has hitherto carried out.  
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the role of conceptual variation (which I take to be a “neutral” term for  

Lakatosian concept-formation, concept-stretching and related conceptual 

activities) becomes even more important for axiomatic mathematics. 

In the following I propose to generalize Lakatos’s approach of concept-

stretching  in such a way that history and practice of modern axiomatic ma-

thematics can be conceived of as an evolution of mathematical concepts based 

on  axiomatic concept variation. In other words, I contend that a philosophical 

understanding of mathematics may be provided by conceiving it as a con-

ceptual evolution. This implies that, in some sense, mathematical concepts are 

to be considered as more basic than mathematical theorems.3 At first look, this 

contention may be considered as absurd. According to a time-honored piece of 

philosophical wisdom mathematical knowledge is deductive knowledge 

deposited in proven theorems. We know what is a deductive proof and a theo-

rem, at least much better than what is to be understood by a mathematical 

concept. Thus, it may appear unplausible, to say the least, to base a philosophi-

cal understanding of mathematical knowledge on the elusive notion of a mathe-

matical concept. Hence, I hasten to add that the concept-based approach 

outlined in this paper does not dismiss the notions of theorem and proof at all. 

Rather, they provide the necessary environment for mathematical concepts 

which never occur in isolation but always in the context of mathematical the-

orems. The importance of concepts depends on the importance of theorems in 

which they occur.  

Mathematical concepts may be conceived of as entities on which one may 

conduct trials or experiments. The trials or experiments are the attempts of 

proving theorems in which the concept in question occupies a central position.  

Then, a successful experiment, i.e., a valid proof, may be considered as an 

outcome positive for the concept in question. For instance, to take Lakatos’s 

example, the “Euler-experiment” on some variant of the polyhedron concept is 

the attempt to prove a version of the Euler conjecture for it. Usually, several 

conceptual variants compete in such an experiment. If several attempts of 

proving a conjecture fail for a conceptual variant, or only lead to an uninter-

esting contrived version of the original conjecture, that variant may be consi-

dered as a failure. In this way, conjectures provide objective challenges or 

                                                
3 The key-role of concepts for the development of mathematical knowledge is clearly acknow-
ledged in (PR): As Lakatos asserts in a footnote: “The key to Euler’s result (i.e., the Euler conjec-
ture, T.M.) was just the invention of the concepts of vertex and edge ...” In contrast, Descartes 
did not found the key for the formulation of  Euler’s conjecture, since he “did not make a consci-
ous revolutionary change to the concepts of 0-dimensional vertices, 1-dimensional egdes and 2-
dimensional faces as a necessary and sufficient basis for the full characterization of polyhedra.” 
(PR, p.6, footnote 1) 
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survival tasks for a group of competing variants of concepts which have to 

cope with them. This does not mean, however, that there is a one-way relation 

between concepts and theorems in the sense that concepts have to strictly 

respond to the rules defined by the theorems. Often, new conceptual variants 

give rise to new theorems which cannot be proved or even formulated, for the 

older conceptual variants. These new theorems alter the  “theorematical” envi-

ronment and change the terms of competition for future conceptual variants. 

Thereby, even  the assessment of past conceptual achievements may change.  

The main thesis of this paper claims that this competition of conceptual 

variants may be described in the framework of an evolutionary theory which 

conceptualizes the evolution of mathematical knowledge as a selection process 

of conceptual variants taking place in a “world” whose challenges are 

determinded by varying theorematical environments.  

 

The outline of this paper is as follows: in section 2 we take as our point of de-

parture Lakatos’s notion of concept-stretching. It may be considered as an 

informal precursor of the more powerful notion of axiomatic concept variation 

which is characteristic for the conceptual practice of modern mathematics. As 

an early example of an axiomatic concept variation we consider Hamilton’s 

construction of the quaternions. In section 3 the basic principles of an 

elementary theory of evolution are proposed. In section 4 these principles are 

applied to the evolution of mathematical concepts.  As an example of an 

evolutionary account, a sketch of the evolution of some conceptual variants of 

the integral is offered in section 5. In section 6 we conclude with some remarks 

on the specific features of the evolution of mathematical concepts which need 

further investigation. 

  

2. Conceptual Change: Concept-stretching and Axiomatic Variation.  

Traditionally, mathematical concepts have been conceived of as citizens of 

some Platonic realm. This conception rendered them immutable and eternal 

entities. Lakatos was one of the first philosophers who did not conceive of 

mathematical concepts in that manner. For him, mathematical concepts might 

undergo substantial alterations and changes, to wit, concept-stretching, or the 

reversal, concept-contracting. This is to say  that mathematical concepts do 

not exhibit the immutability and eternity platonistic accounts use to ascribe to 

them; mathematical concepts vary. Lakatos develops a sort of dialectic of 

proof and counterexamples which intends to shed some light on the process of 

the variation of concepts. All this is has been the subject of detailed discussion 

and interpretation (cf. Koetsier 1991, Larvor 1997), and needs no rehearsal.  It 
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is sufficient to note that a large part of mathematical practice may be de-

scribed as an activity dealing with mathematical concepts, be it concept-

stretching in the sense of Lakatos, or generalizing, specializing, adapting, or 

what sort of varying concepts whatsoever. As a result of this complex concept-

trafficking,   typical mathematical concepts come along in a multiplicity of 

variants. For instance, Lakatos gives five or six different variants of the key-

concept “polyhedron” (cf. PR, pp. 14 - 22) which, according to his notorious 

footnotes, have actually occurred in the mathematical history of that concept.4   

Lakatos restricts the practice of concept-stretching to the realm of informal,  

non-axiomatized mathematics. As soon as it comes to formal axiomatized 

mathematics, he assumes that concept-stretching comes to an end, which is, 

according to him, a reason why modern axiomatic mathematics lacks much of 

the freedom and the excitement of earlier times. I think this is quite wrong. 

Rather, as Corfield has emphasized: 

 

“[t]he appropriate use of rigorous definition and axiomatization has not acted 

as a hobble on the creativity of mathematicians, but rather an invaluable tool in 

the forging of new mathematical theories and the extension of old ones.” 

Corfield 1997, 100).    

 

As Corfield points out, for established modern mathematical theories, the 

concepts involved are usually defined by systems of axioms. And it is precisely 

these systems of axioms which enable us to vary mathematical concepts in a 

very effective and conscious way not available for an informally formulated 

“intuitive” mathematics. Although I fully endorse Corfield’s enthusiasm for the 

creative role of the axiomatic method I have reservations on his usage of the 

notion of “forging”. When one is “forging” an object, e.g. an instrument or, 

metaphorically, a theory, one is assumed of having total control over the 

product one is forging. One knows what will be the result of one’s doing. This, 

however, most often is not the case for mathematical concepts. The inventors 

of new mathematical concepts often don’t know, what exactly will be the 

outcome and how their mind-children will score in the competition. Of course, 

they aren’t completely in the dark. After all, they have designed the new 

concepts to do some definite useful work. But often they have modify to their 

original intentions and to reshape them in the presence of resistance and 

                                                
4 As we shall see in section 5, this number is not at all an exaggeration. For instance, the number 
of variants of the concept of the integral can only be guessed. Even if we restrict counting to 
“modern” variants, one may distinguish more than one hundred from Cauchy onwards (cf. 
Hawkins 1970, Henstock 1991). 
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obstacles they had not foreseen and are unable to overcome.  

At first glance, such resistance in the conceptual realm of mathematics may 

look strange, since philosophers have repeatedly emphasized the freedom of 

mathematics: anything that is not inconsistent might be possible. Furthermore, 

the axiomatic method has been hailed for having fully brought to the fore this 

unique freedom of mathematics. A closer look on the practice of mathematics, 

however, reveals that the alleged freedom of mathematics is far from being a 

total one. Quite the contrary, the conceptual practice of mathematics is 

severely restricted by the rules we have to follow in our conceptual practices. 

As every mathematician knows, the conceptual practice of mathematics soon 

uses to become difficult. The workings of the mind may lead the mind itself 

into difficult and sometimes unsolvable problems.5 Thus, a primary task of 

philosophy of mathematics is to explain this somewhat paradoxical fact. 

Recently, Pickering contended that this restricted freedom of conceptual 

practices such as mathematics may be conceived of as a special case of what  

he calls the “mangle of practice” in scientific practices in general (Pickering 

1995). According to him, the essential ingredient for getting a non-distorted 

“non-abstract” picture of science (mathematics included) is to  conceive this 

endeavour as a temporarily situated practice in which a human and a non-

human agency interact. The contours of both agencies are not fixed from the 

outset, but emerge in the temporality of practice. That is to say, they are 

never to be considered as fully determined and complete. Seen from the 

perspective of the human part, this means that the goals and intentions of the 

scientist are continuously under revision. Scientists do not simply fix their goals 

(“prove the Euler’s conjecture”) once and for all and stick to them, come what 

may. Rather, they find themselves engaged in the “mangle of practice” in which 

their intentions undergo a permanent goal-revising dialectic of resistance and 

accommodation in such a way that the outcome only remotely resembles the 

original plannings (cf. Pickering 1995, 22-23).6   

                                                
5 This has turned out to be no coincidence. One may interpret the uncompleteness theorems as 
stating that the non-trivial workings of the mind necessarily lead to unsolvable problems.  
 
6Pickering takes  (PR) as a case of the mangle in conceptual  practice: “The exhibition of novel 
counterexamples to specific proofs of the theorem counts, in my terminology, as the emer-
gences of resistances, and Lakatos describes very nicely the revision of proof precedures as 
open-ended accommodation to such resistances, with interactive stabilization amounting to the 
reconciliation of such precedures to given counterexamples.” Pickering (1995, 119, Footnote) 
To a large extent, this may be correct. But I think, Pickering overestimates the open-endedness 
of Lakatos’s account. After all, even in the second chapter of (PR), in which he deals with Poin-
caré’s proof of Euler’s theorem, he concentrates on that theorem and nothing else. The reason 
may be he is still in the grip of a Popperian “statement view” of (mathematical and scientific) 
theories according to which single statements occupy the centre stage of scientific theorizing.   
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As an example of the mangle of conceptual practice characteristic for the 

restricted freedom of the axiomatic variation of concepts let us consider the 

episode of Hamilton’s invention of the quaternions (cf. Pickering 1995). 

Originally, Hamilton intended to generalize the geometric representation of 

complex numbers in the 2-dimensional Euclidean plane to get a three-

dimensional analogue:  

 

“!-1 [being] perpendicular to 1, it is natural to conceive that there may be 

another sort of !-1, perpendicular to the plane itself. Let this new imaginary 

be j; so that j2 = -1, as well as i2 = -1. A point in space may suggest the triplet 

x + iy + jz.” (Hamilton 1967, 103) 

 

At this stage, Hamilton aimed at a rather straight-forward variation of  complex 

numbers: instead of couples (x,y) he considered the triples (x,y,z), and 

attempted to generalize the arithmetics of complex numbers to their envisaged 

3-dimensional counterpart.  

The conceptual environment which this variant had to cope with was 

determined by the arithmetic laws of complex numbers which may be 

succinctly described by the following formulas: 
 
(2.1)  (x,y) + (x*,y*) = (x+x*,y+y*),  (x,y) • (x*,y*) = (xx*-yy*, xy* + x*y) 
 

That is to say, Hamilton was looking for 3-dimensional analogues of these laws. 

Of course, the extension of the additive laws (i.e., associativity, commutativity 

etc.) posed no problems. The multiplicative law turned out to be crucial test 

the envisaged triple numbers had to pass.7 He tried for more than fifteen years 

to find one, but never succeeded. Today, it is well-known that such a 3-dimen-

sional extension of real numbers cannot exist.8 Rather, as Hamilton discovered 

in 1843 one must do a further step towards a 4-dimensional generalization of 

the real numbers leading to quadruplets (x,y,z,w) as a viable variant of the 

complex numbers (x,y). This variant of complex numbers (or, more remotely of 

real numbers) are called the hypercomplex numbers or quaternions H. They do 

not satisfy commutative multiplication. Rather, if 1,i,j and k denote the 

standard basis of H the multiplicative behaviour of quaternions is determined 

                                                                                                                                          

  
 
7 This was clearly recognized by Hamilton. After he had found the 4-dimensional quaternions, he 
wrote: “But I considered it essential to try whether my equations were consistent with the law of 
moduli (i.e., the law of multiplication), ... without which consistence being verified, I should have 
regarded the whole speculation as a failure.” (Hamilton 1967, 108) 
 
8 Already Hamilton could have proved this (cf. Ebbinghaus et al. 1983,131) 
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by the following law: 
 

 (2.2)    i2 = j2 = k2 = i•j•k = -1 
 

As is easily seen, (2.2) leads to an anti-commutative multiplication for i, j, and 

k, i.e.,  i•j = -j•i = k, etc. Thus, Hamilton’s new generalized complex numbers H, 

obtained by an axiomatic concept-variation concerning the multiplicative law do 

not satisfy the original arithmetic laws required for “honest” numbers. Hamilton 

invented a variant of complex numbers with rather different features than 

those he originally had looked for.   

It should be noted that the axiomatic variation of concepts as it is exhibited in 

Hamilton’s invention shows a feature which defies a strictly Lakatosian account, 

namely it does not leave intact the theorems or laws which originally were 

considered as the touchstones of its respectability. In (PR), the concepts of the 

polyhedron may be stretched or even teared, Euler’s conjecture, however,  

never underwent any variation.9 As he started, Hamilton seems to have con-

sidered the arithmetic laws of the complex numbers in a similar vein as Lakatos 

understood the Euler Theorem, to wit, as a sort of experimentum crucis. It 

must be considered as a sign of Hamilton’s genius that he was prepared to 

revise the touchstone laws. Thereby opening the gate for a “new world” whose 

riches he himself only dimly realized. In modern terms, this “new world” may be 

described as the theory of division algebras and related topics. In quite the 

same manner, most of the newly generated variants of mathematical concepts 

do not satisfy all theorems which hold for their ancestors. The dialectics of 

resistance and accommodations which steers the axiomatic variation of 

concepts is more flexible than Lakatos’s Popperian account which is fixated on 

the original “bold conjecture”.  

Hamilton believed that the quaternions would open a new era for mathematics. 

This turned out to be an exaggeration. Modern mathematicians see the 

importance of Hamilton’s quaternions not so much in themselves. After all, H 

has turned out to be a not too interesting variant of a division algebra. Rather, 

the importance of Hamilton’s construction resides in the methodological fact 

that it may be conceived of as one of the first conscious and deliberate cases 

                                                
9 This claim contradicts Koetsier’s reconstruction of Lakatos’s argument. According to Koetsier, 
[(PR)] “shows us a quite dramatic successions of versions of Euler’s theorem for polyhedra, V - E 
+ F = 2, ... , each version being temporarily the best until it is refuted and has to be replaced by 
its successor.” (Koetsier 1991, 24)  All the “different” version of Euler’s theorem have the 
following form: “For all X-polyhedra V- E + F = 2.” Here, “X-polyedra is a variable for “convex 
polyhedra”,  “ordinary polyhedra” (whatever this means), etc. I propose to take these different 
versions of Euler’s theorem as one and the same theorem concerning different variants of the 
concept of polyhedron. This may be seem only a verbal quibble only, but I think it is not. As we 
shall see in section 5, in contrast to the Lakatosian account, the theorems considered as the 
challenges conceptual variants have to cope with, change in much more dramatic way as Lakatos 
had been prepared to admit. 
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of an axiomatic variation of a mathematical concept, or, in Lakatos’s terms, as 

a bold stretching of the number concept.   

In the following I’d like to expose the thesis that the dialectical method of 

axiomatic concept variation may be considered as the fundamental driving 

force behind the evolution of modern mathematical knowledge. It is the axio-

matic method which enables us to vary mathematical concepts in a systematic 

and effective way. If axiomatic variation of mathematical concepts is the basic 

mechanism underlying the progress of mathematical knowledge then it is of 

utmost importance for a philosophical understanding of mathematics to 

describe this mechanism as precisely as possible.  

Obviously, the process of axiomatic variation is not arbitrary. Not anything 

goes. On the other hand, the process of axiomatic variation is not bound to 

yield unique results which unanimously are considered as optimal. The evolution 

of mathematical concepts does not aim at predetermined ends. Rather, axio-

matic variation leads to a plurality of  variants which compete among each 

other. Even the leading mathematicians of their time often err in predicting 

which conceptual variation in the long run will score best.10  Most of the 

conceptual variants which are produced by mathematicians in the course of 

time are short-lived. They are confined to a rather small temporal interval and 

do not find fruitful continuation. Most are forgotten, i.e., in evolutionary terms, 

they die without offspring. Sucessful variants, on the other hand, spread. They 

are taken up and developed by other authors leading to important new 

theorems and conceptual connections with other fields of mathematical 

knowledge. As it seems, many mathematicians are seduced by this fact to 

occupy a Whiggish perspective which only remembers the winner’s approach 

and is forgetting the other conceptual variants of the past which someday may 

be revived.11   

 

3 . Towards a Selection Theory of Mathematical Concepts . If one conceives the 

history of mathematics as the evolution of mathematical concepts one has to 

explain what is to be understood by evolution and what are its mechanisms. 

One should not expect that any existing theory of evolution, say Darwin’s or 

Lamarck’s account of biological evolution, or some of their modern successors, 

is directly applicable to the evolution of mathematical concepts. Rather, the 

evolution of mathematical concepts may have its own idiosyncratic features 
                                                
10 For instance, even an expert in the field such as Fubini was rather skeptical whether 
Lebesgue’s new variant of the integral was a useful or not. 
 
11 How dangerous such an attitude may be is nicely described in Rota’s “On Reading Collected 
Papers” (Rota 1997, 248): “In our ahistorical age, it is a fool’s paradise to believe that the 
reading (even the casual scanning) of collected papers is more likely to enrich our knowledge 
than a feverish plunge into the latest periodicals ... The masters had a variety of ideas that are 
missing in later acounts of their work.” According to Rota, in order to solve an outstanding 
problem, a mathematician has to seriously study the history of that problem. 
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not occurring in any other evolution. For instance, time seems to play a 

different role in the evolution of mathematical concepts than in, say, the 

evolution of biological species. To some extent, in mathematics the past is 

always present. Hence, past forms of mathematical creatures may be revived 

and come to live again in a way which has no counterpart in biological 

evolution. The best a general theory of evolution can do is offering a frame-

work or format for a evolutionary understanding of mathematics. Without dis-

cussing the pros and cons of other evolutionary accounts I propose an elemen-

tary evolutionary theory to be characterized by the following four principles:  

  

(3.1) The Principle of Variation. At any stage in the history of a species, there 

will be variation among the members of the species. Different variants will have 

different properties.  

 

(3.2) The Principle of Struggle for Existence. At any stage in the history of a 

species, more variants come into existence than can survive to reproduce.  

  

(3.3) The Principle of Variation of Fitness. At any stage in the history of a 

species, some of its variants have characteristics that better dispose them to 

survive and reproduce. 

  

(3.4) The Principle of Inheritance. Most properties of a variant are inherited by 

its descendants. 

  

From these principles one may infer that the history of a species will show the 

modification of that species in the direction of those characteristics which 

better dispose their bearers to survive and reproduce. 

  

The principles (3.1)  - (3.4) may all be traced back to Darwin’s evolutionary 

theory. A theory obeying them, however, is not restricted to the biological re-

alm provided we interpret the key terms such as survival, reproduction and so 

on in an appropriate non-biological way. Hence, these principles may be consi-

dered as a general and abstract scheme for various sorts of evolutionary theo-

ries.  

If we want to cast the development of mathematical knowledge into the 

framework of an evolutionary theory the first question we have to answer is 

what should be considered as the units of selection, i.e., what entities we take 

as species which evolve in time and have one or more different variants. This is 

not a trivial question, and  it may not have a unique answer.12  In this paper, I 

                                                
12 Even for biological theories this question has not found an unanimously accepted answer. One 
may consider, as Darwin did, individuals as the unit of selection. Other fashionable answers are to 
consider species, or even suborganismal parts as units of selection, i.e., as agents of evolution. 
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propose as units of evolution “middle-sized” mathematical concepts, such as 

function, continuity, differentiability, integral, measure, topology etc. This 

choice is not the only possible one. For instance, it may be convenient to chose 

larger conceptual entities such as categories in the sense of Mac Lane and 

Eilenberg as units of selection.13 In the following, however, I’d like to 

concentrate on a more pedestrian account taking concepts of the above men-

tioned type as units of selection. The main reason for this procedure is simply 

that otherwise one had to introduce a lot of conceptual machinery which goes 

beyond the size of this paper. Actually, I think, categories  would even fit 

better the evolutionary approach presented here. 

Although the principles of natural selections have no empirical content the 

presuppositions of its applicability are empirical. These presuppositions forms 

the empirical core of evolutionary theory of mathematics. In the next section 

these general principles are reformulated in order to give them empirical 

content for the evolution of mathematical concepts. 

  

4. Principles of the Evolution of Mathematical Concepts . In order to get an 

evolutionary theory of mathematical knowledge started, one has to reformulate 

the above-mentioned four principles in such a way that they apply to 

mathematical concepts as units of selection. This means, one has to answer 

the following questions: 

 

1. What is the “world” in which the evolution takes place?   

2. What are the competing units of selection which are the protagonists of the 

ongoing “struggle of existence” in that world? 

 

In the preceding sections this questions has already been answered as follows: 

The protagonists of the evolutionary selection process are variants of mathe-

matical concepts. The world in which the competition takes place is a world of 

proof-problems and conceptual growth in depth and coherence. An elementary 

example of such an evolution is  Lakatos’s account of the Euler’s conjecture E: 
For the various variants pi of the polyhedron concept p, E defines the crucial 

task pi has to cope with. A variant p1 will supersede a variant p2 iff p1 gets 

along better with E than p2. Admittedly, the world Lakatos designs for the 

species of polyhedra concepts is a rather primitive and poorly structured world, 

and one may well suspect that the worlds mathematical concepts live in, ac-

tually are much more complicated. This is indeed the case, as can be seen from 

                                                
13 Meanwhile, mathematicians are well aware of the selectional character of their research. In 
particular, this holds for fields such as lattice theory or topology. There, some quite strict 
“fitness criteria” are generally accepted: for instance, a “good” topological category should 
possess some nice closure properties, i.e., topological spaces should have products and 
coproducts, an exponential law for topological spaces should hold etc. 
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the case of the integral concept. There is not simply one theorematical demand 

which defines a concept’s fitness (“enable a proof of Euler’s conjecture”) but 

many.     

Before we go into this, let us give a brief sketch of how the four general 

principles of evolution given in the last section may be applied to the case of 

the evolution of mathematical concepts.   

 

(4.1) Principle of Variation . At any stage in the history of a mathematics, 

there will be several different variants of a mathematical concept; these 

different variants, belonging to the same species, will have different properties 

but have to cope with the same or at least similar challenges.  

 

Lakatos’s case studies in (PR) may be read as evolutionary stories about 

competing variants of mathematical concepts such as  polyedron, continuity, 

continuum etc. The actual history of mathematics is more complicated. In 

particular, many more competitors attend the race. This will be discussed in 

some detail in the next section, is the concept of the integral. I’d like to 

contend that these examples exhibit the generic case, i.e. they may be con-

sidered as species which occur in several different variants differing in “mathe-

matical fitness”. Conceptual species which have only a single and unique variant 

throughout the history of mathematics would be extremely rare, if there are 

any.14   

 In order to apply the Principle of Struggle for Existence. one has to explain 

what could it mean that one variant of mathematical concept “survives”   and 

another one “becomes extinct”. I propose the following interpretation: 

  

(4.2) The Principle of Competition . At any stage in the history of a mathema-

tics, there is a competition between the variants of concepts. This competition 

results in a ranking of the competing variants. High ranking for a conceptual 

variant means that it becomes acknowledged as a useful and fruitful device in 

proving important theorems and/or giving rise to new and promising theoretical 

contexts. A variant loses the competition when it falls into oblivion and does 

not find interesting applications.  

 

                                                
14 A candidate for such an exceptional species may be the concept of natural number. It seems 
hard to find different variants of it. A closer look, however, reveals that even for this apparently 
undifferentiated species several different variants exist. In axiomatic mathematics, a natural 
number concept is defined by some version of Peano axioms. Hence, the different variants of the 
Peano axioms may be considered as defining different conceptual variants of natural numbers. 
Moreover, if one takes into account that in different toposes different natural number objects 
exist which may enjoy strikingly different structural properties the principle of variation seems to 
be secured even for the natural number concept. This basic pluralistic character of mathematical 
concepts can only be ignored by a narrow elementarist perspective on mathematics which takes 
into consideration only a small fragment of mathematical knowledge.  
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For instance, today, Cauchy’s variant of the integral may be considered as 

uninteresting and irrelevant for the further evolution of mathematics.  It has 

been outscored by Riemann’s and Lebesgue’s extensionally, and moreover, it is 

to be considered conceptually as a deadlock. Metaphorically, this may be 

expressed by saying Cauchy’s variant is dead. In the course of time, most 

conceptual variants suffer this destiny. In contrast to biological extinction, 

however, mathematical concepts have, at least in principle, the chance of being 

resuscitated. For instance, the Riemann integral has undergone some new con-

ceptual developments and has found new applications (cf. Edalat 1995, Hen-

stock 1991). The Principle of Competition opens the door for sociological con-

siderations. The  environment of mathematical concepts, i.e. the theorems 

which are considered as important and the conceptual relations which are 

considered as fruithful, is a man-made world. It may depend on changing tastes 

and preferences. For instance, if the social pressure on the mathematical 

community is such that only those mathematical achievements are highly 

esteemed which are directly useful for practical issues the resulting criteria for 

successful concepts may be quite different from those which reign if other 

“more theoretical” preferences are made. Thus, in some sense, the evolution of 

mathematical concepts is relative, it cannot be understood as the unfolding of 

some absolute conceptual platonic realm.15     

  

(4.3) The Principle of Variation of Fitness. The key-term “fitness” of this 

principle is not easily determined in a non-tautological way (as is the case for 

its biological counterpart). For mathematical concepts, one, but only one, 

measure of the degree of fitness is the generality of theorems they allow to 

prove. A concept for which a more general theorem can be proved is, ceteris 

paribus, better than one having a more restricted domain of applicability.  

 

Some not overly convincing examples may be found in (PR). A better example 

is provided by comparing  some variants of the concept of the integral to be 

discussed in the next section. Beyond extensional generality, there are other  

criteria of fitness such as “fruitfulness” or “conceptual depth”. Admittedly, 

these notions are difficult to nail down. The dependence of an evolutionary 

account of mathematical knowledge on such a “difficult” notions should be 

considered, however, as virtue, rendering it a demanding and non-trivial acount. 

This shows once again, that the standard elementarist accounts do not come 

even approximately close to the real problems of a philosophy of mathematics.   

 

(4. 4) The Principle of Inheritance . This principle ensures a sort of historical 

                                                
15 This opens up the possibility of “alternative mathematics” (cf. Bloor (1991)) Actually, Bloor 
quite heavily relies on Lakatos’ account of mathematical knowledge in order to show that even in 
mathematical knowledge there may be some sort of “cultural relativity”.  
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continuity for mathematical concepts. The new variants have to resemble their 

ancestors in order to meet at least some of the environmental challenges 

defined by the latter. It is a matter of history of mathematics to elucidate the 

descendence of the mathematical concepts from their humble beginnings to 

their sophisticated most recent descendents.    

 

The principle of inheritance ensures some sort of cumulative growth for 

mathematical knowledge, at least to a certain degree. The cumulative 

character, however, should not be overestimated. It may well be the case that 

the modern descendants of mathematical concepts have lost some of the 

problem-solving capacities of their ancestors, since these problems have 

become obsolete in modern contexts. 

 In the next section, some episodes in the evolution of the concept of the 

integral are sketched according to these evolutionary principles. 

 

 

5. On the Evolution of the Concept of the Integral. As an example of the 

evolution of a mathematical concept let us now consider the evolution of the 

concept of the integral. It goes without saying that only some aspects of the 

evolution of this concept can be dealt with and even this only in a quite 

superficial way.16  

In common usage, one speaks of “the” integral as though this concept were a 

uniquely determined concept once and for all. This is of course wrong. In high-

school mathematics the office of the integral is usually occupied by the 

Cauchy’s variant of the the integral. Most mathematicians probably use to 

understand by “integral” the Lebesgue’s variant of this concept. Specialists in 

integration theory know a lot other variants, e.g. Denjoy’s, Burkill’s, Perron’s, 

Taylor’s etc. (cf. Henstock 1991). As the recent work of Henstock, Edalat and 

others exemplifies, the evolution of the concept of the integral can in no way 

be described as having reached its terminal point (cf. Henstock 1991, Edalat 

1997). Rather, a huge and complex family of subspecies has evolved whose 

members have adapted to a variety of quite different contexts. It goes without 

saying that I do not intend to describe this complex evolution in its barest 

outlines. Rather, the rest of this section is devoted to a brief sketch of some 

aspects of this evolution from Cauchy’s variant up to Lebesgue’s only.    

The relations between the different variants of the concept of the integral is 

quite intricate. In particular, it cannot be described as a story of linear 

                                                
16 For a detailed presentation of the origins and the developments of Lebesgue’s theory of inte-
gration see Hawkins 1970, for the modern post-Lebesgue evolution see Henstock 1991. Coun-
ted very roughly the different definition occurring in Hawkins and Henstock several dozens of dif-
ferent variants of the integral have been proposed in the last one hundred and fifty years. This 
shows that Lakatos’s five or six conceptual variants of the polyhedron as exhibited in (PR) form a 
rather poor collection.  
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progress. Of course, it is known that the Lebesgue integral is more general 

than the Riemann integral (to say nothing of Cauchy’s variant) in the sense 

that any on an interval [a,b] Riemann integrable function is Lebesgue integrable 

but the converse does not hold. For most purposes, Lebesgue’s variant turned 

out to be the most versatile and fruitful one clearly outscoring the more traditi-

onal variants.17 

Let us have a closer look how this happened by starting with Cauchy’s variant 

of the integral. He defined the definite integral of a uniformly continuous18 

function f as follows: Let f(x) be a uniformly continuous function defined on the 

closed interval [a,b]. Consider a partition of this interval  
 
 a = x0 < x1 < ... < xn-1 < xn = b and the sum S(P,f,a,b) = ! (xi - xi-1) 

f(xi-1)’ 

 

Using the uniform continuity of f he was able to show that for finer and finer 

partitions the values of S(P,f,a,b) approached a limit. This limit he defined as 

the definite integral of f on [a,b], to be denoted by ! (f,a,b). Now define a 

function F by F(x) = ! (f,a,x). For F Cauchy established the following results, 

known as the Fundamental Theorem of the Calculus: 

 

(5.1) The Fundamental Theorem of Calculus . 

(1)   F is a primitive function for f, i.e., F’ = f. 

(2)  If F is a primitive function for f all primitive functions for f are of 

the form G = F + c, where c is a constant. That is, if G is a 

function with a continuous derivative G’, then ! (G’,a,x) = G(x) - 

G(a). 

(3)  If G is a function such that G’(x) = o for all x in [a,b] then  

  G(x) =  c for some constant c. 

 

Since the times of Leibniz and Newton, any viable variant of the integral 

concept had to satisfy some version of the Fundamental Theorem. In the 

course of time, especially in the 19th century, however, the authority of the 

Fundamental Theorem as the crucial prove experiment for an admissible variant 

                                                
17  This outcome wasn’t that clear in the first quarter of the century (cf. Hahn 1914, 1915).  
Several attempts were made to modify Riemann’s definition of the integral so that it would 
accommodate unbounded integrands and encompass conditionally convergent integrals. It took 
some time for that Lebesgue’s account changed the terms of competition in such a way that the 
superiority of Lebesgue’s variant was generally acknowledged, at least for some time and some 
domain of applications.  
 
18 Of course, the concept of a uniformly continuous function was explicitly defined only after 
Cauchy. However, Cauchy often implicitly assumed a function to be uniformly continuous when 
he allegedly dealt with continuous functions. 
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of the integral concept diminuished.19 Other challenges for the integral concept 

came to the fore, for instance, various types of convergence theorems which 

described the successful interplay of integral and various limit operations. One 

reason for this changing of  environmental challenges was the gradual 

expansion of the domain of functions for which the Fundamental Theorem was 

assumed to hold.  

Fulfilling the demands of the Fundamental Theorem became more and more 

difficult when the domain of functions for which the Fundamental Theorem was 

designed to be applicable got more and more expanded. In other words, the 

features of the environment of the concept of the integral gradually changed. 

As is well known, one of the main protagonists of the change was Dirichlet who 

for the first time introduced the concept of a truly “general” function to be 

conceived of as a general rule correlating the elements of the domain and the 

range of the function. Dirichlet was the first mathematician to call attention to 

the existence of functions that  are discontinuous on an infinite set of points in 

a finite interval and to the problem of extending the concept of the integral to 

functions of this nature. For some time, the best response to this new 

challenge was Riemann’s variant of the integral: He interpreted the meaning of 

integrability in terms of the Cauchy sums of the function f(x) to be integrated: 

Under what conditions on the function f(x) do these sums approach a unique 

limit as the norm of the corresponding partitions approaches zero? In order to 

answer this question Riemann formulated two equivalent conditions. Then he 

showed that his definition was extensionally superior to Cauchy’s (and 

Dirichlet’s) by constructing functions which were discontinuous on a dense set 

of real numbers but nevertheless integrable according to his integral but not in 

the sense of Dirichlet and Cauchy. As is pointed by Hawkins (1970, 18), the 

advantage of Riemann’s variant of the integral is not exhausted by its larger 

domain of applicability. In hindsight, one may see in Riemann’s integrability 

conditions the germs of the concepts of Jordan measurability and outer 

content which were bound to play a crucial role in modern theory of integration 

as it was to be developed much later by Lebesgue. Conceptual progress cannot 

be characterized by extensional considerations alone. If the competition among 

the various integral concepts could be fully described in this extensional way it 

would essentially follow the lines of Lakatos’s discussion of the concept-

stretching of the concept of the polyhedron carried out in (PR) (cf. also Fine 

1981). Actually, things are much more complex. Conceptual mathematical 

progress is not measured exclusively by the expansion of the domain of 

                                                
19 For instance, discoveries of Dini, Volterra and others  show that the second part of 
Fundamental Theorem  (5.1(2)) is not generally valid for Riemann’s variant of the integral, since 
there are functions with bounded non-integrable derivatives. Lebesgue’s variant in some sende 
restores this part of the Fundamental Theorem, at lest for bounded derivatives. On the other 
hand, for Lebesgue’s variant, the first part of the Fundamental Theorem (5.1)(1) does not hold 
in full generality. It only holds in a version “almost everywhere” (cf. Hawkins 1970, 137). 
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intended application Rather, the development of new conceptual relations plays 

an essential role. The superiority of a new conceptual variant is also, and one 

may even say, mainly, demonstrated by the new lines of research and the new 

perspectives it opens. Thus, the evolutionary value of a new variant of a 

mathematical concept is assessed also by the new conceptual relations it 

opens. In the case of the evolution of the integral this is most impressively 

demonstrated by Lebesgue’s integral. As is well-known,  Lebesgue’s variant is 

extensionally superior to Riemann’s. This advantage, however, is not the most 

important one. Lebesgue’s new variant of the integral turned out to be a real 

mutation, so to speak. It opened up a completely new field and defined a new 

framework for the concept of the integral. For the first time, it elucidated the 

intimate relation between the concepts of integral, measure, and topology.  

From Lebesgue (and Borel) onwards any variant of the concept of the integral 

had to  consider relations with the conceptual field of measure theory and 

topology which were quite alien to Cauchy’s concept of the integral and only 

dimly visible for Riemannan’s variant. Hence, the transition from the Riemann 

variant to the Lebesgue variant cannot be fully understood as simply an exten-

sional expansion. Rather, it also involves an intensional, i.e. conceptual progress 

insofar as the Lebesgue variant is able to build up connections and 

interrelations to many more other conceptual fields.20 

 

6. Concluding Remarks. As is shown by the ongoing evolution of mathematical 

knowledge the “essence” of mathematics is not to be found in some hidden 

nature of mathematical objects, rather it is  revealed in the specifics of the 

ongoing evolutionary process of mathematical knowledge, or, as the Neo-

kantians such as Cohen and Natorp would have formulated it some one hundred 

years ago: the fact of mathematics (science) is a fact of becoming 

(“Werdefaktum”).21 If this is true, as I think it is, it is of the utmost importance 

for a philosophical understanding of mathematics to get some insights into the 

mechanisms of this ongoing process. The best device for an insightful 

description of this process are provided by some sort of evolutionary theory.  

                                                
20 This points to the fact that the evolution of mathematical concepts should be thought of as 
the evolution of a single concept but rather as a group evolution of many concepts 
simultaneously.  
 
21 See Cohen’s Logik der reinen Erkenntnis (Cohen 1977(1902). The process character of 
scientific knowledge is even starker emphasized in Natorp’s Die logischen Grundlagen der exakten 

Wissenschaften (Leipzig 1910). There one finds in the forth section the following radical thesis: 
“The fact of science must be understood as a “fieri” (becoming). The “fieri” alone is the fact: all 
being which science attempts to fix, has to be resolved in the great current of becoming. Only 
this becoming can finally be said to be.” This paper is, of course, not the appropriate place to 
deal with the Neo-Kantian philosophy of science and mathematics in any greater depth. I’d like to 
attention to the fact that the Neo-Kantian approach emphasized the conceptual unity between 
science and mathematics which has largely gone unnoticed in the traditional positvist philosophy 
of science.    
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In order to apply such a theory a necessary prerequisite is to understand  that  

mathematical concepts are not eternal  unalterable “Platonic” entities. Rather, 

they use to occur in several different variants which develop in history. These 

variants differ in fitness  concerning the wealth and value of the theorems 

which can be proved for them.  Variation may occur on different levels, for 

instance, on the level of concepts, on the level of propositions, on the level of 

theories. This ubiquity of variation renders modern mathematical knowledge a 

definitely un-Platonic epistemic endeavor rendering  variation (on which level 

whatsoever) as the very essence of mathematics. Variation is not a ‘noise’ 

which may be ignored or filtered out by clever philosophical devices in order to 

grasp the “essence” of mathematics. I consider it as the great achievement of 

Lakatos’s philosophy of mathematics to have paved the way for this insight.  

The acceptance of general framework for a philosophical understanding of 

mathematics  may not be too instructive. The evolution  of mathematical 

knowledge exhibits some very special features which it does not share with 

other evolutions. Hence, it is of crucial importance to explicate these special 

features:  

 

(1) The environment in which the evolution takes places, may change  in a 

rather quick and drastic manner. This change may be brought about, at least 

partially, by the conceptual innovations themselves.   

 

(2) Temporarily unsuccessful variants may survive in a “frozen state”and may 

be resuscitated.22 Hence, compared with other evolutions the struggle of 

existence in the conceptual  evolution of mathematics is less cruel. Although 

there is a strong competition among conceptual variants this need not lead to 

the total extinction of the inferior variants. They may survive in some niche or, 

perhaps, may be resuscitated after the terms of competition have changed.23   

 

(3) Conceptual evolution in mathematics is a group affair. That is to say, not a 

single concept undergoes, rather a group of connected concepts evolves 

simultaneously. For instance, the evolution of the concepts of the integral is 

intimately related to the evolution of the concept of measure.   

 

 

These features show that an evolutionary conceptualization cannot rely on 

some stories told about evolutions that took place elsewhere. Rather, 

philosophers and historians of mathematics have yet to invent the language for 

                                                
22 Cf.Footnote 15.  
 
23 Lakatos has taken into consideration this fact later in his account “Methodology of Scientific 
Research Programmes”.  
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telling evolutionary stories in the case of mathematics. The first steps for this 

endeavour have been done by Lakatos and his theory of concept formation and 

concept stretching. 
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