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According to the attentional resources account, mind wandering (or “task-unrelated

thought”) is thought to compete with a focal task for attentional resources. Here, we tested
two key predictions of this account: First, that mind wandering should not interfere with
performance on a task that does not require attentional resources; second, that as task require-
ments become automatized, performance should improve and depth of mind wandering
should increase. Here, we used a serial reaction time task with implicit- and explicit-learning
groups to test these predictions. Providing novel evidence for the attentional resource
account’s first prediction, results indicated that depth of mind wandering was negatively
associated with learning in the explicit, but not the implicit, group, indicating that mind
wandering is associated with impaired explicit, but not implicit, learning. Corroborating the
attention resource account’s second prediction, we also found that, overall, performance
improved while at the same time depth of mind wandering increased. From an implicit-
learning perspective, these results are consistent with the claim that explicit learning is
impaired under attentional load, but implicit learning is not. Data, analysis code, manuscript
preparation code, and pre-print available at osf.io/qzry7/.
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From time to time, you might find that your mind wan-
ders away from a task toward something unrelated. For
instance, perhaps while driving to work, you catch yourself
thinking about the groceries you need to get later in the day,
or the upcoming fishing trip that you have planned for the
weekend. Of course, failing to maintain your attention on
the road can be dangerous, increasing the likelihood you
will make a potentially disastrous mistake (Gil-Jardiné et al.,
2017; Yanko & Spalek, 2014). Alas, mind wandering tends
to get a bad rap for its often-negative consequences on task
performance (see Mooneyham & Schooler, 2013 for a re-
view); indeed, some even refer to it as a curse (Hasenkamp,
2013)! Nevertheless, mind wandering can have positive con-
sequences. For instance, returning to our opening example,
mind wandering could help you plan the next grocery shop-
ping trip, help you generate a creative recipe (i.e., future
planning and creativity; Smallwood & Schooler, 2015), or
provide a “mental break” from the mind-numbing activity
of driving (i.e., attentional dishabituation; Mooneyham &
Schooler, 2016).

Although several accounts have been offered to explain
how mind wandering can have these distinctive positive
and negative effects (e.g., McVay & Kane, 2010; Seli, Kane,

et al., 2018; Seli, Risko, Smilek, & Schacter, 2016; Small-
wood, 2013; Smallwood & Schooler, 2015), arguably, the
most popular of these is the attentional resources account.
On this view, mind wandering—hereafter conceptualized
as task-unrelated thought (Seli, Kane, et al., 2018)—and
task-relevant processes compete for attentional resources
(Smallwood & Schooler, 2006).

The attentional resources account makes several predic-
tions about the relationship between mind wandering and
task engagement. First, it predicts that if mind wander-
ing and task engagement draw on the same attentional re-
sources, then focusing on a task (i.e., allocating attentional
resources to task performance) should result in lower rates
of mind wandering, as there are fewer resources available
for mind wandering. Second, and relatedly, this account pre-
dicts that more mind wandering should diminish task per-
formance when both mind wandering and task engagement
draw on the same resources. Third, if mind wandering and
task engagement do not compete for attentional resources,
then mind wandering should not impair task performance.
In other words, if mind wandering and task engagement do
not draw on the same resources, then the processes support-
ing each can run in parallel and should not interfere with
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each other. Finally, the attentional resources account pre-
dicts that mind wandering should increase as a function of
task automatization—or by proxy, time-on-task (Antrobus,
1968; Cunningham, Scerbo, & Freeman, 2000; Smallwood et
al., 2004; Smallwood, Baracaia, Lowe, & Obonsawin, 2003).
Specifically, as time-on-task increases, people learn the task
and subsequently automatize elements of task performance
(Logan, 1988; Logan & Compton, 1998; Moors & De Houwer,
2006; Newell & Rosenbloom, 1981; Schneider & Shiffrin,
1977; Shiffrin & Schneider, 1977). Automatization results
in fewer resources needed to maintain task performance,
which leaves more resources available for mind wandering
(Smallwood & Schooler, 2006). Thus, the increase in mind
wandering with time-on-task corresponds to the rate of
learning in the focal task, or task automatization.

Research on mind wandering provides abundant support
for the first two predictions. Increased task focus (resulting
from increases in task difficulty) typically decreases the rate
of mind wandering (e.g., Brosowsky, Murray, Schooler, &
Seli, under review-b; Giambra, 1989; Seli et al., 2018; Small-
wood et al., 2011; Thomson, Besner, & Smilek, 2013; Xu &
Metcalfe, 2016). Research has also found that mind wander-
ing impairs task performance in a variety of contexts (e.g.,
Franklin, Smallwood, Zedelius, Broadway, & Schooler, 2016;
Reichle, Reineberg, & Schooler, 2010; Seli, Cheyne, & Smilek,
2013; J. Smallwood et al., 2008a, 2008b; Smallwood et al.,
2004).

Surprisingly, there is little work investigating the third
prediction of the attentional resource account: that some
tasks can run in parallel with mind wandering without inter-
ference. This might be due to the outsized use of attention-
ally demanding tasks in mind-wandering research, which
are likely to compete for attentional resources with mind
wandering. As such, it is perhaps unsurprising that the vast
majority of the literature has found that mind wandering
impairs task performance (and, likewise, unsurprising that
mind wandering has earned a bad reputation). Indeed, if
people perform an attentionally demanding task without
focusing on it (i.e., they are mind wandering), probably
their mind wandering will be associated with poorer task
performance.

Mountains of evidence conflict with the fourth predic-
tion of the attentional resources account: that task autom-
atization is associated with increases in mind wandering.
Although mind wandering typically does increase as a func-
tion of time-on-task (Antrobus, 1968; Cunningham et al.,
2000; Smallwood et al., 2004, 2003), this increase does not
appear to reflect automatization of primary-task perfor-
mance. Indeed, one implication of this prediction is that
task automatization should reflect stable (if not improved)
performance over time. However, as mentioned previously,
many studies find that performance decreases as a function
of time-on-task (e.g., Brosowsky, Degutis, Esterman, Smilek,

& Seli, in press-a; Krimsky, Forster, Llabre, & Jha, 2017; Mc-
Vay & Kane, 2012; Metcalfe & Xu, 2016; Risko, Anderson,
Sarwal, Engelhardt, & Kingstone, 2012; Teasdale et al., 1995;
Thomson, Seli, Besner, & Smilek, 2014).

The conflicting evidence, however, should be taken with
a grain of salt: Tasks used to study mind wandering (e.g.,
SART, vigilance tasks, metronome response tasks) are un-
likely to be appropriate for evaluating the relationship
between learning, skill-acquisition (i.e., task automatiza-
tion) and mind wandering. These tasks are simple and
monotonous by design, often requiring single-button re-
sponses, and presenting target stimuli that are either rare
and unpredictable (e.g., SART) or perfectly predictable (e.g.,
the metronome response task). In other words, such tasks
are unsuitably structured for learning because there is noth-
ing to learn about the tasks beyond their very basic perfor-
mance requirements. Likewise, there are few, if any, skills
to develop while performing such tasks. In these situations,
then, mind wandering is less likely to reflect learning than it
is to reflect a scenario in which participants give up on fully
focusing on the task (Brosowsky et al., in press-a; Seli et al.,
2013).

The attentional resources account predicts that in-
creased learning should lead to increased mind wandering
by “freeing up” resources to be allocated to mind wandering.
Critically, however, this argument presumes that tasks can
be learned; while this may be true, the tasks employed in
many laboratory studies tend not to permit such learning.
Moreover, in light of restricting mind-wandering research
to a few attentionally demanding tasks, extant research has
not investigated whether mind wandering can run in par-
allel with certain kinds of tasks. Thus, to test these two
predictions of the attentional resources account, different
tasks must be used.

Therefore, in the current study, we assessed whether
(a) a focal task that does not draw on the same atten-
tional resources as mind wandering can run in parallel
with mind wandering without interference, and (b) task-
automatization is associated with increases in mind wan-
dering. To do this, we examined the influence of mind wan-
dering on performance during an implicit (versus explicit)
sequence-learning task.

Implicit learning is the process of acquiring information
about the underlying structure of the material without any
intention to do so (Keele, Ivry, Mayr, Hazeltine, & Heuer,
2003; Nissen & Bullemer, 1987; Reber, 1989; Seger, 1994).
Implicit learning occurs across a variety of domains (Cleere-
mans, Destrebecqz, & Boyer, 1998), but is most commonly
investigated using a serial reaction time (SRT) task (Nis-
sen & Bullemer, 1987; for a review, see Schwarb & Schu-
macher, 2012). In this task, a target can appear in one of
four locations, and participants are instructed to identify
the location of a target by pressing a corresponding key.
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Critically, unbeknownst to participants, targets occur in
a fixed sequence that repeats throughout the experiment
until eventually the sequence changes to a new sequence
of target locations. Participants typically perform better
on the training sequence as compared to the unpracticed
sequence. However, despite this performance advantage,
participants are often unable to reconstruct the sequence,
and they report no awareness of the repeating sequence,
which rules out explicit learning (Pasquali, Cleeremans, &
Gaillard, 2019; Schwarb & Schumacher, 2012).

Historically, there has been considerable debate as to
whether implicit learning relies on attentional resources
(Cleeremans, Allakhverdov, & Kuvaldina, 2019; Jiménez,
2003). Nevertheless, numerous results converge on the view
that implicit learning does not require attentional resources
(e.g., Baker, Olson, & Behrmann, 2004; Frensch & Miner,
1995; Jiang & Chun, 2001; Jiménez & Mendez, 1999; Turk-
Browne, Jungé, & Scholl, 2005). Explicit learning, however,
requires executive processing and attentional resources to
guide attention, maintain task goals, and reduce interfer-
ence (e.g., Cowan, 1988; Frensch & Miner, 1995; Johnson &
Hirst, 1993; Unsworth & Engle, 2005). Therefore, the SRT
task is well-suited for our present goals because it allows us
to examine the influence of mind wandering during iden-
tical tasks with and without attentional resource demands.
Furthermore, this task permits us to measure changes in
task automatization over time, and it is sensitive to small
variations in learning rates via multiple measures: the im-
provement in performance over time and the disruption
caused by changing to an unlearned sequence (i.e., “trans-
fer” effects; Pasquali et al., 2019).

Practice effects—the gradual reduction in reaction times
over time—reflect participants’ growing expertise in per-
forming task. However, practice effects also include learn-
ing about non-sequence task information like visuo-motor
associations or stimulus-response mappings and may be
contaminated by other factors such as fatigue or motiva-
tion. As such, it has become commonplace to measure
learning using transfer effects—the change in performance
that occurs when a new sequence is presented in place of
the trained sequence (e.g., Cohen, Ivry, & Keele, 1990; Keele,
Jennings, Jones, Caulton, & Cohen, 1995; Schumacher &
Schwarb, 2009; Willingham, Nissen, & Bullemer, 1989). If
participants have automatized the trained sequence then
we would expect them to perform worse (e.g., slower re-
action times, more errors) when a new sequence is pre-
sented after practicing the trained sequence as participants
no longer benefit from the knowledge of the underlying
sequence. Thus, the size of the transfer effect indexes the
amount of sequence-specific learning.

Notably, one prior study investigated the effect of mind
wandering on performance on the SRT task (Franklin et al.,
2016). While this study found—at odds with the attentional

resource account— that mind wandering interfered with
SRT task performance, there are several limitations of this
study that bear mentioning.

First, the study did not include an explicit (intentional)
learning group for comparison. Critically, however, such a
comparison allows researchers to test for (a) poorer perfor-
mance and (b) less explicit knowledge in the implicit relative
to the explicit learning group, both of which outcomes allow
one to more confidently conclude that implicit learning has
in fact taken place.

Second, although the measurement of awareness in
SRT tasks is still a contentious issue (Pasquali et al., 2019;
Schwarb & Schumacher, 2012), Franklin et al. (2016) em-
ployed a now-outdated and atypical measure of aware-
ness that has since been replaced with improved measures
(Pasquali et al., 2019). More specifically, Franklin et al. used
a version of the “inclusion generation” task, which requires
participants to reproduce the training sequence from mem-
ory. Importantly, this inclusion generation task fails to ade-
quately dissociate implicit and explicit learning because,
during this task, participants who implicitly learn a se-
quence can often still generate the sequence above chance
(see Pasquali et al., 2019). In light of these shortcomings,
most contemporary studies employ an “exclusion genera-
tion task,” which requires participants to generate the train-
ing sequence in reverse. Critically, this exclusion generation
task (which was not employed in the Franklin et al. study)
allows one to more confidently dissociate implicit and ex-
plicit learning because it requires participants to mentally
rehearse and reverse the sequence, a task that requires ex-
plicit knowledge of the sequence. Thus, when participants
can generate patterns from the reverse sequence above
chance, one can more confidently say they had acquired
explicit knowledge.

The final limitation of Franklin et al.’s (2016) study is
that the authors alternated the training sequence and ran-
dom sequences in a predictable fashion (two random, six
training, two random, etc.) throughout the entire task and,
critically, they did not report how performance changed
across the experiment; instead, they reported an aggregate
of early performance (presumably prior to any learning)
and later performance (after learning had presumably oc-
curred). If, as the authors argue, the modest performance
benefit for training sequences occurred because partici-
pants learned the sequence, then the difference in perfor-
mance between the training and random sequences should
have increased over time (since more learning would take
place with increased exposure to the learning sequence).
However, because Franklin et al.’s performance measure
was an aggregate of early and later performance, this es-
sential test of implicit learning is absent from their article.
Consequently, the reader is unable to assess how—or if—
participants were learning, and to what extent mind wander-
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ing influenced learning rates (if learning did in fact occur).
Therefore, Franklin et al.’s results cannot directly speak to
the hypotheses proposed by the attentional resources ac-
count, which require an assessment of performance and
mind wandering over time.

One important methodological note worth discussing
is the use of online data collection procedures1. To our
knowledge, there is only one study that has validated the
SRT task in an online setting (Sævland & Norman, 2016). In
their study, using an alternating SRT task, the researchers
found that both learning and sequence-generation perfor-
mance was comparable across in-lab and online samples.
This is consistent with a larger body of research demonstrat-
ing that data collected from online samples (e.g., Amazon
Mechanical Turk) are comparable to convenience samples
like undergraduate students (e.g. Armitage & Eerola, 2020;
Buhrmester, Talaifar, & Gosling, 2018; Casler, Bickel, & Hack-
ett, 2013; Dandurand, Shultz, & Onishi, 2008; Hilbig, 2016;
Leeuw & Motz, 2016), and consistent with numerous stud-
ies that have successfully implemented different reaction
time tasks online [e.g., rhythmic tapping tasks, Brosowsky
et al. (in press-a); Seli et al. (2013); visual selective attention
tasks, Bejjani, Tan, and Egner (2020); Brosowsky and Crump
(2020); Brosowsky and Crump (2018); typing tasks, Behmer
Jr and Crump (2016); Crump, Lai, and Brosowsky (2019);
psycholinguistic tasks, Kim, Gabriel, and Gygax (2019); sta-
tistical learning, Dale, Duran, and Morehead (2012); n-back
working memory tasks, Brosowsky et al. (under review-b);
Smith, Brosowsky, Daniel, Meier, and Seli (under review); to
name a few].

However, controversy surrounding the quality of online
data persists (e.g., Chmielewski & Kucker, 2020). There-
fore, a secondary aim of the current study was to replicate
Pasquali et al. (2019) and further validate the usage of online
procedures to measure implicit learning (e.g., Sævland, et
al., 2016). To address potential data quality concerns, we
collected data from a much larger sample than necessary.
Indeed, Pasquali et al. observed a 193 ms (sd = 79 ms) and
249 ms (sd = 114 ms) transfer effect for the implicit and
explicit groups, respectively (a ~60 ms difference between
groups). Using a monte-carlo simulation procedure (see
Brosowsky & Crump, 2020; Crump, Brosowsky, & Milliken,
2017) and the reaction time distributions from Pasquali et
al., we estimated at least 45 participants per group would
be required to reliably detect a 60 ms difference with 80%
power. However, we opted to collected data from 100 par-
ticipants in each group so that we could reliably detect a 60
ms difference between groups with 99% power; a difference
of 50 ms with 95% power; and a difference as small as 40 ms
with 82% power.

The Present Study

In the present study, participants completed a five-
response serial reaction time task. On every trial, partic-
ipants responded to one of five targets, each corresponding
to a response on the keyboard. Participants practiced a
10-element repeating sequence for 13 blocks of 80 trials
before switching to a new, unpracticed sequence in the
14th block, and ending with the training sequence in the
15th block. To assess awareness, we had participants com-
plete two sequence generation tasks: the inclusion task,
wherein participants generate the training sequence for 100
trials, and the exclusion generation task, wherein partici-
pants generate the training sequence in reverse (Pasquali
et al., 2019). Whereas participants in the “explicit” group
were given instructions about memorizing the repeating se-
quence, participants in the “implicit” group were not given
any information about the sequences.

Our design addresses the aforementioned limitations
with Franklin et al.’s (2016) study in several important ways:
first, we measured both mind wandering and task perfor-
mance as a function of time on task to determine whether
mind wandering is associated with task automatization. To
assess changes in learning and depth mind wandering we
will measure “practice” and “transfer” effects. Practice ef-
fects index the change in performance that occurs as par-
ticipants gain experience with the task. Specifically, we will
compare performance and depth of mind wandering in
block 13 to block 1. Transfer effects index the change in
performance that occurs when the sequence is changed
(i.e., whether participants’ current performance/depth of
mind wandering “transfers” to a block with a new sequence).
Here, we will compare performance and depth of mind wan-
dering in block 14 (the reversed block) to blocks 13 and 15.
Second, we included both explicit and implicit learning
groups, allowing us to draw direct comparisons between
these groups and to determine whether implicit learning (as
compared to explicit learning) is negatively associated with
mind wandering. Third, we employed more robust mea-
sures of awareness, which allowed us to more confidently
rule out explicit learning in the implicit group.

Method

We report all data exclusions and all measures in the
study. Moreover, in accordance with the recommendations
of Seli, Kane, et al. (2018), we report that, in the present
study, we conceptualized mind wandering as task-unrelated
thought, and we operationally defined it for our participants
in terms of thoughts pertaining to something other than
what they were doing when queried about their mental
states (see below for more details). All data, analysis, experi-
ment, and manuscript preparation code can be found can

1We thank Dr. Jiménez for drawing our attention to this issue.
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Figure 1. Illustrations of the task and stimuli used. Figure A illustrates the keyboard responses associated with each of the
five possible target locations. Figure B shows an example of the training sequence and the corresponding reverse sequence
(Pasquali et al., 2019). Each participant was randomly assigned a sequence from the total set of 840. Participants practiced
the training sequence for 13 blocks before switching to the reverse sequence for the 14th block and returning to the training
sequence in the 15th block. Figure C illustrates a series of trials for the implicit group (above) and the explicit group (below).
Stimulus presentation differed only in that the first target in the sequence was presented in green for the explicit group.

be found at osf.io/qzry7/.

Participants

Participants were 200 individuals2 who completed a Hu-
man Intelligence Task (HIT) posted on the Amazon Me-
chanical Turk. Participants were paid $3.25 (U.S. dollars) for
completing the HIT, which lasted approximately 25 minutes.
Participants were told that the experiment would take fewer
than 30 minutes to complete but were not informed about
how many trials they would be presented or how often they
would be asked to report their thoughts.

Serial Reaction Time (SRT) Task

The primary task was a serial reaction time (SRT) task,
with five response options, each corresponding to a single
location (see Figure 1). The display contained five rectan-
gles, each corresponding to a response on the keyboard (left
to right: C, V, B, N, and M), displayed in dark grey on an
off-white background. Each rectangle was 125.6 x 196 pixels
and displayed 14.4 pixels apart. Each rectangle was initially

outlined in dark grey and filled with off-white. On each trial,
one rectangle changed color (dark grey or green) and par-
ticipants were instructed to press the corresponding key as
quickly and as accurately as possible. Once the participant
pressed the correct key, the next target would immediately
appear. Participants received the following instructions:

In this part of the experiment, you will be pre-
sented five rectangles in a row. On each trial,
one of the rectangles will be filled with a color
and you will respond by pressing one of five
corresponding keys on the keyboard as quickly
and as accurately as possible.”

[example of stimulus display]

You will use the “C”, “V”, “B”, “N”, and “M” keys
on the keyboard, each corresponding to one of
the five rectangles from left to right: C-V-B-N-
M. You will get the next rectangle after you’ve
responded correctly.

2Due to a programming oversight, we did not collect any demo-
graphic information.
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For example, if you were presented:

[example of stimulus display]

You would respond “V” because it is the second
from the left rectangle (C-V-B-N-M).

And if you were presented:

[example of stimulus display]

You would respond “M” because it is the fifth
from the left rectangle (C-V-B-N-M)

[Only for the explicit condition] Important: the
same sequence of locations/responses will re-
peat throughout the experiment. You will know
when you are at the beginning of the sequence
because the color of the rectangle will be green
instead of black:

[example of stimulus display]

Your task for this experiment is to try to respond
as quickly as and as accurately as possible.

[Only for the explicit condition] As you com-
plete the task you should try to memorize the
repeating sequence so that you can respond as
quickly as possible.

The experiment followed a typical SRT paradigm (see
Pasquali et al. 2019): Participants completed 13 blocks of
the training sequence, followed by a transfer block con-
taining a new sequence (block 14), followed by a return to
the original sequence (block 15). The entire experiment
consisted of 15 blocks of 80 trials (1200 trials). Blocks 1
through 13 and block 15 contained a repeating 10-element
sequence, referred to as the “training sequence”. The 14th
block consisted of a new sequence, which was a reversal of
the original, training sequence (i.e., the “reverse sequence”).

We used 10-element refined reversible second-order
conditional (RSOC) sequences as described by Pasquali
et al. [2019; see also (Jiménez, Méndez, Pasquali, Abra-
hamse, & Verwey, 2011). These are second-order condi-
tional sequences that are traditionally used in SRT tasks.
Each target appears with the same frequency—twice per
sequence loop—and each transition occurs with equal fre-
quency. In addition, refined RSOC sequences contain no
common transitions with their reversed sequence patterns
(i.e., “reversible”), but are otherwise fully analogous to the
original sequence. Finally, refined RSOC sequences do not
contain any ascending or descending runs (i.e., “refined”).
Ascending and descending runs are excluded to eliminate
potential abstract cues and keystroke facilitations that may
enable chunking strategies (abstractly homogeneous; “no
transition would be responded faster than others in the
absence of learning”; cf., Jiménez, 2008). Each participant
was randomly assigned a refined RSOC sequence from the
total set of 840.

Participants were either assigned to the implicit (inci-
dental) or explicit (intentional) learning group. The task
and instructions were identical for both groups with two
exceptions: First, in the explicit learning group, a green
rectangle appeared in place of the black rectangle. This
was to indicate the beginning of the sequence (no green
rectangle appeared in the transfer block, but participants
were not told in advance about the change in task). Second,
participants in the explicit group also received the following
additional instructions:

Important: the same sequence of loca-
tions/responses will repeat throughout the ex-
periment. You will know when you are at the
beginning of the sequence because the color of
the rectangle will be green instead of black.

As you complete the task you should try to
memorize the repeating sequence so that you
can respond as quickly as possible.
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Figure 2. Results of the sequence generation tasks used to
assess awareness across the explicit and implicit learning
groups. Plots show the percentage triplets produced that
match triplets from the training or reverse sequence when
asked to produce the training sequence (inclusion
generation task) or the reverse sequence (exclusion
generation task).

Generation Tasks

After the SRT task, awareness was assessed with two un-
expected sequence generation tasks. In the inclusion gener-
ation task, participants were instructed to generate the train-
ing sequence over 100 keypresses (if performed correctly,
this would correspond to generating the full sequence 10
times). The display began with one of the five rectangles
randomly filled, and participants were instructed to press
the button corresponding to the next location that would
have appeared in the training sequence and to continue
with the sequence for 100 keypresses. Participants were
given the following instructions:
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Now we are going to test your knowledge of the
sequence you’ve been practicing.

In this part of the experiment, we want you to
generate the practiced sequence from memory
for 100 trials.

The session will begin at a random location.
You will respond with the next location that
would have come right after it in the sequence
you have practiced. Then you will respond
again with the location that would come next,
and so on, generating the sequence you have
practiced.

If you are unsure of the next location, try to rely
on your intuition and respond as best as you
can.

The display will be identical to the practice and
the boxes will change color based on your re-
sponse.

The instructions differed slightly for the implicit learning
group. For them, we included an additional statement to
assure participants that they were not required to learn the
sequence to receive payment (“You may or may not have no-
ticed that there was a sequence of locations/responses that
repeated throughout the experiment (if you didn’t notice,
that’s ok)”).

Participants then completed the exclusion generation
task. This was the same as the inclusion task, except here
participants were instructed to generate the reverse se-
quence from the one they had practiced:

In this part of the experiment, we want you to
generate the reversed pattern of the previously
learned sequence from memory for 100 trials.

The session will begin at a random location.
You will respond with the location that would
have come before it in the sequence. After that,
you will respond again with the one that would
have come before that, and so on, generating
the sequence in reverse.

If you are unsure of the next location, try to rely
on your intuition and respond as best as you
can.

The display will be identical to the practice and
the boxes will change color based on your re-
sponse.

Following the procedure outlined by Pasquali et al. (2019),
performance on the generation tasks was assessed by com-
puting the number of training and reverse sequence triplets.
The number of triplets we expected they would produce by
chance alone was computed as the number of triplets in the

sequence divided by the total number of possible triplets;
that is, 10 / (5 × 4 × 3) = 16.667%.

Thought probes

Throughout the SRT task, depth of mind wandering was
sampled using intermittently presented thought probes.
Thought probes were presented at the end of every block
of 80 trials. When a thought probe was presented, the task
temporarily stopped, and the participant was presented
with the following question: “To what extent were you mind
wandering?” Participants were instructed to report their
depth of mind wandering by using a sliding scale, the an-
chors for which were “Not at all Mind Wandering” (which
corresponded with a value of 0) and “Fully Mind Wandering”
(which corresponded with a value of 100).

At the beginning of the experiment, participants were
given the following instructions, followed by a working ex-
ample of the thought probe response interface:

While you are completing this task, you may
find yourself thinking about things other than
the task. These thoughts are referred to as “task-
unrelated thoughts” or “mind wandering”. Hav-
ing task-unrelated thoughts is perfectly normal,
especially when one must do the same thing for
a long period of time.

We would like to determine how frequently you
were thinking about the task versus how fre-
quently you are thinking about something un-
related to the task (mind wandering). To do this,
every once in a while, the task will temporarily
stop and you will be presented with a thought-
sampling screen that will ask you to indicate to
what extent you have been focused on the task
(not at all mind wandering) or focused on task-
unrelated thoughts (fully mind wandering).

Being focused on the task means that you were
focused on some aspect of the task at hand. For
example, if you have been thinking about your
performance on the task, or about when you
should make a button press, these thoughts
would count as being on-task.

On the other hand, experiencing task-unrelated
thoughts means that you were thinking about
something completely unrelated to the task.
For example, thinking about what to eat for din-
ner, about an upcoming event, or about some-
thing that happened to you earlier in the day.
Any thoughts that you have that are not related
to the task you are completing count as task
unrelated.
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Figure 3. Results of the serial reaction time task. Median reaction times are plotted across trial blocks on the left. Practice
effects (reaction times in the 1st block are subtracted from the 13th block) and transfer effects (reaction times in the 14th
block are subtracted from the average of the 13th and 15th blocks) are plotted on the right.

When the thought-sampling screen is pre-
sented, we will ask you to indicate the extent
to which you have been mind wandering. You
will indicate the extent you have been mind
wandering on a scale from 0 to 100 (0 being
not at all mind wandering, 100 being fully mind
wandering).

Data analysis and manuscript preparation

This manuscript was prepared using R (R Core Team,
2019). A variety of notable R packages were used for data
analysis (Bates, Mächler, Bolker, & Walker, 2015; Fox & Weis-
berg, 2019; Kuznetsova, Brockhoff, & Christensen, 2017;
Singmann, Bolker, Westfall, Aust, & Ben-Shachar, 2019;
Wickham et al., 2019; Wickham & Henry, 2019), data visual-
ization (Fox & Weisberg, 2018; Kassambara, 2019; Wickham,
2016; Wilke, 2019), and general manuscript preparation
(Aust & Barth, 2018). All data, analysis, and manuscript
preparation code can be found at osf.io/qzry7/.

Results

Generation Tasks

Inclusion generation task. TTo assess awareness, we
first compared the percentage of triplets produced to the
percentage we would expect by chance (16.667%), and then
compared performance across groups (see Figure 2). In the
inclusion generation task, both the explicit, M = 44.01, 95%
CI [37.40, 50.63], t (92) = 8.21, p < .001, and implicit groups,
M = 22.65, 95% CI [18.79, 26.51], t(98) = 3.08, p = .003,

produced practice sequence triplets above chance. How-
ever, the explicit group produced significantly more triplets
than the implicit group, ∆M = 21.36, 95% CI [13.86, 28.86],
t(190) = 5.62, p < .001. Additionally, both the explicit,
M = 7.29, 95% CI [5.57, 9.00], t (92) =−10.88, p < .001, and
implicit groups, M = 11.39, 95% CI [9.79, 12.98], t(98) =
−6.56, p < .001 produced fewer triplets from the reverse
sequence than would be expected by chance. The explicit
group however, produced fewer triplets than the implicit
group, ∆M =−4.10, 95% CI [−6.42, −1.78], t(190) =−3.48,
p = .001.

Exclusion generation task. Turning to the exclusion
generation task, participants in the explicit group produced
more reverse sequence triplets than would be expected
by chance, M = 24.55, 95% CI [19.68, 29.42], t(92) = 3.22,
p = .002; the implicit group, however, did not, M = 16.41,
95% CI [13.69, 19.12], t(98) = −0.19, p = .850. Further-
more, the explicit group produced more reverse triplets
than the implicit group, ∆M = 8.15, 95% CI [2.69, 13.60],
t(190) = 2.95, p = .004. The number of practice sequence
triplets however, did not differ from chance for either the
explicit, M = 14.80, 95% CI [11.69, 17.91], t(92) = −1.19,
p = .236 or implicit groups, M = 15.93, 95% CI [13.39, 18.48],
t(98) =−0.57, p = .569. Similarly, there was no significant
difference between conditions, ∆M =−1.14, 95% CI [−5.10,
2.83], t (190) =−0.56, p = .573.

Serial Reaction Time (SRT) Task

Prior to all analyses, we removed any participants with
accuracy less than 85% (removing 7 participants) and one
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Figure 4. Results from the depth of mind wandering thought probes. Thought probe responses are plotted across trial
blocks on the left. Practice effects (reported depth of mind wandering in the 1st block is subtracted from the 13th block) and
transfer effects (reported depth of mind wandering in the 14th block is subtracted from the average of the 13th and 15th
blocks) are plotted on the right.

participant who did not complete all the trials. Prior to all
analyses, we removed error trials, the first trial following
a thought probe, removed the first trial of each block, and
any responses with reaction times longer than 3000 ms (re-
moving 1.47% of observations) before finally applying the
non-recursive Van Selst and Jolicoeur outlier removal proce-
dure [Van Selst and Jolicoeur (1994); removing 2.52% of the
remaining observations]. To determine how performance
changed across the experiment, we analyzed a “practice
effect” and a “transfer effect” for RT and accuracy, sepa-
rately. The practice effect is the change in performance (RT
or accuracy) from the first to the 13th block, and the transfer
effect is the change in performance (again, RT or accuracy)
from blocks 13 and 15 (averaged) compared to the reversed
block, block 14 (see Figure 3 and Appendix A).

We found significant RT practice effects for both the ex-
plicit, Md = −268.74, 95% CI [−307.78, −229.69], t(86) =
−13.68, p < .001, d = −1.43, 95% CI [−1.72, −1.14], and
the implicit, Md = −168.01, 95% CI [−191.09, −144.92],
t(98) =−14.44, p < .001, d =−1.07, 95% CI [−1.25, −0.89].
Comparing conditions, we found the RT practice effect
for explicit group was significantly larger than the implicit,
∆M = −100.73, 95% CI [−144.53, −56.93], t(184) = −4.54,
p < .001, d =−0.67, 95% CI [−0.96, −0.37].

Turning to the RT transfer effect, median reaction times
were significantly slower in the reversed block (block 14),
for the explicit group, Md = 167.55, 95% CI [134.60, 200.49],
t(86) = 10.11, p < .001, d = 1.19, 95% CI [0.89, 1.5], as well
as the implicit group, Md = 85.47, 95% CI [72.98, 97.96],
t(98) = 13.58, p < .001, d = 0.66, 95% CI [0.55, 0.76]. Com-

paring effects across groups, the RT transfer effect was sig-
nificantly larger for the explicit group, ∆M = 82.08, 95% CI
[48.69, 115.46], t(184) = 4.85, p < .001, d = 0.71, 95% CI
[0.41, 1.01].

We also analyzed accuracy scores in a similar manner.
We found significant accuracy practice effects, in that per-
formance was better in 1st compared to the 13th block,
for both the explicit Md = −0.05, 95% CI [−0.07, −0.03],
t(86) = −4.61, p < .001, d = −0.58, 95% CI [−0.85, −0.31],
and implicit groups, Md = −0.04, 95% CI [−0.05, −0.02],
t(98) = −3.77, p < .001, d = −0.49, 95% CI [−0.76, −0.22].
However, this effect did not differ across groups, ∆M = 0.01,
95% CI [−0.01, 0.04], t(184) = 0.91, p = .364, d = 0.13, 95%
CI [−0.16, 0.42]. More generally, performance was best in
the first three blocks, but remained high (88-90% accurate)
throughout the experiment (as in Pasqueli et al. 2019). We
also found significant accuracy transfer effects for both the
explicit, Md =−0.05, 95% CI [−0.07, −0.03], t(86) =−5.21,
p < .001, d = −0.52, 95% CI [−0.73, −0.31] and implicit,
Md =−0.07, 95% CI [−0.09, −0.05], t (98) =−7.35, p < .001,
d = −0.76, 95% CI [−0.99, −0.53] groups showing better
accuracy in blocks 13 and 15, compared to block 14, the
reverse block; and no significant difference in transfer ef-
fects between groups, ∆M = 0.02, 95% CI [−0.01, 0.04],
t (184) = 1.07, p = .284, d = 0.16, 95% CI [−0.13, 0.45].

Thought Probes

First, we examined whether there were differences in
depth of mind wandering between groups. We submitted
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the depth of mind wandering rates to a mixed ANOVA with
block as a within-subjects factor (blocks 1 to 13; excluding
the final two blocks) and group as between-subjects factor
(implicit and explicit). We found a significant main effect
of block, F (6.39,1,175.58) = 25.17, MSE = 629.93, p < .001,
η̂2

p = .120, 90% CI [0.09, 0.15], but no main effect of group,

F (1,184) = 1.02, MSE = 7,499.57, p = .314, η̂2
p = .006, 90%

CI [0, 0.04], and no interaction, F (6.39,1,175.58) = 0.42,
MSE = 629.93, p = .879, η̂2

p = .002, 90% CI [0, 0]. Put differ-
ently, whereas depth of mind wandering increased across
training blocks, there was no evidence to suggest that depth
of mind wandering differed across groups during the train-
ing blocks.

For our primary analyses, we adopted the same analysis
plan as above to determine how depth of mind wandering
changed throughout the experiment (see Figure 4 and Ap-
pendix A). First, we analyzed the practice effect for depth of
mind wandering. This mind-wandering practice effect in-
dexes the change in depth of mind wandering that occurred
after participants had practiced the SRT sequence. More
specifically, it is the reported depth of mind wandering in
the 13th block minus the reported depth of mind wandering
in the first block.

Here, we found a significant mind-wandering practice
effect—an increase in the reported depth of mind wan-
dering from the 1st to the 13th block—for both explicit,
Md = 22.62, 95% CI [14.92, 30.32], t(86) = 5.84, p < .001,
d = 0.82, 95% CI [0.5, 1.14], and implicit groups, Md = 19.24,
95% CI [12.36, 26.12], t(98) = 5.55, p < .001, d = 0.66, 95%
CI [0.4, 0.92]; however, no significant difference between
groups, ∆M =−3.38, 95% CI [−13.60, 6.84], t (184) =−0.65,
p = .515, d =−0.1, 95% CI [−0.39, 0.19].

Next, we analyzed the mind-wandering transfer effect
across groups. This transfer effect indexes the change in
depth of mind wandering that occurred when the sequence
was reversed. More specifically, it is the depth of mind wan-
dering reported in the 14th block (the reversed sequence
block) minus the depth of mind wandering reported in the
13th and 15th blocks (the blocks immediately preceding
and immediately following the sequence change).

Here, we did not find a significant mind-wandering trans-
fer effect for the explicit group, Md =−2.34, 95% CI [−7.24,
2.57], t(86) = −0.95, p = .346, d = −0.07, 95% CI [−0.23,
0.08], but did find a significant mind-wandering transfer
effect for the implicit group, Md = 8.16, 95% CI [4.30, 12.01],
t(98) = 4.20, p < .001, d = 0.28, 95% CI [0.15, 0.41]. Ad-
ditionally, the transfer effect was significantly smaller for
the explicit versus implicit conditions, ∆M =−10.50, 95%
CI [−16.62, −4.37], t(184) =−3.38, p = .001, d =−0.5, 95%
CI [−0.79, −0.2]. Thus, whereas depth of mind wandering
increased in the 14th block for the implicit condition, there
was no change in depth of mind wandering across the 13th,
14th, and 15th blocks in the explicit condition.

Mind wandering, awareness, and SRT performance

To determine the association between mind wandering,
awareness, and SRT performance, we analyzed trial-level
reaction times using a linear mixed model with awareness
group (explicit versus implicit), depth of mind wandering,
and block as fixed effects, and subject as the random effect
(see Figure 5). All the blocks were incluedd in the model
to estimate both the practice and transfer effects as a func-
tion of both awareness and mind wandering. The same
outlier removal procedures outlined above were applied
here. The full results of this analysis can be found in Ap-
pendix B. The mixed model analysis contrasts each level
of each factor against a reference level producing multiple
interaction terms. Of interest are the three-way interactions
between block, mind wandering, and group (all ps < .05; see
Appendix B, rows 47 to 60), showing that the association be-
tween mind wandering and performance differed between
the explicit and implicit groups across blocks. Whereas
for the explicit group, lower depth of mind wandering was
associated with a sharper learning curve, bigger RT practice
and transfer effects, for the implicit group, depth of mind
wandering was not associated with changes in learning, or
with RT practice or RT transfer effects.

To further corroborate this interpretation, we analyzed
the data using two linear regression models (see Figure 6),
followed-up with Pearson correlations. In the first, we in-
cluded depth of mind wandering and awareness group (ex-
plicit versus implicit) as explanatory variables, and the RT
practice effect as the dependent variable. Here, we found
a significant interaction between depth of mind wander-
ing and group, b = 2.59, 95% CI [0.75, 4.43], t(182) = 2.78,
p = .006, such that mind wandering was negatively associ-
ated with practice effects in the explicit (r =−.23, 95% CI
[−.42, −.02], t (85) =−2.22, p = .029), but not implicit condi-
tion (r = .15, 95% CI [−.05, .34], t(97) = 1.50, p = .137). In-
terestingly, in the implicit group, although non-significant,
the correlation coefficient was in the positive direction.

In the second analysis, we included depth of mind wan-
dering and condition as explanatory variables and the RT
transfer effect as the dependent variable. Here again, find a
significant interaction between depth of mind wandering
and condition, b = 1.89, 95% CI [0.51, 3.27], t(182) = 2.71,
p = .007. Like the first analysis, we find a negative associ-
ation between mind wandering and RT transfer effects in
the explicit (r = −.31, 95% CI [−.49, −.11], t(85) = −3.00,
p = .004), but not implicit condition (r =−.08, 95% CI [−.27,
.12], t (97) =−0.79, p = .431).

Discussion

In the present study, we assessed two predictions of the
attentional resources account. First, that when task per-
formance and mind wandering do not recruit the same
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Figure 5. Results from the linear mixed model with depth of mind wandering, block, and awareness as fixed effects and
subject as a random effect. Estimated reaction times are plotted for 0 and 100 depth of mind wandering across awareness
groups.

attentional resources, mind wandering has no effect on
task performance (i.e., mind wandering and task perfor-
mance can run in parallel without interference). Second,
that task-automatization frees up attentional resources
that can, in turn, be used for mind wandering (i.e., task-
automatization is positively associated with mind wander-
ing). To these ends, participants completed an SRT task
using a 10-element repeating sequence (e.g., Pasquali et
al., 2019). One group was made aware of the repeating se-
quence (i.e., the “explicit” group) and the other was not (i.e.,
the “implicit” group). Participants practiced the sequence
for 13 blocks, at which point they were presented the reverse
sequence for one block (block 14) before returning to the
training sequence for the final block (block 15). After each
block of trials, we presented participants a thought probe to
gauge their depth of mind wandering and, at the end of the
experiment, we assessed their awareness of the repeating
sequence using two sequence generation tasks.

To assess awareness of the repeating sequence, we in-
cluded two sequence generation tasks. We found that both
groups could produce training sequence triplets and refrain
from producing reverse sequence triplets. However, the ex-
plicit group outperformed the implicit group in both cases
and only participants in the explicit group could produce
the reverse sequence triplets above chance. Taken together,
these results suggest that the knowledge acquired in the
explicit learning group was indeed explicit, as they were
better able to mentally reconstruct the training sequence
and even reverse it. Importantly, these results also suggest
that knowledge acquired in the implicit learning group was
likely implicit, as participants in this group could not re-
produce the reverse sequence at rates above chance. Criti-
cally, these results indicate that our study was able to effec-
tively assess the association between mind wandering and

task performance when varying the resources necessary to
maintain adequate task performance. This, in turn, allowed
us to test two key predictions of the attentional resource
account: that (a) a focal task that does not draw on the
same attentional resources as mind wandering can run in
parallel with mind wandering without interference, and (b)
task-automatization is associated with increases in mind
wandering.

To test the first prediction (that task-automatization is
associated with increases in mind wandering), we exam-
ined changes in mind wandering and task performance
before and after participants practiced the sequence. Here,
we found that SRT reaction time task performance im-
proved considerably with increased time on task (indicat-
ing that task performance became increasingly automated),
while at the same time, depth of mind wandering increased.
These findings provide novel evidence in favor of the task-
automatization prediction of the attentional resources ac-
count. However, it is important to note that we still cannot
rule out other possible (non-mutually-exclusive) casual fac-
tors such as boredom, fatigue, motivation (e.g., Brosowsky
et al., in press-a), or waning cognitive control (e.g., Thom-
son, Besner, & Smilek, 2015). Future work is needed to tease
apart the relative contributions of these factors and develop
a more comprehensive understanding of why people gradu-
ally disengage from their primary task. Our results, however,
suggest that task automatization is a viable factor that needs
to be considered.

To test the second prediction (that a focal task can run
in parallel with mind wandering without interference), we
examined the association between mind wandering, learn-
ing, and awareness. In the explicit learning group, we found
that depth of mind wandering was negatively associated
with learning rates (as indexed by both practice and transfer
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Figure 6. Results from the linear regression models plotted over participant data. Practice effects are plotted against depth
of mind wandering (left) and transfer effects are plotted against depth of mind wandering (right).

effects). However, this was not the case for the implicit
group, whose learning rates were not associated with their
reported depth of mind wandering. This result likewise pro-
vides novel evidence for the attentional resources account:
Explicit learning requires attentional resources and is there-
fore disrupted when participants engaged in deeper bouts
of mind wandering. In contrast, implicit learning does not
require attentional resources and is therefore unaffected by
a participants’ depth of mind wandering.3

In addition to the foregoing, our results provide novel
evidence to suggest that mind wandering (defined as task-
unrelated thought) may not compete for attentional re-
sources during implicit learning in an SRT task. The re-
lation between attention and implicit learning has been,
and is still, a heavily debated topic (Cleeremans et al., 2019;
Jiménez, 2003). Typically, dual-task paradigms are used to
determine whether implicit learning is impaired under at-
tentional load. Although many studies have demonstrated
unimpaired learning under attentional load (e.g., Cohen
et al., 1990; Frensch & Miner, 1995; Reed & Johnson, 1994;
Shanks & Johnstone, 1999) , others have shown impaired
learning, slowed reaction times, and diminished transfer
effects (e.g., Jimenez & Vazquez, 2005; Shanks & Channon,
2002; Shanks, Rowland, & Ranger, 2005). Here, however, we
find self-reports of inattention (i.e., mind wandering) were
not associated with performance in the implicit group, but
that they were negatively associated with performance in
the explicit group. These results provide strong support for
the view that implicit learning, unlike explicit learning, is
unimpaired under attentional load using a novel measure
of inattention. This is an important contribution to the
ongoing debate about the relation of attention and implicit
learning (Cleeremans et al., 2019; Jiménez, 2003).

A secondary aim of the current study was to further val-
idate the use of SRT paradigms to study implicit learning
in an online setting (Sævland & Norman, 2016). To that
end, we closely modelled our methodology after Pasquali
et al. (2019). As predicted, we found robust reaction-time

practice and transfer effects in both the explicit and im-
plicit learning conditions, and differences in learning per-
formance across learning conditions (e.g. Cleeremans et al.,
1998; Cohen et al., 1990; Nissen & Bullemer, 1987; Reed &
Johnson, 1994; Shanks & Johnstone, 1999; Stadler, 1993). We
also observed the expected dissociations between learning
conditions using the generation tasks (e.g., Destrebecqz
& Cleeremans, 2001; Pasquali et al., 2019). In our study,
however, both groups produced training sequence triplets
at the same rate during the exclusion generation task (both
were at chance). This differed from Pasquali et al., who had
found that participants in the implicit condition were above
chance (which indicated that these participants failed to
explicitly exclude the training sequence). Whether this dif-
ference occurred because of the online procedure, fewer
training blocks, the change in sequence length, or a Type 2
error is unclear. Despite this difference, however, we pro-
vide another successful replication (Sævland & Norman,
2016) of the classic explicit and implicit learning effects
that one would expect to find the in the laboratory. Our
results are therefore heartening as they provide further evi-
dence to suggest the feasibility of using online procedures
to measure incidental sequence learning (see osf.io/qzry7/
for experiment procedures and code).

When employing online procedures, there is always an in-
herent loss of experimental control over how stimuli are pre-
sented and how participants engage with the task (e.g. Ar-
mitage & Eerola, 2020; Buhrmester et al., 2018; Casler et
al., 2013; Dandurand et al., 2008; Hilbig, 2016; Leeuw &

3It should be noted that our results are generally inconsistent
with the work by Franklin et al. (2016), who found that implicit
sequence learning was negatively associated with mind wandering.
As mentioned in our Introduction, however, there were numerous
methodological and statistical shortcomings with Franklin et al.’s
study that suggest that their results should be interpreted with cau-
tion. Given that the present study addressed all of these concerns,
we think it provides a more appropriate test of the effect of mind
wandering on implicit and explicit learning.
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Motz, 2016). In the Introduction, we briefly discussed mea-
sures we took to mitigate potential problems associated
with conducting our study online. There are, however, a
few notable limitations worth discussing further.4 First,
in our study, we did not give participants explicit instruc-
tions on how they should complete the task. We did not,
for instance, instruct them about which fingers should be
used for which response keys or give any explicit instruc-
tion about response strategies. Of course, in an online set-
ting, we are unable to monitor how participants engage in
the task or whether they change their response strategies
during the task. We therefore modelled our design after
Pasquali et al. (2019) who likewise did not present such
instructions. However, in hindsight, this could have been
problematic because we adopted the five-choice SRT design
(as described by Pasquali et al., 2019; and used elsewhere,
Schmitz, Pasquali, Cleeremans, & Peigneux, 2013) and it
is not immediately obvious how participants coped with
the five response keys (e.g., we do not know which finger
was used for the middle response, nor do we know whether
they changed their response strategy at some point in the
experiment). In any case, our ability to test the specific hy-
potheses outlined here were not dependent upon the provi-
sion of such instructions and, furthermore, we successfully
replicated classic explicit/implicit sequence learning effects
(e.g., Cleeremans, 1993; Cleeremans, Destrebecqz, & Boyer,
1998; Cohen, Ivry, & Keele, 1990; Nissen & Bullemer, 1987;
Reed & Johnson, 1994; Shanks & Johnstone, 1999; Stadler,
1993) by adapting the methodology outlined by Pasquali
et al. (2019; some differences in design are noted in the
Introduction). We therefore do not think this instructional
omission meaningfully bears on the results of our study, but
we do suggest that future work using the SRT paradigm in
an online setting might consider whether such limitations
are important for their use-cases (e.g., Jiménez et al., 2008).

Finally, we turn to a surprising, but potentially impor-
tant, result: Participants in the implicit group reported a
considerable increase in mind-wandering depth during the
reversed-sequence block. This contrasts sharply with the
explicit group, who showed no differences in their mind-
wandering depth across the three final blocks. The question,
then, is what explains this difference in mind-wandering
reports between the implicit and explicit groups?

Perhaps the simplest explanation is that the change in
task performance caused an increase in mind wandering in
the implicit, but not the explicit, group. Recall that partici-
pants in the implicit group were unaware that there was a
repeating sequence throughout most of the SRT task. Thus,
the sudden and inexplicable change in performance occur-
ring when the task switched from the repeated sequence to
the novel, reverse sequence (i.e., block 14) may have caused
participants in the implicit group to experience more task-
related interferences (e.g., “Why am I suddenly doing so

poorly?”), which may have been reported as increased mind
wandering. In contrast, participants in the explicit condi-
tion, who were aware of the repeating sequence, were likely
less confused about the sudden shift in their performance
during block 14; indeed, participants in this group ought to
have immediately realized that the sequence was switched,
which would result in fewer task-related interferences (and
hence, no increase in reported depth of mind wandering)
because these participants would have been fully aware of
why their performance was temporarily poorer.

A second potential explanation is that participants were
inferring their depth of mind wandering based on their per-
formance (Head & Helton, 2018). However, it is unlikely that
participants were using a simple heuristic that poor perfor-
mance signals deeper mind wandering. Indeed, here we
observed concurrent increases in performance and depth
of mind wandering throughout the task. Furthermore, par-
ticipants in the explicit group showed a larger performance
drop than the implicit group, yet they did not report changes
in their depth of mind wandering. While our results indicate
that it is unlikely that participants infer their depth of mind
wandering based on performance, per se, it is plausible
that they instead infer mind wandering based on the dis-
crepancy between their performance and their normative
expectations about their performance (Whittlesea, 2002;
Whittlesea & Williams, 2000, 2001a, 2001b). That is, when
people perform worse than they expect in a given context,
they might infer that they were inattentive or mind wander-
ing. Participants in the implicit group were unaware that
the task contained a repeated sequence and, consequently,
would have been unable to accurately attribute their poor
performance to a change in the task. This would result in
a large discrepancy between their performance and their
expected performance. In contrast, participants who were
aware that there was a repeating sequence (i.e., those in
the explicit group) were likely also aware that the sequence
changed. Therefore, they could accurately attribute their
poor performance to a change in the task, which would
preclude the discrepancy experienced by participants in the
implicit group. This possibility is, of course, speculative,
but it would suggest that awareness of task structure and
performance may influence self-reports of mind wandering
and could potentially have important implications for mind-
wandering research. Moving forward, more research on this
topic is needed.

Concluding Remarks

Collectively, these findings demonstrate that the costs of
mind wandering critically depend on the resource require-
ments of the primary task. When task requirements are high
(e.g. during explicit learning), mind wandering is associated

4We thank Dr. Jiménez for raising these issues.
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with considerable disruption. However, when task demands
are low (e.g. during implicit learning), mind wandering can
go on in parallel and even serve as a marker of successful
learning. These findings support several key predictions of
the attentional resource theory of mind wandering (Small-
wood & Schooler, 2006), while also illuminating the circum-
stances under which mind wandering is most versus least
likely to be problematic.
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Appendix A
Table A1
Mean and standard errors for median reaction times (RT), error rates (%) and depth of mind
wandering as a function of block awareness conditions

Explicit Implicit

Block RT Error MW RT Error MW

1 625.17 (22.61) 7.13 (0.75) 17.25 (2.46) 600.82 (16.78) 7.81 (0.63) 22.21 (2.84)
2 514.29 (18.09) 6.96 (0.62) 24.31 (2.84) 520.99 (14.01) 6.95 (0.57) 28.06 (2.92)
3 480.62 (18.93) 7.43 (0.71) 27.6 (2.88) 502.98 (13.55) 7.01 (0.62) 30.35 (2.89)
4 466.58 (18.56) 8.87 (0.95) 31.36 (3.08) 496.28 (13.82) 8.88 (0.79) 34.44 (3.11)
5 441.32 (16.89) 9.6 (0.87) 32.52 (3.01) 490.49 (14.06) 9.53 (0.65) 37.64 (3.11)

6 429.33 (16.79) 10.03 (0.87) 35.68 (3.13) 484.96 (13.31) 9.98 (0.74) 35.88 (2.96)
7 419.59 (16.83) 9.77 (0.71) 37.62 (3.32) 473.86 (13.24) 9.96 (0.72) 40.35 (3.1)
8 398.85 (15.55) 10.8 (0.87) 37.84 (3.22) 464.81 (12.89) 10.92 (0.85) 41.34 (3.06)
9 391.19 (16.53) 9.85 (0.9) 36.77 (3.23) 453.06 (13.34) 11.03 (0.89) 44.02 (3.1)

10 377.09 (16.55) 11.87 (0.87) 37.45 (3.39) 449.89 (13.76) 10.64 (0.72) 42.12 (3.17)

11 369.24 (16.58) 11.8 (0.97) 40.71 (3.47) 446.57 (13.3) 10.94 (0.84) 44.07 (3.1)
12 360.83 (16.08) 11.45 (0.84) 37.91 (3.19) 441.43 (14.15) 10.96 (0.69) 41.26 (3.12)
13 356.44 (15.84) 11.91 (0.98) 39.87 (3.37) 432.81 (13.99) 11.32 (0.81) 41.45 (3.01)
14 535.82 (15.44) 18 (1.17) 36.43 (3.57) 526.38 (13.03) 17.56 (1.06) 50.7 (3.06)
15 380.52 (14.52) 12.56 (1.28) 37.66 (3.4) 447.75 (13.16) 9.74 (0.74) 43.63 (2.97)
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Appendix B
Table B1
Linear Mixed Model Results

Reaction Times (ms)
Predictors Estimates SE t-value p-value
(Intercept) 657.60 14.62 44.99 < 0.001
Block [2] −120.20 3.67 −32.74 < 0.001
Block [3] −154.50 3.81 −40.52 < 0.001
Block [4] −168.50 3.92 −42.96 < 0.001
Block [5] −198.00 4.01 −49.37 < 0.001
Block [6] −207.70 4.10 −50.73 < 0.001
Block [7] −231.20 4.08 −56.64 < 0.001
Block [8] −251.80 4.14 −60.77 < 0.001
Block [9] −249.60 4.09 −61.01 < 0.001
Block [10] −274.00 4.06 −67.45 < 0.001
Block [11] −280.90 4.17 −67.40 < 0.001
Block [12] −295.50 4.19 −70.48 < 0.001
Block [13] −303.80 4.18 −72.71 < 0.001
Block [14] −67.87 3.98 −17.06 < 0.001
Block [15] −261.90 4.06 −64.53 < 0.001

MW −0.41 0.09 −4.52 < 0.001

Group [Implicit] −46.89 20.04 −2.34 0.020

Block [2] x MW 0.08 0.12 0.66 0.506
Block [3] x MW 0.23 0.12 1.95 0.051
Block [4] x MW 0.30 0.11 2.66 0.008
Block [5] x MW 0.24 0.12 2.11 0.035
Block [6] x MW 0.34 0.11 2.97 0.003
Block [7] x MW 0.65 0.11 5.81 < 0.001
Block [8] x MW 0.76 0.11 6.75 < 0.001
Block [9] x MW 0.67 0.11 5.94 < 0.001
Block [10] x MW 0.83 0.11 7.46 < 0.001
Block [11] x MW 0.89 0.11 8.07 < 0.001
Block [12] x MW 1.02 0.11 8.94 < 0.001
Block [13] x MW 1.01 0.11 9.06 < 0.001
Block [14] x MW −0.60 0.11 −5.46 < 0.001
Block [15] x MW 0.52 0.11 4.64 < 0.001

Block [2] x Group [Implicit] 38.15 5.09 7.50 < 0.001
Block [3] x Group [Implicit] 54.89 5.26 10.44 < 0.001
Block [4] x Group [Implicit] 67.68 5.39 12.55 < 0.001
Block [5] x Group [Implicit] 87.44 5.55 15.76 < 0.001
Block [6] x Group [Implicit] 84.87 5.60 15.14 < 0.001
Block [7] x Group [Implicit] 93.85 5.67 16.55 < 0.001
Block [8] x Group [Implicit] 113.60 5.77 19.68 < 0.001
Block [9] x Group [Implicit] 98.74 5.80 17.03 < 0.001
Block [10] x Group [Implicit] 110.60 5.70 19.42 < 0.001
Block [11] x Group [Implicit] 108.70 5.86 18.54 < 0.001
Block [12] x Group [Implicit] 138.50 5.79 23.92 < 0.001
Block [13] x Group [Implicit] 134.20 5.84 23.00 < 0.001
Block [14] x Group [Implicit] 10.58 6.02 1.76 0.079
Block [15] x Group [Implicit] 119.30 5.82 20.50 < 0.001

MW x Group [Implicit] 0.94 0.11 8.22 < 0.001
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Appendix B
Table B1
Linear Mixed Model Results

Reaction Times (ms)
Predictors Estimates SE t-value p-value

Block [2] x Group [Implicit] x MW −0.43 0.15 −2.89 < 0.001
Block [3] x Group [Implicit] x MW −0.47 0.15 −3.17 < 0.001
Block [4] x Group [Implicit] x MW −0.82 0.15 −5.65 < 0.001
Block [5] x Group [Implicit] x MW −0.63 0.15 −4.31 < 0.001
Block [6] x Group [Implicit] x MW −0.63 0.15 −4.27 < 0.001
Block [7] x Group [Implicit] x MW −0.78 0.14 −5.43 < 0.001
Block [8] x Group [Implicit] x MW −1.19 0.15 −8.13 < 0.001
Block [9] x Group [Implicit] x MW −0.97 0.15 −6.64 < 0.001
Block [10] x Group [Implicit] x MW −0.96 0.14 −6.67 < 0.001
Block [11] x Group [Implicit] x MW −0.87 0.14 −6.07 < 0.001
Block [12] x Group [Implicit] x MW −1.53 0.15 −10.46 < 0.001
Block [13] x Group [Implicit] x MW −1.36 0.15 −9.29 < 0.001
Block [14] x Group [Implicit] x MW −0.22 0.14 −1.51 0.132
Block [15] x Group [Implicit] x MW −1.20 0.15 −8.20 < 0.001

Random Effects
σ2 25181.27
τ00Sub j ect 18033.13
ICC 0.42
NSub j ect 186.00
Observations 202921
Marginal R2 / Conditional R2 0.085/0.467

Notes: MW = mind wandering (continuous). The control levels were Block 1 and the Explicit Group.
Square brackets indicate the level of the factor contrasted against the control level of each factor.
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