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TOPOLOGICAL REPRESENTATIONS
OF MEREOLOGICAL SYSTEMS

Abstract. The aim of this paper is to show that topology is a useful
conceptual device for studying mereology. If M is a reasonable mere-
ological system there is a topological space pt{M) such that the class
O(pt(M)) of open subsets of pt( M) represents the class of the mereolog-
ical individuals in a 1-1-fashion by the open sets of a topological space
pt(M) in such a way that the mereological relations and operations
such as parthood, overlapping, fusion, ete. are faithfully represented
by the corresponding relations of inclusion, intersection, union eic in
the topological realm. Moreover, the topological model may be used
to import concepts and relations into mereology which originally were
defined only for topology.

1 Introduction

The aim of this paper is to show that topology is a useful conceptual
device for studying mereology. More precisely, I want to show the fol-
lowing. If M is a reasonable mereological system there is a topological
space pt(#) such that the class O(pt(M)) of open subsets of pt(M) repre-
sents M. That is to say, there is a representing map » : M — O(pt(M))
which maps the mereclogical individuals, i.e., the elements of M, in a 1-1-
fashion onto the open sets of a topological space pt(M) in such a way that
the mereological relations and operations such as parthood, overlapping,
fusion, etc. are faithfully represented by the corresponding relations of
inclusion, intersection, union etc in the topological realm. Hence, at least
sometimes, it is possible replacing the mereological system without loss
by its topological model. Moreover, the topological model may be used
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to import concepts and relations into mereology which originally were de-
fined only for topology. Hence, the theory of the representing topological
domain may be pulled back, so to speak, to the represented mereological
domain.

For special mereological systems this kind of topological representabil-
ity has been known for some time. Already Whitehead pointed out that
Euclidean geometry may be cast in a mereological framework by taking
as its basic primitive concept not the set theoretical notion of point but
rather the mereological concept of region {cf. Whitehead 1929). That is
to say, the basic building blocks of space are taken to be extended regions
instead of points. From spatial regions and their (mereological) relations
all other geometric entities such as points, lines, and surfaces have to be
reconstructed. Whiteheads own account of this reconstruction is rather
sketchy, in a more rigorous fashion it has been partially carried out by
later anthors (cf Grzegorczyk 1960, Clarke 1985, Gerla and Tortora 1992,
Gerla and Tortora 1996, Roeper 1997).

The first step in this process is the conséruction of an underlying set of
points the topology of which may be used to represent topologically the
Whiteheadian mereological system of spatial regions. The basic fact which
renders this possible is the lattice structure of the mereclogical system of
regions. Hence, the theory of lattices may be considered as the bridge
between merology and topology. More precisely, the following holds: if a
mereological system M allows for unrestricted fusion, it already has the
structure of a complete latticel. This is sufficient for the existence of a
reasonable topological representation of M.

The outline of the paper is as follows: in section 2 some basic concepts
and axioms of mereology are recalled. In particular, the concept of fusion
is elucidated. It is shown that mereological systems with unrestricted
fusion have the structure of complete lattices. Some set theoretical and
topological examples of mereological systems are dealt with in section 3.
In section 4 we interpret Stones representation theorem as a representation
theorem for Boolean mereological systems. Topological representations
for general mereological systems are discussed in section 5. Finally, in
section 6 the various pro and cons of different topological representations
for systems of Whitcheadian regions are dealt with. We conclude with
some general! remarks on the relation between topology and mereology in
section 7.

For convenience, mereology is cast in the framework of set theory, i.e.,
mereological systems are considered as relational systems, ie. as sets

! According to Lewis 1991, unrestricted fusion should be considered as a minimal
requirement for any mereological system.
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endowed with a certain mereological structure. More precisely, I take a
mereological system M to be a (special) partial ordering having a maximal
clement (“the universe”) and a minimal element (“the null individual”)?.
The order relation may denoted by “pt”, “<” or “C” depending on the
context. Hence, a mereological system may be denoted by (M, pt) ete.
When there is no danger of confusion a mereological system is denoted
simply by M.

2 Basic Mereological Concepts

Mereology, more than most other theories has been cursed by a jungle
of different notations. For the following, I adopt as far as possible the
terminology of Simons 1987. Sometimes, I diverge using some common
set theoretical or mathematical notation which has a direct mereological
interpretation. Let us fix the minimal requirements mereological systems
have to satisfy in the following definition:

(2.1} Definition

Let M be a set and <C M x M a binary relation. The relational system
(M, <) is called mereological system iff it is a partial order, i.e. iff the
relation < satisfies the following requirements:

(A1, Parthood} z <y = not(y < &), (Irreflexivity)
(A2, Parthood) z<yandy<z=>a <z (Transitivity)

The relation ® < y is to be interpreted as the relation of “proper part-
hood”, i.e., as “x is a proper part of 3. The relation ¢ < y 1= z <
yAx = y is called the relation of parthood. Obviously, < and < are
interdefinable. Hence, a mereological system may be denoted by {M, <)
or, equally well by (M, <).

As is well-known, in mereology one has a choice of primitives. Usually
one begins with “part” (or “proper part”) and defines the other notions
such as “fusion” of “overlapping” in terms of that notion.

(2.2) Definitional Circle of Mereological Concepts
Let (M,<) be a mereological system. The relations of “overlapping”

2While most mereologists acknowledge the existence of a maximal individual, the
null individual is generally met with suspicion (cf. Simons 1987, 13}, In the following
the existence of a null individual is assumed throughout. Id like to emphasize that
I consider the null individual only as a device for neatening the (lattice theoretical)
algebra.
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(“®”) and “fusion” (“v”) are defined as follows:

(2.2.1) Two individuals = and y overlap iff there is a non-null individual
g which is part of both of them: z @y := J2(z < @ and z < y)

(2.2.2) Let M’ C M. The fusion VM is an individual of M that has all
elements of M’ as parts and no part that does not overlap with
at least one of the elements of M'. The fusion V{z,y} is written
asz V.

(2.2.3) If one takes fusion as the primitive concept parthood is defined
bye<yg:=avVy=yw.

(2.2.4) If one takes overlapping as the primitive concept parthood may
be defined by z < y iffVz(z O z = 2 © y).

Accordingly, the basic axioms (Al,<) and (A2,<) of irreflexibiliy and
transitivity of the proper parthood relation have to be translated in the
corresponding axioms for the concepts of overlapping and fusion, respec-
tively. For instance, the analogues of (A1,<) and (A2,<) for the concept
of fusion run as follows:

(AL, v) sVy=yhzfty=>aVyiea
(A2, v} (zvy}vz)=aV(yVvaz)

Analogously, the corresponding axioms {A1,®) and {A2,®) for overlap-
ping may be defined. The axioms (A1) and (A2) are a far cry from fully
characterizing a reasonable notion of parthood (cf. Simons 1987). Rather,
as Simons has pointed out it is a non-trivial task of mereology is to pro-
vide a variety of mereological axioms which may be nsed to chart the area
of acceptable concepts of parthood. I don’t want to deal with this topic
in greater detail being content to mention the following three axioms:

{(2.3) Weak Supplementation Principle (WsP)
(A3) 2 <y=Jz(z <y Anot{z 0 z))

(2.4) The Proper Part Principle (PPP)
{A4) Jz<zAVz(z<a=zz<y) = a<y)

From (PPP) one easily gets the following extentionality principle: if =
and y have proper parts and the proper parts of = are the proper parts of
y and vice versa = and y are identical.

Mereologists are divided over the question of how large the range of
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fusion or composition should be. Does every finite family of individuals
have a (unigue) fusion, or even any collection of individuals? In this paper
I take the radical stance that any collection of individuals has a unique
fusion. Since the mereological system are assumed to be sets this may be
expressed as follows:

(2.5) Axiom of Unrestricted Fusion

Let M be a mereclogical system. If M' is a subset of M there exist a
unique individual V.M’ such that all ® of M’ are parts of VM' and any
part of VM’ overlaps with at least one of the elements of M'.

As we will see in a moment mereological systems M which satisfy (2.5)
have the structure of a complete lattice. Since the class of mereological
individuals is assumed to be a set, we may talk about the set PM of sub-
sets of M. The axiom of unrestricted fusion asserts that for any subset
N C M there is a unique element VN of M called the fusion of N. Hence,
the operation of fusion may be considered as a map V' : PM — M. A
reasonable fusion map will have to satisfy the following structural prop-
erties:

(2.8) Structural Properties of Fusion

Let M be a mereological system, and V : PM ~— M an operator. For
B € PPM define VB := {VN : N € B} ¢ PM. Then the fusion opera-
tor V:PM — M induces an operator which maps PPM to PM. This
operator is also denoted by V : PPM — PM. V is assumed to satisfy
the following properties:

(1) V:PM — M is surjective.
(2) V(VB)=V(UB)

Condition (2 is called the condition of full associativity (Erné 1982, 99).
It ensures that the fusion of fusions coincides with the fusion of set theo-
retical untons.

(2.7) Definition and Lemma {Erné 1982, 5.6. Satz)

Let M be a mereological system with a fully associative fusion operator
V. The operator V gives rise to an operator V : M x M — M defined
by @ Vy := V({=,y}). This operator is idempotent, commutative and
associative. Moreover, (M, V) is a complete join semi-lattice.
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Starting with a general fusion operator V of a mereological system M one
actually has two choices for defining an order on M. Fortunately, they
coincide:

(2.8) Propositicn
Let V : PM — M be a fully associative fusion operator. Then it defines
partial orders < and pt (for parthood) on M in the following ways:

()  e<y=V(g=yie,s<y=aVy=y
(2} zpty:=3zandyVz=ua.

The relations pt and < coincide.

The relation pt is the familiar parthood relation related to fusion by
(2.2.3). That is to say, if in mereology we start with fusion as the primitive
notion, the derived parthood relation is just pt (cf. Lewis 1991). Hence,
due to (2.8) our fusion-based approach is fully in line with the more fa-
miliar conceptualizations of mereology. The essential point to note is the
following: if we restrict our attention to mereological systems (M, V) with
complete fusion V, the operator V defines in a natural way a complete
partial order < (or pt). Hence, we may consider mereological systems as
complete Jattices, not only as semilattices. Hence, mereology understood
as the theory of mereological systems satisfying the axiom of unrestricted
fusion may be pursued in the framework of the theory of complete lat-
tices. This, as will become clear in the following, also opens the gate for
topological considerations. Moreover, one may flesh out the concept of
fusion in several interesting ways which as far as I know have hitherto not
been pursued in mereclogy. For instance, one may stipnlate that fusion is
distributive in the following sense:

(2.9) Definition
Let (M, V) be & mereological system with at least finite fusion V. The
system is distributive iff the following two conditions are satisfied:

zA(yvz)=(zAy)V(@Az)andaA(yVz)={zAy)V(zAz)

An even stronger condition concerning arbitrary fusion will turn out to
be topologically important:

(2.10) Definition
Let (M,V) be a mereological system with universal fusion conceived of
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as a complete distributive lattice in the sense of (2.7). The fusion is 2
Heyting fusion iff x A Vy; = V{2 Aw}

As is well known, for the lattice of open sets O(X) of a topological space
(X,0(X)) the set theoretical union is a Heyting fusion in the sense of
(2.9). As it will turn out in the following, the requirement that the fu-
sion of a mereological system has a Heyting fusion suffies that it may be
represented by a topological space.

3 ‘Topological Examples of Mereological
Systems

The mereological systems that most easily come to mind are the set theo-
retical ones. For any set X the power set P(X) of X defines a mereological
system (P{X), C) by taking set theoretical inclusion as the parthood rela-
tion. This recipe, however, only yields a very special class of mereological
systems, to wit, the so called Boolean mereological systems which have the
structure of a Boolean algebra. A good strategy to find other examples is
considering appropriate subclasses of P(X). A rich source for mereolog-
jcal systems is provided by the various systems arising from topological
considerations,

Assume that X is a topological space, i.e., a set provided with a topo-
logical structure O(X) € P{X)3. Then (O(X), C) is a mereological sys-
tem. QGenerally, O(X) is not a Boolean algebra but only a Heyting al-
gebra.* Hence, topological structures O(X) provide a more general class
of mereological systems than the class of set theoretical examples such
as (P(X),C). Actually, the mereological systems (O(X), C) do not sat-
isfy some of the mereological principles which are considered by some
authors as the most natural mereological principles such as the proper
parthood principle (PPP) or the weak and strong supplementation prin-
ciples (WSP) and (SSP). This amounts to a sort of clash, so to speak, of
mereological considerations on the one hand, and topological ones on the
other: From a topological point of view, the class O(X) of open sets of X
is a quite natural and well-behaved entity. On the other hand, and this

3 As a reference for the topology needed in this paper one may use any standard text
book or, as a very concise summary, the “Topological Toolkit” of Davey and Priestley
1990. theical (O(X), C) is not the only mereological system arising in topology. Other,
topologically defined mercological systems are (C(X), C), (0*(X),C) and (C*{X), C)
the sets of closed, regular open, and regular closed subsets of X, respectively. 0*(X)
is a complete Boolean lattice. Its role in mereology will be discussed in section 6.

4If the topology O{X) is the trivial discrete topology, the mereological system
(0(X),C) is a Boolean system. Hence, “Boolean” may be considered as a trivial
special case of “Heyting”.



470 Thomas Mormann

may be somewhat surprising, mereologically, (O{X), C) might not behave
well since it does not satisfy the (PPP). This is shown by the following
example:

(3.1) Example

Let (O(X),C) ke the topological mereological system defined as follows:
X ={a,b,c},0(X) = {0, {c}, {a, ¢}, {b,c}, {a, b, c}}.

The system (O{X), C) does not satisfy (PPP).

Proof

As is easily checked the individuals {a,c},{b, c} € O(X) have the same
proper parts, namely {c}, nevertheless they do not coincide. Hence,
(O(X), C) does not satisfy (PPP).

(3.1) shows that the axioms of general topology are too weak to ensure
that the resulting mereclogical systems (O(X), C) satisfy even the most
natural mereological requirements. For (PPP), this shortcoming may be
easily overcome: there is a genuinely topological axiom which ensures that
mereological systems (O{X), C) satisfy (PPP).

(2.2) Definition and Lemma

1) A topological space X satisfies the separation axiom Ty iff for any
a,b, a £ b, there exist U(a),U(b) € O{X) containing @ and b
respectively, such that b ¢ U(a) and a ¢ U(b). If X satisfies T it
is called a T -space.

(i)  If X is a Ty-space the mereological system (O(X),C) satisfies
(PPP).

Proof

Assume that X is a Ty-space. Let U,V be elements of O(X), and let us
further assume that for them the premisses of (PPP) hold, ie., there is a
nonempty open subset W of U and any open subset of U is a subset of V.
Note that § £ W C U NV. Hence there is an element y ¢ W C UNV.
We have to show that U is a subset of V.

Suppose this is not the case. Then thereis anz € U with @ ¢ V. Due
to (13 ) there is an open neighborhood Z of @ which does not contain y.
Hence Z is a proper part of U. Hence it is a subset of V. This implies
@ € V. This is a contradiction.

The separation axiom T; is only one of a whole family of separation ax-
ioms. It is natural question whether other axioms of this family may
have mereological counterparts as well. This is indeed the case (cf. (5.5).
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Hence, in the case of (PPP) and T, mereological and topological con-
siderations run quite parallel. The axiom (WSP) shows, however, that
these two perspectives do not match always that smoothly. The following
example shows that the mereological axiom (WSP) may not be satisfied
even by topologically quite well-behaved systems:

(3.3) Example
Let J be the Euclidean space endowed with the standard topology O(J).
The mereological system (O{J), C) does not satisfy (WSP).

Proof

In order to show that O(J) does not satisfy (WSP) one constructs a proper
open subset S of J that Jacks a supplement in the sense of (WSP). Let
Q) denote the set of points of J with rational coordinates. @ is countable
and dense in J, i.e., the closure of Q is J. Hence, it may be described as a
sequence of points (As)icn. Let e and e; (i € N) be positive real numbers
such that De; < e. Let S; (¢ € N) be open spheres with centers A; and
volume smaller than e;. Then the sum of the volumes of the S; is smaller
than e. Denote the fusion of the S; by S. Since § is the join of elements
of 0(J), and O(J) is closed with respect to arbitrary joins if also belongs
to O(J). The volume of S is e, i.e., much smaller than the volume of the
whole space J. Hence, § and J are different. More precisely S C J. Since
Q C S, S is dense in J. Hence, there cannot be an open subset T C J
disjoint from S. Thus, (WSP) does not hold for (O(J), C).°

(3.3) shows a certain disharmony between mereology and topology: what
may appears to be “well-behaved” from a topological point of view may
not be “well-behaved” from a mereological point of view, and vice versa.
This topic will be pursued on a representational level in section 6.

4 'Topological Representations
of Boolean Mereological Systems

Now let us come to the central topic of this paper, namely, the topolog-
ical representation of mereological systems. Let us start with a special
but nevertheless quite paradigmatic case, to wit, the representation of
{complete) Boolean mereological systems.

The proof of a topological representation theorem for these systems has
been a major mathematical achievement, namely, the proof of the path-
trailing Stone representation theorem (cf. Stone 1936). Of course, Stone

EThe relevance of this fact will be discussed from a different angle in section 6.
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was not interested in mereology.® Nevertheless, his result can naturally
be interpreted as a fundamental achievement concerning the topological
representations of a special class of mereological systems, to wit, Boolean
systems.

Since the proof of Stone’s representation theorem may be considered
as paradigmatic for all subsequent of more general and more refined repre-
sentation theorems let us briefly recall the basic lines of one of its simpler
versions.

Let L be a lattice and denote the set of a prime ideals of a lattice L
by I,(L). Then there is a natural map » : L — P(I(L)) defined as
follows: For a & I define r{a) as 7(a) := {I € I;(L);a ¢ I}. As is casily
seen, the family {r(a);@ € L}acr is closed under finite intersections and
finite unions, but possibly not under arbitrary unions. Hence, a topology
O(I (L)) on I,(L) is defined by

O(I,(L)) = {V C I,(L); V is a union of members of {r(a);a ¢ L}eer}

In other words, the map » : I —3 P(I,{(L)) may be conceptualized as
amap 7 : L — O(Ip(L)). Under suitable circumstances specified by
Stone’s theorem the representation = is an isomorphism. That is to say, r
yields a faithful topological representation of the lattice L.

From a mereological point of view, however, Stone’s representation
theorem leaves something to desire. Actually, mereologists were not in-
terested in abstract Boolean mereological systems, but rather with very
specific ones, namely, Whiteheadian systems W of spatial regions. Ac-
cording to the Whiteheadian theory of space, spatial regions are the basic
building blocks of physical (Euclidean) space. Although these systems
may be conceptualized as Boolean lattices W the representing topological
space O(I,(W)) of the Stone representation theorem is not the Fuclidean
space the Whiteheadian account of space intended to reconstruct from the
system of spatial regions. Far from it: whilst physical space is connected
the Stone space of a Boolean algebra is extremely disconnected. Hence,
an abstract Boolean system of regions does not suffice to reconstruct the
corresponding topological space.

Abstract Boolean systems are lacking an essential feature of Euclidean
space. Some further structure, beyond the mereological one, is needed, or
so it seems. Already Whitehead proposed to take as this extra structure
a connection or touching relation between regions. This relation describes
an apparently non-mereological relation between spatial regions. In the
1-dimensional case such a relation is exhibited by the following situation:

§Tor Stone's motivational background see Piazza 1995,

PR
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take X to be the real line R and consider two open intervals A = (a, b} and
B = (b,c),a < b < c. Although A and B do not overlap, their relation
should be distinguished from, say, the relation between A and B', the
Jatter defined as B' := {a + d, ¢ + d), d > 0. Intuitively A and B may be
said to touch each other while A and B’ are strictly apart. Topologically,
this relation may be described by the relation that the closures of A
and B intersect non-trivially, i.e., cl(A) N el(B) # §. As it seems, this
cannot be done in purely mereological terms. Stone’s representation does
not represent this touching or connection relation: from a mereological
point of view, both A and B, and A and B’ are just non-overlapping
mereological individuals. Hence, as it seems, pure mereology does not
suffice to achieve what the adherents of a Whiteheadian account of space
expected from it, namely, to offer a complete reconstruction of physical
space from & purely mereological base.”

Instead of a crude topological representation 7 : W — O(X(W))
(here {X(W) is a set of “poinis” somehow comstructed from the system
of spatial regions W, not necessarily I,(W)) one therefore would need a
refined topological representation r : (W, C) — (O(X(W)), Cp) which
somehow takes into account the connection relation C representing it by a
topologically defined relation Clo. This track has been pursued by several
authors, see Grzegorczyk 1960, Clarke 1985 or Roeper 1997.8

5 Topological Representations
of General Mereological Systems

In section 3 we considered the topological systems (O(X), C) as special
case of mereological systems. The existence of topological representations
for general mereological systems will show that the (O(X), C) are much
more common than one might have thought. More precisely, mereological
systems (M, <) turn out to have (more or less) faithful topological mod-
els (O(pt{M)), C). This is not quite obvious since topological structures
are special set-theoretical structures which seem to be dependent on the
notion of point or element, not -available in mereology.

7 Actually, this is not true. It is possible to define a connection relation in purely
mereclogicali.e., Iattice theoretical terms (cf. Mormann 1998.

8For several reasons, the presently available versions of a Whiteheadian theory of
space are not fully satisfying. First, they introduce apparently non-mercological prim-
itives such as the connection relation. Second, and this is a more important shortcom-
ing, they are ignore some important mathematical tools which render the theory of
contimious lattices the apprepriate framework for dealing with Whitehead’s problem
(ef. Benaschewski and Hoffmann 1981). For instance, in the framework of continuous
lattices the *Main Theorem” of Roeper's is obtained in & quite direct and natural way
{ef. Mormann 1998).
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The theories of pointless topology has shown that the dependence on
points in topology is not as deep as one might have expected. Large parts
of topology may be done, at least in principle, without recourse to points
(cf. Johnstone 1983), Mac Lane and Moerdijk 1992). For many issues it
suffices to deal with the lattice O(X) of open sets, ignoring the underly-
ing set X. It is even possible, to reconstruct the set X from the lattice
O(X). The recipe for this construction is practically the same as the one
Stone employed in the proof of his representation theorem. One topol-
ogizes the set of prime ideals pt{O(X)) of O(X) in an appropriate way
thereby getting a topological space (pt{Q{X)), O{pt(0O(X)). Under mild
restrictions, O(pt{O(X)) is isomorphic to O(X). This yields a topological
representation of G(X).

The details are as follows: Let 2 := {0, 1} denote the 2-point set. 2
may be considered as a complete lattice, taking 0 as the bottom and 1 as
the top element and the obvious lattice theoretical operations. Hence we
may consider the following set of mappings a : O(X) — 2:

(5.1) Definition
Let L be a complete lattice.

(1) Denote by pt(L) the set of mappings a : O(X) — 2 which pre-
serve infinite joins and finite meets. The set pt{L) is called the
set of (generalized) points of L.

{2) L is said to have enough points iff the points of L separate the
elements of L, i.e., for any two elements ¢,y € I thereisana € L
such that o{z) # a(y).

The rationale of (5.1) is the following: Suppose L is the lattice O(X) of
open sets of some topological space X. If O(X) is well-behaved, there
is a natural bijection ¢ : X — pt(O(X)) defined by #{z)}(U) := 1, if
z € U, and (z)(U) = 0, otherwise. Hence, we may call the maps @ :
pt(O(X)) — 2 points of X, or even points of O(X) , even if O(X)
happens to lack an underlying set X. The point of this definition of
points of O{X) is that it only depends on the lattice properties of O(X)
and not on X itself.

(5.2) Definition and Lemma

(1) A topological space X is sober iff for any P € O(X) such that (i)
PL£X, HUNV CP=UCPorV CP there is a unique
point z € X with P = X — cl({z}).
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(2) The mapping v : X — pt{O(X)} is a bijection iff X is sober.
Sober spaces abound. For instance, Hausdorff spaces are sober. Hence,
there is 2 large supply of spaces for which the representation r : X' —
pt{O(X)) is a bijection. For U € O(X) define r(U}) as {a;0(U) = 1}.
Hence, the map 7 induces a map r : O{X) — P{pt{O(X})). As is casily
seen the sets »(U/) define a topology O(pt(O(X)) on pt(O(X)). With
respect to the topologies O(X) and O(pt{O(X))r : X — pt(O(X)) is 2
homeomorphism.

The definition of pt{O(X)) does not depend on the fact that the ele-
ments of O(X) be sets of points. The only feature of O(X) employed in
the construction of pt(O(X)) is that O(X) is a complete lattice. More
precisely, the elements of pt{O(X)) are just the prime elements of o(X).
Hence, this construction may be carried out for any complete lattice L.
Consequently, the elements of pt(L) are called the points of L although L
may not have any “real” points at all. Then we may define the topological
representation of L as follows:

(5.3) Definition and Lemma
Let I be a complete (semi)lattice, and pt(L) the set of points of L. De-
fine the mapping v : L — P{pt(L}) by r(z) = {a;a{z) = 1}. The
sets {r(z);z € L} define a topology O{pt{L)) on pt(L). Hence, 7 may
be conceptualized as a map r : L ~—= (pt(L)), and r may be called the
topological representation of L.

Proof:

One has to show that the class of sets {r(z);x € L} C P(pt{L)) is closed
with respect to arbitrary union and finite intersection. This immediately
follows the fact that the elements of pt(L) preserver arbitrary joins and
finite meets.

(5.4) Corollary (Topological Representation of mereological sys-
tems)

If (M, V) is a mereological system with complete fusion V there is a
canonical representation r : M — O(pt(M))}. The topology O(pt{M))
on pt( M) is defined by O(pt(M)) := {r(z)}; = € M}. Ifthe fusion of (M, V)
is a Heyting fusion and M, conceived as a lattice, has enough points in
the sense of (5.1) the topological representation v : M — O(pt(M)) is a
lattice isomorphism. Moreover, O(pt(M)) is sober.

To assess the strength of this representation theorem one has to get infor-
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mation under what conditions the space pt{/{} is sufficiently non-trivial
to make the representation v useful. These conditions should be genuine
mereological conditions, ie. requirements formulated in purely mereo-
Iogical terms. We are content to give one paradigmatic example which
shows how mereological counterparts of topological concepts may be con-
structed. This paradigmatic example is dealing with the mereological
analogue of the familiar Hausdorff separation axom Th:

(5.5) Definition (Hausdorff Separation Axiom)

Let X be a topological space. The topology O(X) is Hausdorff (or sat-
isfies the axiom Ty ) iff for all different a,b € X, there exist disjoint open
sets U(a}, U(b) € O({X) containing a and b respectively.

If we want to define a mereological analogue of (5.5) first we have to say
what is the analogue of “points” in mereological systems:

(5.8) Definition (Prime individuals)

Let M be a mereoclogical system. An individual p € M with p #£ 1 is
a prime individual if aAb < p= a < porb < p. M is a Hausdorff
mereological system iff all different prime individuals p and ' have parts
q and ¢', respectively, such that ¢ Cp, ¢ € ¢, ¢ Cp,andg¢ ¢ p.

Boolean mereological systems are Hausdorfl systems. The following propo-
sition confirms the intuition that prime individuals may serve as substi-
tutes for points:

(5.7) Proposition

Let M be a complete Hausdorff mereological system with Heyting fusion.
Then the topological representation v : M —3 O(pt{M)) is an isomor-
phism.

Proof:

First note that the prime individuals of M correspond in a I-I-fashion
to the elements of pt{MY): if p is a prime individual a homomorphism
@p * M -— 2 is defined by ¢p(m) = 0 if m < p. As is easily seen,
¢p is an element of pl(M), ie., it preserves finite meets and infinite
joints. In the other direction, ¢ € pt(M) defines a prime individual py
by py = V{m;d(m) = 0}. Since M is assumed to be Hausdorff this
correspondence is 1-1 and the topology O(pt(M)) induced on pt{M) by
the representation r : M — O{pt(M)) is Hausdorff.
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Topological representability is not restricted to mereological systems
with unrestricted fusion. For more general systems one may obtain a topo-
logical representation via completion: since for any mereological system
(M, <) the axioms (A1) and (A2) are assumed to be valid, any mereo-
logical system is at least a partial order. Hence we may embed (M, <}
into a complete lattice (M*,V,A) in a canonical way e : M — M*.
There are several possibilities to do that. Maybe the most elementary
and most economic one is the Dedekind-Mac Neille completion, (cf. Davey
and Priestley 1990 Davey/Priestley 1990) which is isomorphic to M if M
happens to be already complete. Via this embedding one may obtain a
topological representation M —» M* -3 O(pt(M*)). Summarizing we
may say that all mereological systems have topological representations of
one kind or another. Of course, these representations may widely vary
with respect to the degree of how faithful they represent the mereologi-
cal structures. Indeed, there are lattices I with pt(L) = @. For them, 2
topological representation is rather pointless.

6 Do Mereology and Topology Really Go Well Together?

In this section I’d like to resume the fopic of a possible clash of mereo-
logical and topological considerations already briefly addressed in section
3. Recently, For-rest contended that the mereology and Whiteheadian
theory of space are incompatible (cf. Forrest 1396b). More precisely he
claims that the mereological axiom of countable fasion (CF) clashes with

fairly plausible geometric convictions. To put it bluntly, according to him,

countable fusion is incompatible with the rather plausible thesis (W} that
space is Whiteheadian. Graham Oppy argues against Forrest that the in-
consistency of (W) and {CF) only arises because Forrest’s Whiteheadian
account of space is formulated in terms which poach on the preserves of
mereology (Oppy 1997).

In this section I want to show that both Forrest and Oppy are mis-
taken. Against Forrest I argue that his incompatibility thesis stands in
need of qualification. More precisely, I argue that Forrests incompatibility
result may be considered as an artifact of his representational framework.
Against Oppy I contend that Forrest’s account of a Whiteheadian theory
of space can and should be maintained. Moreover, Oppy’s liberalization
of the concept of Whiteheadian regions amounss to the unconditional sur-
render of the Whiteheadian account, since it opens the door for points
as primitive spatial entities. It will be shown that one can get every-
thing Oppy is after without any alterations of the original Whiteheadian
account.
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Let us start with Forrest’s incompatibility thesis. The proof of the
incompatibility thesis crucially depends on two assumptions, namely, the
volume assumption (V) and the assumption of regular representatibility
(RR}. (V) states that the volume of a fusion of regions does not exceed
the sum of the volumes. (RR) states that Whiteheadian regions are to be
represented by regular open (or regular closed) sets.? If either (V) or (RR)
is dropped Forrests proof founders. Moreover, there are good reasons not
to subscribe to the conjunction (RR} & (V).

First let us fix some notation. The natural numbers are denoted by
N. Let J denote the 3-dimensional vector-space over the real numbers R.
J is assumed to be endowed with the standard topology and the standard
Lebesgue measure m defined on the Borel subsets of J. According to For-
rest’s reconstruction Whiteheadian regions have to satisfy the following
requirements (among others):

(6.1.) Basic Assumption of a Whiteheadian Account of Space

(a) Regions may be represented by sets of points in such a way that
each representing set contains a sphere, that is, all the points
distance less than some positive z from some point Z.

(b) Among the regions there are spherical regions of arbitrarily small
diameter.
{c) The representations of regions as sets of points preserve volumes.

That is, the volume of a region equals the Lebesgue measure of
the corresponding set of points,

The class of Whiteheadian regions of space is denoted by W. W is as-
samed to be a mereological system in the following sense: If the region
X is paxt of the region Y this is denoted by X ptY. Parthood is assumed
to be transitive. Other mereological concepts are defined as usual: the
regions X and Y overlap iff they have a common part, X and ¥ are said
to be disjoint iff they do not overlap. The region Y is a fusion of the
regions X; iff all X; are parts of ¥ and no pazt of Y is disjoint from each
of the X;. The axiom of countable fusion (CF} states that for any count-
ably many regions a unique fusion exists (Lewis 1991). Forrest intends to
show that this assamption is incompatible with 2 Whiteheadian account
of space.

A representation of regions is a 1-1-mapping of regions to sets sending

®While Forrest explicitly argues for (V), the motive for (RR) remains implicit. In
a footnote he asserts that for various reasons Whiteheadian regions should best be
represented by regular open or regular closed sets { Forrest 1996b). The peculiar
consequences of {RR.), however, are not discussed at all.
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proper parts to proper subsets (Forrest1996, 128, Footnote 4). This is
rendered explicit as follows:

(8.2) Definition

Let W be the the class of Whiteheadian regions. A WF-representation of
W into P(J) is a 1-I-mapping r : W -— P(J) such that (6.1) (a) - (c)
are satisfied. Moreover, for all regions X,Y of W the representing map r
is assumed to satisfy the following conditions:

(1) For any B € J, arbitrarily small regions R exist such that B ¢
r(R).

(2) X <Y =r(X)Cr(Y)

These assumptions do not uniguely determine the class of sets which are
to represent Whiteheadian regions. Not just any contrived subset of J
should be allowed to represent a region. Rather, Whiteheadian regions
should be represented by nice or well-formed subsets of J. Hence, a fully
fledged Whiteheadian account of space should restrict the range of the
representation » 1 W — P(J) to a suitable subset N{J) C P(J) such
that the elements of N{J)} are nice subsets of J. In other words, a WEF-
representation is a mapping » : W ——3 N{J}. What is to be understood
by this informal notion may be explicated by topological notions. In the
following I'd like to concentrate on two kinds of WF-representations:

{6.3) Definition
Let 7 : W — P{J) be a WF-representation.

(1} 7 Is an open representation if it maps regions onto the open sefs
of J. An open representation is be denoted by r : W — O(J).

(2) r is a regular open representation if it maps Whiteheadian regions
onto the regular open sets of J. Hence, a regular open represen-
tation may be denoted by r : W —» O*(J).

Obviously, any regular open representation gives rise to an open represen-
tation, just forget about regularity. This is rendered precise as follows: let
i : 0*(J) — O(J) denote the canonical inclusion. Then a regular open
representation 7* : W —» O*(J) can be “prolonged” to an open repre-
sentation ior* : W — O*(J) — O(J). Hence, open representations
may be considered as more basic than regular open representations.

Forrest’s proof of the incompatibility of countable fusion (CF) and
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Whiteheadian account of space (W) is based on the construction of a re-
gion S represented by an open subset #(S) € J having a small volume
and a thick topological boundary. According to him, this leads to con-
tradiction. As I want to show this conclusion is valid only if one assumes
(V) and (RR).

Slightly simplified, Forrest’s construction runs as follows: Let @ denote
the set of points of J with rational coordinates. @ is countable and dense
in J, te., c(Q) = J. Hence, it may be described as a sequence of points
(A;)ien. Let e and e; (i € N) be positive real numbers such that Se; <e.
Let S; (¢ € N) be regions mapped by 7 onto open spheres r(S;) with
centers 4; and volame smaller than e;. Then the sum of the volumes of
the S; is smaller than e. Let us assume that the fusion of the S; exist and
denote it by S.

Now the crucial guestion is: what is the representing set of the re-
gion §? The answer depends on what kind of representation we rely.
If r is a tegular open represemtation: W — O*(J)} the region 5 must
be represented by a regular open subset of J which contains the 7{S;).
As is easily seen the only regular open set which satisfies this require-
ment is J itself Hence, for regular representations we get #(5) = J.
The set 7(S) is the closure of the set theoretical union |Jr(S:). The
volume of this set is smaller than e (which may be chosen arbitrarily
small). Hence, S may rightly be called a region with a “thick” boundary,
because the volume m(r(S)} = m{J) which is much larger than e. Con-
sequently, for a regular representation 7 the existence of the countable
fusion § of the S; contradicts the volume assumption {V), since we have:
m(r(9)) = m(J) > e > e; > Lm(r(S;)). Now we can state Forrest’s
result as follows:

(6.4) Proposition
The conjunction (RR) & (V) & (W) is incompatible with (CF).

This incompatibility is, after all, not a very happy state of affaixs. We may
attempt to circumvent it by dropping either (W), (RR) or (V) thereby
hopefully retaining (CF). Oppy’s proposal to drop (or modify) (W) will
be dealt with in the next section. Let us first consider the option of
giving up (RR), i.e., we no longer require the representing sets of White-
headian regions to be regular open. Rather, we assume that r is an open
representation only. In this case the set-theoretical union of the »(S%)
represents the fusion S, ie., 7(8) = |Jr(S:). Since r(S) is a countable
union of open sets, it is measurable. With respect to the volume we get
¥(S) = m{J7(S:)) < Zm(r(S:)) = To(S;) = e. That is, for a non-regular
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open representation the volume assumption (V) is not violated, and For-
rest’s incompatibility thesis no longer holds. Hence we get:

(6.8) Proposition
The conjunction (W) & (V) is compatible with (CF).

Of course, we have a price to pay. The class of open sets O(J) which
represent Whiteheadian regions is larger than O*(J) and may contain
members we do not like in the office of representing honest Whiteheadian
regions. Hence, admittedly, O(J) may not be the optimal candidate for
the representation of Whiteheadian regions. It should be noted, however,
that O(J) need not be the last word. 1

Now Iet us consider the move of giving up (V) and retaining (RR). In
this case the axiom of countable fusion (CF) may hold, ie., the fusion S
of the §; exists although its volume may exceed the sum of the volumes
of the 5;. Hence we get:

(6.6) Proposition
The conjunction (W) & (RR) is compatible with (CF).

At first look, giving up (V) (and keeping (RR}) may be considered as a
rather desperate move. It is, however, more plausible than Forrest wants
to make us believe. In fact, (V) and (RR) do no harmonize very well with
each other. Even for finitely many regions X;, ¢ = 1,...,n, the regular
fasion F.X; is often represented by a regular open set #(FX;) which is
strictly larger than the set theoretical union of the sets #(X;) representing
the X;, i.e., one may have |Jr(X;) € #(FX:) and |Jr(X;) # »(FX3).
Of course, for finitely many X; the Lebesgue measure of the difference
r{FX;}/|Jr(X;) is zero. Nevertheless regular representations inevitably
violate what may be dubbed the principle of extension (E) according

10With the aid of the Lebesgue measure m the class O{J) may be restricted to
a smaller better behaved class Qr{J) of open sets without violating the volume as-
sumption (V). Let X € P(J} be a Lebesgue measurable set and w € J. For 7 > 0 -
denote the open ball around = of radius » by B(z,7). Then we may define the den-
sity 8(X,z) of X at & by §(X,x) := lime_som(X N B(z,7)}/7* whenever the limit
exists. The measure theoretic closure elg,(X) of X is defined as the set of all points =
which satisfy d(X,z) # 0. As is easily scen cly, is a closure operator on O(J). Hence
we can define the class Or(J) of Lebesgueregular open sets X as the elass of open
sets which satisfy intz (el (X)) = X. Replacing O(J)} by Or(J), ugly open sets, e.g.,
sets with low-dimensional holes, may be excluded from the class of region-representing
sets. Moreover, since the volume m(elf,(X)/X) of the Lebesgue-boundary el (X)/X
is known to be 0, Lebesgue-regular open mereological representations W —— O}
satisfy (V).
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to which the extension of a fasion should not exceed the fusion of the
extensions. (E) may be considered as a weak version of (V). For adherents
of (RR) who reject {E) anyway, it should not be overly difficult also fo
give up (V). The reward is high, namely, the restoration of mereology’s
innocence.

Trouble with countable fusion (CF)} only arises, when (RR) is consid-
ered as a sacrosanct principle. This brings us in conflict with the volume
assumption (V). Moreover, even if we abandon (CF) the conjunction (V)
& (RR) appears to be problematic, since (V) and (RR) do not sit com-
fortably with each other due to the violation of the extension principle
(E). Hence, Forrest’s verdict on mereology should not be considered as
the last word. For the present, (CF), ie., mereology is to be considered
as innocent.

Let us now come to Oppy’s criticism of Forrest’s contentions. Againsi
Forrest he argues that “countable fusion [has] not yet [been] proven guilty:
it may be the Whiteheadian account of space whatdunnit® (Oppy 1997,
253). In other words, Oppy proposes to give up (W) in order to retain
(CF), i.e., mereclogy. In this section I want to show that Oppy’s attempt
of shifting the blame on the Whiteheadian account of space is ill-founded.
For this purpose I have to rely on some facts of the mathematical theory
of pointless topology (e.g. Mac Lane and Moerdijk 1992, Vickers 1989).

Oppy argues that a Whiteheadian has to subscribe to a concept of
regions according to which the mereological difference between a region
and a countable fusion of regions should again be a region. If it turns
out that this is not the case the concerned concept of region should be
replaced by another one which satisfies this requirement. He claims that
Forrest’s notion of a Whiteheadian region does not meet this condition.

Oppy’s argument is based on the meanwhile notorious countable fusion
S. The details are as follows. Let us assume that regions are (represented
by) open subsets of the topological space J. Now consider the mere-
ological difference S of the regions J and §. According to Oppy, the
mereological difference of the regions J and § is just the set theoretical
difference of their representing point sets. The set J/§ is, of course, not
open. Hence, it does not represent a region in the sense of Forrest. Thus,
Oppy concludes, the Whiteheadian should liberalize his account of regions
admitting regions that are not (representable by} open sets of J. As I will
show this argument is not sound for several reasons. First, Oppy opts
for the wrong concept of mereological difference. Secondly, his account
amounts to a complete surrender of the Whiteheadian account. Thirdly,
his liberalization of the concept of Whiteheadian region is unnecessary.

Let us fixst consider the concept of mereological difference. Oppy starts
with an open representation of Whiteheadian regions, i.e., regions are to
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be (represented by) elements of O(J). Since O(J) is a complete Heyting
algebra it has a well-behaved notion of difference. The difference between
open sets X and Y is not the (Boolean) set theoretical difference X [mY .
Rather, the mereological difference X/, Y of open sets X, Y is defined as
the largest open subset contained in X and having empty intersection with
Y, ie, X/mY = nt(X/CY), CY being the set theoretic complement of
Y in J.

According to Oppy, the class of Whiteheadian regions should be closed
with respect to the difference operation, ie., if X and ¥ are regions the
mereological difference X/,,.Y should again be a region. If we identify, as
Oppy does, the mereological difference X/,,Y with X /Y this requirement
has desastrous consequences for a Whiteheadian account of space. Even
ordinary points come out as Whiteheadian regions: In his 1-dimensional
account this result may be sketched as follows. Start with the (non-trivial)
difference of two open intervals. This is a half-open interval. Since the dif-
ferences of regions are to be considered as a region, half-open intervals be-
come regions. Appropriate intersections of half-open intervals help closed
intervals to be recognized as regions. Finally, intersections of appropriate
closed intervals generate points. This is the unconditional surrender of
the Whiteheadian account of space. Hence, for the Whiteheadian, Oppy’s
generalized account of regions ends in desaster. If we stick to the correct
notion of mereological difference, namely X/,Y, these fatal consequences
do not arise.

Although Oppy’s proposal is doomed to fail, his argumentation points
to a task that cannot be easily dismissed. How we can differentiate in a
Whiteheadian framework between the fusion S and the space J? Asis
easily seen the mereological difference J/ S between J and S is {i. Hence,
the perspectives for a Whiteheadian distinction between these entities
look bleak, to say the least. However, we should not be discouraged.
The fact that J and S are different does not imply, as Oppy assumes,
that their difference can be directly expressed as a difference in terms of
regions, i.e., we cannot expect that for different regions X and ¥ there
exists a (generalized) region making that difference. As I want to show
now, Oppy’s proposed modification of Forrest’s Whiteheadian account is
unnecessary. Sticking faithfully to the original Whiteheadian account of
space according to which regions are to be represented solely by open sets
we get everything we want, namely, a completely satisfying account why
and in what sense J and § are different.

The theory of pointless topology offers a ready-made Whiteheadian
account of space {Mac Lane and Moerdijk 1992, Vickers 1989) which may
be used to distinguish between between S and J in a Whiteheadian style.
One need not invoke any spatial entities that are not regions such as
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points or Oppy’s generalized non-open regions. Very briefly, this works as
follows: Let K be a topological space, i.e., a set of points endowed with
a topological structure given by the Heyting algebra O{K) of open sets.
Then one may recover the set K and its topological structure from O(K)
alone provided the topological structure of K is sober. Since J (and ifs
subspaces) are well-known to be Hausdorff, they are sober. Hence, we
may recover the difference of J and § from the difference of the Heyting
algebras O(J) and O(S5). In order to distinguish between between J and
S we need not introduce, as Oppy does, a new kind of regions beyond the
original ones represented by open sets. That train of thought is fully in
line with the Whiteheadian account. For the Whiteheadian, the realm of
spatial entities is not restricted to regions only. Rather, regions are to be
regarded as the fundamental spatial entities from which the other spatial
entities such as points are to be constructed. Hence, a Whiteheadian
should be happy to be able to reconstruct the set of points J from the
class of regions O(J).

After having shown that Forresi’s and Oppy’s verdicts of guilty on
mereology and the Whiteheadian account of space are not sound, a last re-
mark on the relevance of their intuitive Gedankenezperiments on colouring
or filling space may be in order. In the case of Forrest, these Gedanken-
experiments attempt to show that oddities arise if one does not accept
the incompatibility of (CF) and (W), in the case of Oppy they intend to
show that one has to admit regions that have parts not representable by
open sets. Forrest’s and Oppy’s considerations are based on the seemingly
counterintuitive fact that a large region of space may be “filled” or “cov-
ered” by a region of arbitrarily small volume. A vivid illustration offers
the 2-dimensional case: We may use an arbitrarily small amount of colour
to paint black an arbitrarily large canvas. When we have already accepted
that arbitrarily small amounts of colour are available, this fact shouldn’t
appear as guite so counter-intuitive. Provided the colour is cleverly put
on the appropriate places, it seems plausible that the blackness of the
canvas is essentially in the eyes of the beholder. The relevance of such
intuitive Gedankenezperiments may be limited, however. As for empirical
theories, we cannot expect that ontological theories have to be intuitively
plausible. Thus, we should bite the bullet of apparent intuitive oddities
and stick to precise formal argumentation.

Even if my pleading for the ontological innocence of mercology and
Whiteheadian account of space should be considexred as successful it should
not be considered as the main result of this note. Rather, I'd like to have
rendered plausible that the problems which beset Forrest’s and Oppy’s
accounts point to a new and fascinating field of formal ontology located
at the interface of mereclogy, topology and measure theory, namely, a
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representational theory of mereological structures.

7 Concluding Remarks

Topological representability of mereological systems forges a close link be-
tween both the areas of mercology and topology. Actually, this has been
a desideratum for quite a Iong time (cf. Menger 1940). Although Menger
made this proposal already in 1940, his proposal has been seriously pur-
sued only much later. The establishment of a substantial relationship
with topology would be profitable in particular for mereology. Until to-
day, mereology is a rather isolated “philosophical” discipline, replete of
terminology but not overly rich in substantial theorems. On the other
hand, topology is one of the fundamental disciplines of modern mathe-
matics. Bringing mereology into contact with the full-flegded and highly
non-trivial theories of topological and lattice structures may help mereol-
ogy to leave its present state of theoretical immaturity.
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TOOLS

Predicate Based Logical Relations

between Events

Abstract. It is well-known that predicates play a central role in the
constitution of events and facts. In the present paper, some ideas stem-
ming from grammar theories are used to define and to back up logical
relations between philosophical entities based on predicate forming op-
erations. We suggest formal tools for such operations and give a sketch
how the formal results allow to solve several puwzles. At the end, a
new kind of categorial grammer shows the linguistic relevance of the
method.

1 The Problem

Usually, events are introduced as relata of causal relations, that is, as
entities belonging to reality, to empirical experience in a sense. There are
other empirical relations between events: temporal and spatial relations,
for instance. We are interested in logical relations between events. The
matter of discussion is not that there are such relations. The question is
how we can grasp these relations. The following sections do not give a
complete theory of logical relations between events, but are intended to
develop a tool for analysing such relations.

Sebastian leisurely strolls through the streets of Bologna at 2 a.m.,
and he meets Max duxing his stroll. Intuitively, this sentence is not only
about Sebastian, it is also about a certain stroll. Strolls, like murders,
explosions and widowings are events which may occur, recur, have parts



