
Sense and the Computation of Reference

Reinhard Muskens (r.a.muskens@kub.nl)
Department of Linguistics
Tilburg University
P.O. Box 90153
5000 LE Tilburg, The Netherlands

Abstract. The paper shows how ideas that explain the sense of an expression
as a method or algorithm for finding its reference, preshadowed in Frege’s dictum
that sense is the way in which a referent is given, can be formalized on the basis of
the ideas in Thomason (1980). To this end, the function that sends propositions to
truth values or sets of possible worlds in Thomason (1980) must be replaced by a
relation and the meaning postulates governing the behaviour of this relation must
be given in the form of a logic program. The resulting system does not only throw
light on the properties of sense and their relation to computation, but also shows
circular behaviour if some ingredients of the Liar Paradox are added. The connection
is natural, as algorithms can be inherently circular and the Liar is explained as
expressing one of those. Many ideas in the present paper are closely related to those
in Moschovakis (1994), but receive a considerably lighter formalization.

1. Introduction

In this paper I will pursue the Fregean idea that the sense of an ex-
pression essentially is a method or algorithm to get at its reference. I
will argue that this idea can be formalized in a simple way and that an
existing account of linguistic semantics (the one in Thomason, 1980) in
fact already goes halfway in capturing it, although it presumably was
never intended to do so. The view has repercussions in at least two areas
of foundational difficulty, as it sheds light on problems of intensionality,
but also on the question of circular propositions such as the famous
Liar Paradox. That algorithms can be inherently circular and their
execution diverging explains why the Liar arises Moschovakis (1994)
and the reason that the move also illuminates problems of intensionality
is that once we assume that senses are recipes for finding referents it is
not only easy to see how senses that lead to the same referent can be
different, but we also actually get some grip on their identity criteria.
If senses are a certain kind of algorithms, then two senses are identical
if the corresponding algorithms are. While identity of algorithms itself
is a non-trivial problem, this at least gives something to start with.

The idea that senses are procedures that can be used to compute
reference is an old one, attributed to Frege in Dummett (1978) and
Frege’s famous explanation of sense as the Art des Gegebenseins of

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

sense.tex; 15/12/2004; 21:44; p.1



2 Reinhard Muskens

a referent (the way the referent is given1) certainly can be read as
expressing something closely akin to this point of view. The idea was
provided with extensive philosophical justification in Tichý (1988),2

where it lies at the heart of a system of intensional logic. It received
its most rigorous formalization in Moschovakis (1994), where a system
called the Lower Predicate Calculus with Reflection (LPCR) is used
to capture it. Conceptually, LPCR is based on Kripke’s formalism to
tackle the Liar (Kripke, 1975) and the system is obtained by adding
a form of recursion to first-order logic.3 The result is rather heavy
artillery and van Lambalgen and Hamm (2003) propose to study the
idea of senses-as-algorithms in an alternative context that likewise com-
bines the declarativity of semantics with a form of procedurality: the
paradigm of logic programming. In logic programming existing logics
get a procedural interpretation and from the point of view of linguistic
theory Van Lambalgen and Hamm’s move has the great advantage
that procedural aspects of semantics can be studied without the need
of additional logical overhead. I will follow this move of taking a logic
programming perspective on natural language semantics, but while Van
Lambalgen and Hamm apply their insights to the area of lexical seman-
tics, in particular the semantics of temporal operators, I will put them
to use in the compositional semantics of phrases, with intensionality
and Liar-like phenomena remaining the main focus of interest.

The starting point of this paper will be the Intentional Logic of
Thomason (1980), which is essentially a Montague-like system with an
extra type p for propositions, which are thus treated as objects in their
own right, not constructed from other objects such as possible worlds.
Natural language expressions in this system are rendered as terms of
type p or terms of types derived from p and there is a function (denoted
with ∪) sending propositions to their extensions. The behaviour of this
function is constrained by meaning postulates and this is where the
connection with logic programming will be made. I will argue that, after
some slight alterations of Thomason’s system, these meaning postulates
can not only be cast rather naturally in the form of a logic program,
but also that, if this is done, they provide an axiomatization that allows
interpreting the elements of the type p domain as consisting of certain
algorithms. In particular, type p objects definable in the system can
naturally be associated with certain queries.

1 Sometimes translated as ‘mode of presentation’, but the present more pedestrian
translation seems closer.

2 I take it that Tichý’s notion of senses as constructions esentially captures the
same idea.

3 Moschovakis (2003) gives a highly interesting higher-order Montague-like
system, which unlike LPCR cannot capture Liar-like phenomena however.

sense.tex; 15/12/2004; 21:44; p.2



Sense and the Computation of Reference 3

The set-up of the remainder of the paper is as follows. In the next
section we briefly review Thomason’s Intentional Logic; we will get rid
of some minor redundancies in section 3 and give a streamlined version
that also contains possible worlds in section 4. After a short comparison
of the theory with other approaches to hyperintensionality (section 5)
this version is then altered in section 6 by replacing the function sending
propositions to their associated sets of possible worlds (two notions that
should be distinguished on the present account) by a family of relations
and by replacing the meaning postulates governing the behaviour of the
original function by meaning postulates for these relations. The latter
form a logic program and it is shown how finding the set of worlds
associated with a given proposition corresponds to the execution of a
certain query. In section 7 we consider circular propositions and show
how the addition of a rudimentary system of anaphoric reference and
a trivial notion of truth leads to divergence (infinite computation) in
certain cases, while it works in a perfectly straightforward manner in
other, ‘innocent’, ones. A brief conclusion ends the paper.

2. Thomason’s Intentional Logic

Thomason (1980) gives a simple and elegant theory of intentionality4

which follows Montague (1973) in translating a fragment of natural
language into a version of type logic (Church, 1940). Intentionality is
obtained by introducing a special basic type p for propositions (which
are conceived of as primitive entities). The usual logical constants ¬, ∧,
and → are mirrored by a set of newly introduced ones ∼pp, ∩p(pp), and
⊃p(pp). Thus if Φ and Ψ are propositions, then ∼Φ, ∩ΦΨ, and ⊃ΦΨ
are too, the last two typically written as Φ∩Ψ and Φ ⊃ Ψ. Similarly ∀,
∃ and = are mirrored by logical constants

⋂
(αp)p,

⋃
(αp)p, and ≈α(αp),

for each type α. With some notational sugaring this means that we now
also have proposition denoting terms of the forms

⋂
XαΦ,

⋃
XΦ, and

Aα ≈ Bα, mirroring the usual quantificational and identity statements.
In short, the whole usual logical apparatus, which, loosely speaking,

4 From this point on I will follow Thomason in using the word ‘intention’ instead
of ‘intension’ in a context where senses can be distinguished with much finer grain
as is possible in their usual possible worlds treatment. The notion of intentionality
has a long and respectable history, whose modern part is summed up as follows by
Tichý (1988, pp. 144–145):

In modern literature the notion first appears in Brentano’s thesis of intentional
inexistence, and can then be traced through Twardowski’s notion of content and
Meinong’s notion of pure object to its clearest manifestation in Frege’s notion of
mode of presentation.

sense.tex; 15/12/2004; 21:44; p.3



4 Reinhard Muskens

Table I. Typographical convention. Variables of the form indicated will have the
associated type. The convention will hold throughout this paper.

Variables x, y, z τ i, j P π P

Types e st s e(st) p ep

essentially operates at the level of truth values (type t), is mirrored at
the level of propositions (type p).

Having set up these operations on the propositional level, Thomason
introduces a function ∪ of type pt and imposes the following homomor-
phism constraints. (Here π and π′ are variables of type p and x is of
type e. See also the convention in Table I.)

(1) a. ∀π[∪∼π = ¬∪π]

b. ∀π∀π′[∪ [π ∩ π′] = ∪π ∧ ∪π′]

c. ∀π∀π′[∪[π ⊃ π′] = ∪π → ∪π′]

d. ∪
⋂
xΦ = ∀x∪Φ

e. ∪
⋃
xΦ = ∃x∪Φ

f. ∪[A ≈ B] = [∪A = ∪B]

The idea is that if Φ is a proposition, then ∪Φ is its reference. Note
that while these meaning postulates connect the p and t domains, they
leave open the possibility that the identity relation on the first of these
domains has a much finer grain than the identity relation on the second.
For example, we have that ∪∼

⋂
x∼Φ = ¬∀x¬∪Φ = ∃x∪Φ = ∪

⋃
xΦ.

But there will be many models in which ∼
⋂
x∼Φ =

⋃
xΦ fails to

hold. In general, while ∪ is required to be a homomorphism, it need
not be an isomorphism.

A natural language such as English can now be provided with a
semantics by associating each sentence with a proposition. For exam-
ple, one could associate common nouns and intransitive verbs such
as ‘woodchuck’, ‘groundhog’, ‘unicorn’, and ‘walk’ with translations
woodchuck, groundhog, unicorn, walk, etc. of type ep5 and determiners
such as ‘all’ and ‘a’ with translations all and a of type (ep)((ep)p).
Then ‘a woodchuck is walking’ would be associated with the type p

5 I am presenting a streamlined version of Thomason’s theory here and will
deviate in non-essential ways from the original. For example, the translation of the
intransitive verb ‘walk’ in Thomason (1980) is is a constant walk′ of type ((ep)p)p,
which is then systematically related to a constant walk† of type ep by a meaning
postulate of the type shifting variety. My walk corresponds to the latter. A similar
remark can be made about the translation of ‘believes’ below.

sense.tex; 15/12/2004; 21:44; p.4



Sense and the Computation of Reference 5

term ((a woodchuck)walk) and ‘all woodchucks are groundhogs’ should
be translated as ((all woodchuck)groundhog).6

In order for this to work and to connect such translations to their
usual truth values, we must impose some requirements, as in (2).

(2) a. ∀x[∪(woodchuck x) = woodchucket x],
and similar for groundhog, unicorn, walk, . . .

b. ∀P ′∀P[allP ′P =
⋂
x[P ′x ⊃ Px]]

c. ∀P ′∀P[aP ′P =
⋃
x[P ′x ∩ Px]]

The first of these requirements associates the translations that were
introduced for common nouns and intransitive verbs with their usual
extensions in type et.7 The second two connect the translations of ‘all’
and ‘a’ with the newly introduced constants

⋂
and

⋃
. The ∪ function

will send these to ∀ and ∃.
Again, that what is identified at the level of truth values may be

kept distinct at the level of propositions. For example, we may well
want to require (3a), which in view of (2a) is equivalent to (3b). But
this requirement is fully compatible with (3c). Although all woodchucks
are groundhogs and vice versa, the sense of ‘a is a woodchuck’ may be
distinct from the sense of ‘a is a groundhog’ for some a. Indeed, it may
consistently be assumed that this is the case for all a.8

(3) a. ∀x[∪(woodchuck x) = ∪(groundhog x)]

b. ∀x[woodchuck x = groundhog x]

c. ¬∀x[woodchuck x = groundhog x]

With the meaning postulates in (1) and (2) in place, translations in
our mini-fragment of English are connected to their truth conditions
via the ∪ function. For example, the following short derivation shows
that the proposition ((all woodchuck)groundhog) is sent to the usual
truth conditions.

(4) ∪((all woodchuck)groundhog) = (2b)
∪

⋂
x[woodchuck x ⊃ groundhog x] = (1d)

∀x∪[woodchuck x ⊃ groundhog x] = (1c)

∀x[∪(woodchuck x)→ ∪(groundhog x)] = (2a)

∀x[woodchuck x→ groundhog x]

6 The result of applying A to B is written as (AB). Parentheses may be omitted
on the understanding that association is to the left; e.g. ABC is ((AB)C).

7 Note that (2a) can be read as an abbreviatory convention that allows us to
write woodchuck for λx.∪(woodchuck x). In other words, (2a) constrains the class of
models only in an inessential way.

8 Thomason (1980) provides a model in which both (3a) and ∀x¬[woodchuck x =
groundhog x] hold.

sense.tex; 15/12/2004; 21:44; p.5



6 Reinhard Muskens

As long as only extensional constructions are considered, translations
will not differ from those in the usual set-up. But as soon as inten-
tional constructs are taken into account, things begin to change. Con-
sider, for example, the translation believe of ‘believes’. We may take
this translation to be of type p(ep), as it combines with a proposi-
tion and a subject to form a proposition. The sentence ‘John believes
that a unicorn walks’ could, on the reading where ‘a unicorn’ takes
wide scope, be translated as ((a unicorn)λx(believe(walkx)john)). The
following computation gives the truth conditions.

(5) ∪((a unicorn)λx(believe(walk x)john)) = (2c)
∪

⋃
x[unicorn x ∩ (believe(walk x)john)] = (1e)

∃x∪[unicorn x ∩ (believe(walk x)john)] = (1b)

∃x[∪(unicorn x) ∧ ∪(believe(walk x)john)] = (2a)

∃x[unicorn x ∧ ∪(believe(walk x)john)]

This may be reduced a bit further if the postulate in (6a) is adopted
(where believe is a constant of type p(et)). We then arrive at (6b).

(6) a. ∀π∀x[∪(believeπx) = believeπx]

b. ∃x[unicornx ∧ believe(walkx)john]

But here the process stops and, crucially, there is no reduction of the
embedded proposition walkx to its denotation. This is as it should be,
as belief is a relation to the sense of an expression, not to its reference.
Consider ((all woodchuck)woodchuck) and ((all woodchuck)groundhog).
In the presence of (3a) these will get equivalent denotations (∪ sends
both to truth). Still, they may denote different propositions. As a
consequence (7a) and (7b) are not equivalent. In particular, the first
statement can be true while the second is false, even with (3a) in force.

(7) a. believe ((all woodchuck)woodchuck) john

b. believe ((all woodchuck)groundhog) john

3. Ironing out a Redundancy

Thomason’s treatment of intentionality is so simple that the intro-
ductory paragraphs of Thomason (1980) even express a fear that its
simplicity may be mistaken for triviality. Nevertheless, the theory can
be simplified a bit further, as it turns out that the non-standard logical
constants ∼, ∩, ⊃,

⋂
,

⋃
, and ≈ can be gotten rid of. A closer look

sense.tex; 15/12/2004; 21:44; p.6



Sense and the Computation of Reference 7

at the workings of the theory shows that they are superfluous. The
essential function of Thomason’s meaning postulates is to connect the
sense of an expression with its denotation. This succeeds, but the non-
standard logical constants only play an intermediate role in this. With
the exception of (2a), the meaning postulates in (1) and (2) can be
given up in favour of the more direct ones in (8).

(8) a. ∀P ′∀P[∪(allP ′P) = ∀x[∪(P ′x)→ ∪(Px)]]

b. ∀P ′∀P[∪(aP ′P) = ∃x[∪(P ′x) ∧ ∪(Px)]]

This short-circuits the theory in a way that will not effect the sense-
reference function. The derivation (4), for example, can now be replaced
by the slightly shorter (9).

(9) ∪((all woodchuck)groundhog) = (8a)

∀x[∪(woodchuck x)→ ∪(groundhog x)] = (2a)

∀x[woodchuck x→ groundhog x]

As far as I can see, such a streamlining has no negative impact upon
Thomason’s theory and in any case the streamlined theory will do as
a starting point for this paper.

There is an advantage to this that goes beyond simplification of an
already simple theory. The logical constants that were dispensed with
had a property that is not normally associated with logical constants:
their interpretations could vary with each model. One of the usual
criteria that come with the notion of logicality is that the interpretation
of a logical constant in a given model can only depend on the domain(s)
of that model. In Intentional Logic this is not so. For example, it is
possible to have models M , M ′, based on the same frame (i.e. with all
domains identical), such that, for some Φ, Ψ, [[Φ ∩Ψ]]M 6= [[Φ ∩Ψ]]M

′
,

even while [[Φ]]M = [[Φ]]M
′
and [[Ψ]]M = [[Ψ]]M

′
. Doing away with ∼, ∩,

⊃,
⋂

,
⋃

, and ≈ rids us of a set of logical constants with a decidedly
non-logical behaviour. We still have ∪, but since considerations about
logicality similar to those above hold for this constant as well, we will
change it into a non-logical constant, receiving its interpretation from
the usual interpretation function.

4. A Larger Fragment with Possible Worlds

All special logical constants of Intentional Logic have at this point
either been dispensed with, or, in the case of ∪, been re-interpreted
as ordinary non-logical constants. Technically this boils down to a

sense.tex; 15/12/2004; 21:44; p.7



8 Reinhard Muskens

move from a specialized type logic to a standard one. In particular,
we can use the three-sorted Church-Henkin type logic TY3 in this
paper. Ground types will be e, t, s, and p, for entities, truth-values,
possible worlds, and propositions respectively. We have assumed that
the range of the function ∪ is the set of truth values and this has given a
purely extensional logic on formulas ∪Φ, but, as was already observed in
Thomason’s paper, an attractive alternative is to also consider possible
worlds. This will allow us to combine intentionality with the advantages
of possible worlds semantics. Accordingly, we will now replace ∪ with
a non-logical constant r of type p(st), which sends propositions to sets
of possible worlds.9

In Table II some non-logical constants are given of which the ones
in sans serif will be used to directly translate words of English and the
ones in italic will play a role in our meaning postulates.10 This means
that the expressions in (10), for example, are of type p.

(10) a. ((a woman)walk)

b. ((no man)talk)

c. (hesperus λx((a planet)(is x)))

d. ((if((a woman)walk))((no man)talk))

e. ((if((a man)talk))((no woman)walk))

f. (mary(aware((if((a woman)walk))((no man)talk))))

g. (mary(aware((if((a man)talk))((no woman)walk))))

h. ((a woman)λx(mary(aware((if(walk x))((no man)talk)))))

i. (mary λx((try(run x)) x))

It should be emphasized that these expressions contain no logical con-
stants (unless λ is regarded as such). The constants some, no etc. are
non-logical, but will be connected to their expected logical interpre-
tation shortly. Also, although there is a clear and intended analogy
with natural language, these are logical terms, amenable to logical
manipulation. Let us write TLF for the smallest set of terms that a)
contains all variables of type e, b) contains all constants for which we
have used sans serif type in Table II, and c) is closed under application
and abstraction over variables of type e. The examples in (10) are
closed TLF terms of type p. Note that closed TLF terms are virtually

9 Clearly, on the present account propositions cannot be identified with sets of
possible worlds (although they still determine sets of possible worlds).

10 The type s(st) constant acc in Table II will be used in the meaning postulates
for necessarily and possibly. Its denotation plays the role of the usual accessibility
relation. Additional meaning postulates may further constrain the behaviour of acc,
requiring reflexivity, transitivity, etc. Details are left to the reader.

sense.tex; 15/12/2004; 21:44; p.8



Sense and the Computation of Reference 9

Table II. Some non-logical constants

Non-logical Constants Type Non-logical Constants Type

not pp hesperus, mary, . . . e

and, or, if p(pp) love, kiss, . . . e(e(st))

every, a, no, the (ep)((ep)p) planet, man, run, . . . e(st)

is, love, kiss, . . . e(ep) acc s(st)

hesperus, mary, . . . (ep)p try, wish p(e(st))

planet, man, run, . . . ep believe, know, aware p(e(st))

necessarily, possibly pp

try, wish p(ep)

believe, know, aware p(ep)

identical to the ‘Logical Forms’ we find in generative syntax, whence
the subscript.

The following are meaning postulates connecting the p and st lev-
els (initial universal quantifiers are suppressed, so free variables get a
universal interpretation).

(11) a. r(not π) = λi.¬rπi

b. r(and ππ′) = λi.rπi ∧ rπ′i

c. r(or ππ′) = λi.rπi ∨ rπ′i

d. r(if ππ′) = λi.rπi→ rπ′i

e. r(every P ′P) = λi.∀x[r(P ′x)i→ r(Px)i]

f. r(a P ′P) = λi.∃x[r(P ′x)i ∧ r(Px)i]

g. r(no P ′P) = λi.¬∃x[r(P ′x)i ∧ r(Px)i]

h. r(necessarily π) = λi.∀j[acc ij → rπj]

i. r(possibly π) = λi.∃j[acc ij ∧ rπj]

j. r(mary P) = r(P mary) (and similarly for hesperus etc.)

k. r(is xy) = λi.(x = y)

l. r(love xy) = love xy (similarly for kiss, . . . )

m. r(planet x) = planet x (similarly for man, woman, . . . )

n. r(believe πx) = believeπx (similarly for try, wish, know, aware)

Again, these postulates can be used to compute the truth conditions
associated with proposition denoting terms. In (12), for example, it is
shown how (10d) unfolds.

sense.tex; 15/12/2004; 21:44; p.9



10 Reinhard Muskens

(12) r((if((a woman)walk))((no man)talk)) = (11d)

λi.r((a woman)walk)i→ r((no man)talk)i = (11f)

λi.∃x[r(woman x)i ∧ r(walk x)i]→ r((no man)talk)i = (11g)

λi.∃x[r(woman x)i ∧ r(walk x)i]→ ¬∃x[r(man x)i ∧ r(talk x)i] = (11m)

λi.∃x[woman xi ∧ walk xi]→ ¬∃x[man xi ∧ talk xi]

Let w be some fixed constant of type s (which we can think of as
denoting the actual world). Type p terms A1, . . . , An will be said to
entail a type p term B if

(11), rA1w, . . . , rAnw |= rBw ,

i.e. if, given the meaning postulates in (11), truth of A1, . . . , An in the
actual world implies truth of B in the actual world, or, equivalently, if
the intersection of rA1, . . . , rAn must denote a subset of rB, given the
meaning postulates.

The truth conditions of (10e) can be found using a computation
very similar to the one in (12) and clearly (10d) and (10e) co-entail.
On the other hand, it is consistent to assume that (10d) 6= (10e) and
equivalence of (10f) and (10g) cannot be derived. The truth conditions
of (10f) are given in (13a), those of (10g) in (13b). Since the embedded
type p terms need not corefer, (13b) could be true in some world where
(13b) is false. The treatment therefore is hyperintensional and does not
suffer from the logical omniscience problem.

(13) a. aware ((if((a woman)walk))((no man)talk))mary

b. aware ((if((a man)talk))((no woman)walk))mary

5. A Short Comparison with Other Approaches

There is a sense in which Thomason’s is an almost minimal theory
of intentionality: the few ingredients present in it must well-nigh be
present in any other theory of hyperintensional phenomena as well. If
a theory of intentionality is to say anything about the logical relations
we find among expressions it should contain some algebraic domain
L where we find notions such as entailment, conjunction, disjunction
and the like. It should presumably also contain some domain P of
propositions. If L is anything like the usual algebras of truth-values,
possible worlds etc., it must be distinct from P, as identifying L and
P in that case will immediately lead to the very problems any theory
of hyperintensionality is set out to solve. There must also be a connec-
tion C associating the P and L domains, as it is uncontroversial that

sense.tex; 15/12/2004; 21:44; p.10



Sense and the Computation of Reference 11

propositions (often) do have truth-conditions and do enter into logical
relationships. In the previous section L was the domain of type st, P
the domain of type p and C was the function r, whose behaviour was
axiomatized in (11).

While mentioning these elements almost sums up Thomason’s the-
ory, it seems that very similar ones must also be present in competing
approaches, and indeed if we analyse some of these it is not difficult to
recognize the L, P and C ingredients. Take, for example, the theory of
structured meanings, which took its origin in Carnap (1947) and was
revived in Lewis (1972) and Cresswell (1985). On Lewis’ account the
meaning of an expression is a finite ordered tree having at each node a
category and an appropriate intension. The intension associated with
the expression is the one found at the root of that tree. The role of the
domain P is therefore played by a set of trees labelled with categories
and intensions; the domain L is a domain of intensions, much as in our
previous section; and the connection C is given by simply taking the
intension found at the root node of any meaning.11 Since the identity
criteria of trees of intensions are more fine-grained than those of these
intensions themselves, most unwanted equivalences are blocked.

Another example of an approach in which the essential ingredients of
Thomason’s theory can easily be recognised is the theory of impossible
worlds. The idea behind this line of thought is that if the usual set of
possible worlds is not large enough to make enough distinctions between
semantic values extra worlds, impossible ones, should be added. A key
point is that the logical operators need not have their usual meaning
at these points of reference and that logical validities will therefore
cease to hold throughout the set of all worlds. The name “impossible
(possible) world” derives from Hintikka (1975), but the idea was also
present in Montague (1970) and Cresswell (1972) and has been followed
up in Rantala (1982), Barwise (1997), and Zalta (1997), to mention but
a few. The set P here consists of sets of possible and impossible worlds;
L contains only sets of possible worlds and C is the function that, given
any set of worlds, returns the subset that contains just the possible
ones, i.e. those in which the logical operators do have their standard
meaning. For a formulation of impossible worlds semantics very much
along these lines but within a standard logic, see Muskens (1991).

For a third approach in which the Thomasonian ingredients are
manifest, let us look at Property Theory (Turner, 1987; Chierchia and
Turner, 1988; Fox and Lappin, 2001). Property Theory does not only
give an account of hyperintensionality, but also aims to be a theory

11 In fact the construction of meanings in Lewis (1972) is such that postulates
closely akin to (11) will be satisfied by this C.

sense.tex; 15/12/2004; 21:44; p.11



12 Reinhard Muskens

of self-predication (as in having fun is fun). This makes it harder to
compare the approach with the current one, but if one looks at models
for the theory, as given in Chierchia and Turner (1988), one finds
a homomorphism T sending an algebra of ‘information units’ I to a
boolean algebra P. These are essentially our C, P and L ingredients
respectively (see also Lappin and Pollard, 2000 for this view), and the
basic picture reemerges.

When we claimed minimality for Thomason’s theory above, we were
careful to hedge our claim by calling it an almost minimal theory of
intentionality. There was a good reason for this hedge, as in fact one can
do without the L and C ingredients. Consider the entailment relation
on propositions defined in the previous section. It is easy to see that
this relation is reflexive and transitive but that it is not necessarily
antisymmetric. It is therefore a preorder and using the interpretations
of and, or, if and not one easily sees that our p domains form a boolean
prelattice (as defined in Fox et al., 2002). Of course, this notion can also
be axiomatized independently and one then can do without a domain
of truth values. This is the strategy followed in Fox et al. (2002) who
also construct worlds as ultrafilters on their basic boolean prelattice.
The paper describes a higher-order logic (FIL) that is close to Church’s
simple theory of types and to the approach we have described above.
However, in the following section we shall argue that the trajectory
from propositions to truth-conditions is of independent interest and
admits of a computational interpretation. A move to discard the L and
C elements (or to identify P and L, another way to view the matter)
therefore does not suit our purposes.

For a last comparison, let us consider an area where nonexten-
sionality is studied for reasons that differ from our present concerns,
the proof theory and model theory of higher order logic. It has long
been known that the axiom of extensionality is an obstacle to prov-
ing cut-elimination for higher order logic. However, Takahashi (1967)
and Prawitz (1968) manage to prove cut-elimination by considering a
wider class of structures, not necessarily extensional (the extensionality
axiom can be added again after the theorem has been proved). Such
nonextensional structures have also been used in Andrews (1971), which
lies at the basis of much work in computational higher order logic,
but, surprisingly, an explicit modeltheoretic use of them had to await
more recent times (Fitting, 2002; Benzmüller et al., 2004; Muskens,
2005). In Fitting (2002) one finds a construction in which type logical
expressions of type t are mapped to domains H(t) of that type. The
elements of these domains need not be sets, not even if t = 〈t1, . . . , tn〉
is complex (Fitting uses relational, not functional, types). A special
extension function E sends objects in domains H(〈t1, . . . , tn〉) to sub-

sense.tex; 15/12/2004; 21:44; p.12



Sense and the Computation of Reference 13

sets of H(t1) × · · · × H(tn). Again, we see the basic picture emerge,
be it on the level of the metatheory of the logic this time, not on its
object level. In fact, our domain of type p now corresponds to H(〈s〉)
and the extension function E restricted to that domain resembles our
r. This is an extremely interesting route to follow, as it proceeds by
generalizing existing type logic, not adding to it, with nice complete
tableau systems to boot. However, the move of pushing the connection
between intensions and extensions to the metalevel does not suit our
present purposes for a reason just touched upon: we want to explicitly
have this connection at the object level in order to be able to give it a
computational interpretation.

In this section I have mentioned a series of approaches to hyperinten-
sionality that are alternatives to the theory this paper is based upon.
Lack of space has prevented me to do any of the works mentioned
the justice it deserves and I must refer the reader to the originals for
details. However, what I do think has been established is the recurrence
within all theories of intentionality of a certain pattern in which some
function C sends a domain of propositions P to a logical algebra L.
Since Thomason’s theory is a particularly straightforward and lean
formalization of this idea, it seems a good idea to study it further.
In the next section we will do so, giving a computational interpretation
to the connection C.

6. Senses as Queries

What exactly are propositions? We have treated propositions as prim-
itive objects in our theory and will continue to do so, but this does
not preclude a further investigation of their character. There are many
theories in which objects that, from a model-theoretic point of view, are
considered to be primitives obtain considerable structure when looked
at from a theory internal perspective. In axiomatic set theories, for
example, the elements of a models’ domain are primitive but they are
interpreted as sets from the viewpoint of the theory. This gives them a
rich structure. Likewise, a model of second-order Peano Arithmetic can
have any kind of objects in its domain, but the theory will interpret
them as indistinguishable from the natural numbers, so that they will
enter in all kinds of arithmetical relations. In both cases it is the axioms
that impose this structure and since our theory also contains axioms,
in the form of meaning postulates, we can ask ourselves what structure
they impose on the p domain and what structure the objects in this
domain get.

sense.tex; 15/12/2004; 21:44; p.13



14 Reinhard Muskens

Let us take a closer look at (12). This derivation consists of a series of
equations, but clearly also allows for a computational interpretation in
which we progress from top to bottom. We can therefore interpret our
meaning postulates as providing an algorithm that, when given a TLF
term of type p as input, returns a term denoting a set of possible worlds.
In fact we can also interpret the TLF terms themselves as programs.
In such a view the meaning postulates act as a kind of interpreter for
the TLF language and the term ((if((a woman)walk))((no man)talk)), for
example, is a small program that will lead to the computation in (12).

All this happens on the syntactic level of the logic, not on the se-
mantic level. But taking into consideration that it is really the essential
function of, say, ((if((a woman)walk))((no man)talk)) that it should lead
to (12), it becomes reasonable to start thinking about the proposition
that is the denotation of this type p term as if it were an algorithm
itself. When it is run, it calls the algorithms for ((a woman)walk) and
((no man)talk) and uses the output of these to arrive at its own output.
In what follows nothing will hinge on this interpretation, at least not
formally, but we will let ourselves be inspired by this view when it is
necessary to make choices of design. The choice that will fit better into
the propositions-as-algorithms picture will be the one that is preferred.

The theory thus leads to a computational interpretation but this
computational interpretation in its turn naturally leads to a revision
of the theory. Since r(π) = τ should now be read as ‘algorithm π

will output τ ’ we may well wonder what happens when an algorithm
does not lead to an output, as algorithms sometimes do. As things
stand the formalization is not able to capture this possibility and we
therefore move to a somewhat different set-up. Let d be a constant of
type p((st)t). dπτ , written d(π, τ), is to be read as ‘τ is an output of
algorithm π’. The possibility that there is no τ for a given π such that
d(π, τ) is left open, as computations may fail or diverge. On the other
hand, we will not allow any sense to determine more than one set of
worlds and so we will adopt the following functionality requirement as
a meaning postulate.

(14) d(π, τ) ∧ d(π, τ ′)→ τ = τ ′

From now on statements using d (and its generalizations dn—see below)
will replace statements that make use of r.

We could now proceed with giving meaning postulates such as those
in (15), where (11b) is replaced by two statements, but in fact a further
revision of the theory suggests itself. If our meaning postulates are to
capture the computation that is needed when progressing from sense
to reference (or from sense to reference-in-each-possible-world), then
(15a) is needed, but (15b) seems superfluous. In order to find a value τ

sense.tex; 15/12/2004; 21:44; p.14



Sense and the Computation of Reference 15

such that d(and ππ′, τ) we need to find τ ′ and τ ′′ such that d(π, τ ′) and
d(π′, τ ′′) and set τ = λi.τ ′i ∧ τ ′′i. For going in the opposite direction
there is no need.

(15) a. d(π, τ) ∧ d(π′, τ ′)→ d(and ππ′, λi.τ i ∧ τ ′i)

b. d(and ππ′, τ)→ ∃τ ′τ ′′[d(π, τ ′) ∧ d(π′, τ ′′) ∧ τ = λi.τ ′i ∧ τ ′′i]

Readers familiar with logic programming12 will recognize (15a) as (a
variant of) a definite clause. If we can frame the other meaning pos-
tulates as definite clauses as well, the set of meaning postulates will
be a logic program! This can be done, but a generalization is needed.
Using (15a) the statement d(if (john walk)(john talk), λi.walk john i →
talk john i) can be concluded from the simpler d(john walk,walk john)
and d(john talk, talk john), for example, and this in general suggests
finding the st term associated with a TLF term of type p by pro-
gressively breaking down the latter. But meaning postulates such as
(15a) are insufficiently general to carry out this plan. Consider (a
unicorn)λx.and(walk x)(talk x), for example. Decomposing this term will
lead to λx.and(walk x)(talk x), but the rule in (15a) cannot be used for
further decomposition in view of the initial abstraction. What is needed
is a general way to associate terms of type enp13 with terms of type
en(st). In order to obtain this we will assume the existence of constants
dn, where, for each natural number n, dn is of type (enp)((en(st))t).
The original d will be d0, but we will continue to write it simply as d.

The following postulates are schemas; a concrete postulate can be
obtained by instantiating n to any natural number, ~z to a sequence of
pairwise distinct variables z1 . . . zn, and x and y to distinct variables
of type e that are also distinct from all ~z. ~u must be a sequence of
variables of type e of length n + 2 and ~v a similar sequence of length
n + 1. The notation dk(R, R) of course entails that R is of type ekp
and R is of type ek(st).

(16) a. dn(R, R)→ dn(λ~z.not R~z, λ~zλi.¬R~zi)

b. dn(R, R)∧dn(R′, R′)→ dn(λ~z.and(R~z)(R′~z), λ~zλi.R~zi∧R′~zi)

c. dn(R, R) ∧ dn(R′, R′)→ dn(λ~z.or(R~z)(R′~z), λ~zλi.R~zi ∨R′~zi)

d. dn(R, R)∧ dn(R′, R′)→ dn(λ~z.if(R~z)(R′~z), λ~zλi.R~zi→ R′~zi)

e. dn+1(R, R) ∧ dn+1(R′, R′)→
dn(λ~z.every(R′~z)(R~z), λ~zλi∀x[R′~zxi→ R~zxi])

f. dn+1(R, R) ∧ dn+1(R′, R′)→
dn(λ~z.a(R′~z)(R~z), λ~zλi.∃x[R′~zxi ∧R~zxi])

12 See e.g. (Apt, 1990) for the theory; (Blackburn et al., 2001) is a nice introduction
to the programming language Prolog based on this theory.

13 For any types α and β, we define α0β = β and αn+1β = α(αnβ).

sense.tex; 15/12/2004; 21:44; p.15



16 Reinhard Muskens

g. dn+1(R, R) ∧ dn+1(R′, R′)→
dn(λ~z.no(R′~z)(R~z), λ~zλi.¬∃x[R′~zxi ∧R~zxi])

h. dn+1(R, R)→ dn(λ~z.mary(R~z), λ~zλi.∃x[x = mary ∧R~zxi])

i. dn(R, R)→ dn(λ~z.necessarily(R~z), λ~zλi.∀j[acc ij → R~zj])

j. dn(R, R)→ dn(λ~z.possibly (R~z), λ~zλi.∃j[acc ij ∧R~zj])

k. dn+2(λ~u.is xy, λ~uλi.x = y), where ~u contains x and y

l. dn+2(λ~u.love xy, λ~u.love xy), where ~u contains x and y

m. dn+1(λ~v.planet x, λ~v.planet x), where x is among the ~v

n. dn+1(λ~z.believe (R~z), λ~z.believe (R~z))

These schemas are to be interpreted paradigmatically (so, say, (16h)
will not only govern the behaviour of mary, but also that of bill, john,
hesperus and the like) and can be used to break down any closed TLF
term into its constituent parts and compute the value that it deter-
mines in terms of the values of the latter. The ~z in (16) take care of
variable management and make sure that the bound variables that are
encountered in the process of breaking down a TLF term are handled
correctly. Here is a derivation using (16) that illustrates the process.

(17)

d
1(λx.girl x, λx.girl x)

d
2(λxy.boy y, λxy.boy y) d

2(λxy.kiss yx, λxy.kiss yx)

d
1(λx.(every boy)λy.kiss yx, λx∀y.boy yi→ kiss yxi)

d((a girl)λx.(every boy)λy.kiss yx, λi∃x[girl xi ∧ ∀y[boy yi→ kiss yxi]])

Reading this derivation from bottom to top, note how superscripts on d
increase with each quantifier that is met and how the arguments of the
dn come with an initial prefix of lambdas of length n. Not all abstractors
in this prefix need to actually bind a variable (e.g. the λx in λxy.boy y
does not). The idea is that initial abstractors λ~z contain all variables
that potentially occur free in the rest of the term. Note also that the
variables in initial abstractors come in the order in which quantification
has taken place; this may not be the order in which operators take their
arguments. Meaning postulates such as (16l) provide for this possibility
by just requiring that the variables filling the argument slots of a given
argument-taking expression should be among the variables that are
abstracted over, without prescribing order.

Derivations such as the one in (17) have a conventional form. They
derive statements of the form d(π, τ); they do not find a τ such that
d(π, τ), given some π. But since (16) is in fact a logic program it is
possible to interpret it as providing an algorithm that does just that.
This squares well with the view of senses as recipes for finding referents,
and therefore we now turn to this interpretation.

sense.tex; 15/12/2004; 21:44; p.16



Sense and the Computation of Reference 17

First, let us introduce some technicalities. Logic programming in-
volves a notion of unification, but while in the standard theory this
notion is taken to involve first-order terms only, we need a general-
ization, as the terms in (16) contain second-order variables. We must
therefore introduce some notions from the theory of higher-order uni-
fication (for a survey of higher-order unification theory see Dowek,
2001). A substitution σ is defined as a finite function from variables to
terms, such that σ(X) and X always have the same type. If dom(σ) =
{X1, . . . , Xn} and σ(Xi) = Mi we may use [X1 := M1, . . . , Xn := Mn]
to denote σ. If M is a term and σ = [X1 := M1, . . . , Xn := Mn] is a
substitution, then Mσ is the term obtained from M by simultaneously
substituting each Xi in M by Mi, with possible renaming of bound
variables in order to avoid variable clashes. The composition of the
substitutions σ1 and σ2 is the substitution σ1σ2 such that, for all vari-
ables X, σ1σ2(X) = Xσ2σ1 if X 6= Xσ2σ1 and σ1σ2(X) is undefined
otherwise. A unifier of M1 and M2 is a substitution σ such that M1σ

and M2σ have the same βη normal form and a most general unifier of
M1 and M2 is a unifier σ of M1 and M2 such that for all unifiers ϑ of
M1 and M2 there is an η such that ϑ = ησ.

There is no general algorithm that, given two terms M1 and M2,
decides whether M1 and M2 have a unifier (Huet, 1973). Huet’s proof
uses third-order terms while the terms in (16) are second-order, but
second-order unification is also undecidable (Goldfarb, 1981) and there-
fore unattractive for our purposes. Fortunately there is a notion of
unification, higher-order patterns unification (Miller, 1991), that fits
our bill. A pattern is a term M such that for every subterm of the
form XM1 . . .Mn, where X is a free variable, the terms M1, . . . ,Mn

are distinct variables bound in M . Note that the terms dk(M,M ′) in
(16) are all of this form. Unification of patterns is well-behaved: it
is decidable in polynomial time and when a unification problem has
a unifier, it has a most general unifier (Miller, 1991). We will adopt
higher-order patterns unification as our notion of unification here.14

With the right concept of unification in place we can now consider
logic programming proper. If α = (α1 . . . (αn−1(αn β)) . . .), for some
type α, where β is a basic type, β is called the target type of α. Fix a

14 One clarification may be necessary: Higher-order unification is normally defined
for languages that are built up from variables and constants, using λ-abstraction and
application only. This means that, since we want the standard theory to apply to
our higher-order logic, logical operators such as =, ∀, ∃, ∧, . . . must be treated with
the help of these. In order to obtain the universal quantifier, for example, we will
assume that, for each type α, the initial vocabulary contains a constant Π(αt)t, and
that ∀Xα ϕ is syntactic sugaring for Π(αt)tλXα ϕ. The other logical constants are
assumed to be treated in similar ways.

sense.tex; 15/12/2004; 21:44; p.17



18 Reinhard Muskens

set of constants A all of whose types have target type t and such that
dk ∈ A for all k. Atoms will be terms of type t of the form aM1 . . .Mm,
where a ∈ A. Literals will be atoms (positive literals) or the negations
of atoms (negative literals), while clauses are disjunctions of literals.
Note that a clause with positive literals B1, . . . , Bm and negative literals
¬A1, . . . ,¬An can equivalently be written as A1∧ . . .∧An → B1∨ . . .∨
Bm. In the logic programming literature this is often written in the
clausal form B1, . . . , Bm←A1, . . . , An, even when m = 0, in which case
the disjunction is identified with ⊥, or when n = 0 and the conjunction
reduces to ⊤. The free variables in a clause are interpreted universally,
so that a clause is interpreted as its universal closure. A variant of a
clause is the result of renaming the free variables of that clause. The
variant is fresh (to some proof) if the new free variables have not been
used before (in that proof). A clause is Horn if it has at most one
positive literal; if it has exactly one, it is called definite; if it has none,
it is called a goal or query. In a definite clause A1 ∧ . . . ∧An → B, the
atom B is the head and A1 ∧ . . .∧An is the body. A (logic) program or
database is a set of definite clauses. Note that the meaning postulates
in (16) form a program.15

In logic programming there is a single rule of inference, called the
resolution rule, which can be formulated as follows.

(18) Resolution Rule. Let Π be some logic program and let

B1 ∧ . . . ∧Bm → B

be a fresh variant of a definite clause in Π. From

A1 ∧ . . . ∧Ai ∧ . . . ∧An → ⊥

to infer

[A1 ∧ . . . ∧Ai−1 ∧B1 ∧ . . . ∧Bm ∧Ai+1 ∧ . . . ∧An → ⊥]σ ,

where σ is the most general unifier of B and Ai. The atom Ai is
called the selected atom.

This resolution rule can be used in the following manner. Suppose that,
given the program in (16), you want to find a τ such that

(19) d((if((a woman)walk))((no man)talk), τ)

15 Programs are usually defined to be finite sets of definite clauses, for obvious
practical reasons. But since the meaning postulates in (16) are schemas which have
infinitely many instantiations, we will allow programs to be infinite. Even so, our
derivations have the property that, at each inference step, only finitely many (and
in fact just one singular) definite clause needs be considered.

sense.tex; 15/12/2004; 21:44; p.18



Sense and the Computation of Reference 19

holds. This amounts to finding a constructive proof for

(20) ∃τ d((if((a woman)walk))((no man)talk), τ) ,

i.e. a proof that does not only affirm the existence of such a τ , but also
gives one. In order to find this constructive proof, you can form the
query

(21) ← d((if((a woman)walk))((no man)talk), τ)

and try to refute it. This will work because the query is equivalent
to the negation of the sentence you want to prove. There is exactly
one clause in (16) whose head unifies with the only atom in this goal,
namely (16d), the rule for if, with n = 0. Here is a fresh variant of that
rule, in claual form.

(22) d(ifπ1π2, λi.τ1i→ τ2i)← d(π1, τ1), d(π2, τ2)

The head of this rule unifies with your query, with most general unifier

(23) [π1 := ((a woman)walk), π2 := ((no man)talk), τ := λi.τ1i→ τ2i]

The value of τ has now been expressed in terms of the new variables
τ1 and τ2 and you can proceed with trying to find values for these,
continuing with the new goal

(24) ← d(((a woman)walk), τ1), d(((no man)talk), τ2) .

The rest of the search is depicted in Figure 1, where only those parts
of the relevant substitutions are given that matter for the final an-
swer. Note that the computation ends with ←, which is short for the
absurdity ⊥←⊤, and the original query has thus been refuted. The
conclusion is that a τ with the given specifications indeed exists and
composition of the substitutions that were found gives it the value

(25) λi.∃x[woman xi ∧ walk xi]→ ¬∃x[man xi ∧ talk xi]

Figure 2 gives a similar refutation for a query that is slightly more
complex than (21), with more embedding of operators. The reader
will have no difficulty in constructing more examples. Figure 3 goes
the other way round; it takes (25) and then starts out finding the
corresponding π, which clearly must lead to the value

π = (if((a woman)walk))((no man)talk) .

The query in a sense is the reverse of (21). Note however that in general
the reversibility of computations is imperfect in the following sense.
For any closed π in TLF it is possible to compute a τ such that d(π, τ).

sense.tex; 15/12/2004; 21:44; p.19



20 Reinhard Muskens

← d((if((a woman)walk))((no man)talk), τ)

← d(((a woman)walk), τ1), d(((no man)talk), τ2)

← d(((a woman)walk), τ1), d1(man, P1), d1(talk, P2)

← d(((a woman)walk), τ1), d1(talk, P2)

← d1(woman, P3), d1(walk, P4), d1(talk, P2)

← d1(walk, P4), d1(talk, P2)

← d1(walk, P4)

←

τ := λi.τ1i→ τ2i(16d)

τ2 := λi.¬∃x[P1xi ∧ P2xi](16g)

P1 := man(16m)

τ1 := λi.∃y[P3yi ∧ P4yi](16f)

P3 := woman(16m)

P2 := talk(16m)

P4 := walk(16m)

Figure 1. A refutation of← d((if((a woman)walk))((no man)talk), τ). Selected atoms
are underlined. Composition of the substitutions that are found gives the value
τ = λi.∃x[woman xi ∧ walk xi]→ ¬∃x[man xi ∧ talk xi].

Moreover this τ will be equivalent to any τ ′ such that (16) |= d(π, τ ′).
But the reverse is not the case. On the one hand, some closed st terms
τ may lack a π such that d(π, τ) will be computed, and, on the other,
equivalent τ and τ ′ may lead to nonequivalent π and π′ such that d(π, τ)
and d(π′, τ ′). This is because the equivalence relation on terms of type
p has much finer grain than that on terms of type st.

We now come back to the question asked at the beginning of this
section and to our decision to interpret propositions as algorithms,
at least informally. Clearly, the theory in itself does not force us to
make any identification of the model-theoretic object denoted by a
given term Φ of type p and the query ← d(Φ, τ), but we may decide
that this is the intended interpretation. More generally, we can identify
the denotation of any closed TLF term Θ of type enp with the query
← dn(Θ, R), where R is a variable of type en(st). Such a computational
interpretation answers some questions about the identity relation on
senses. For example, the question whether, in general, not notΦ = Φ
has an immediate negative answer. The first leg of this equation leads
to the computation in (26), while the second does not.

(26) ← d(not notΦ, τ)

← d(not Φ, τ1)

← d(Φ, τ2)
...

τ := λi.¬τ1i

τ1 := λi.¬τ2i

sense.tex; 15/12/2004; 21:44; p.20



Sense and the Computation of Reference 21

← d((a man)(λx.necessarily((every unicorn)(λy.kiss yx))), τ)

← d1(man, P1), d1(λx.necessarily((every unicorn)(λy.kiss yx)), P2)

← d1(λx.necessarily((every unicorn)(λy.kiss yx)), P2)

← d1(λx.(every unicorn)(λy.kiss yx), P3)

← d2(λx.unicorn, R1), d2(λxy.kiss yx, R2)

← d2(λxy.kiss yx, R2)

←

τ := λi∃x[P1xi ∧ P2xi]

P1 := man

P2 := λxλi∀j[acc ij → P3xj]

P3 := λxλi∀y[R1xyi→ R2xyi]

R1 := λx.unicorn

R2 := λxy.kiss yx

n

Figure 2. ← d((a man)(λx.necessarily((every unicorn)(λy.kiss yx))), τ) leads to a
refutation as depicted here. In each case the first atom is selected. Composition
of subsitutions gives τ = λi∃x[man xi ∧ ∀j[acc ij → ∀y[unicorn yj → kiss yxj]]].

What about conjunctions? Will the interpretation of senses as queries
force us to identify andΦ1Φ2 and andΦ2Φ1, for arbitrary Φ1 and Φ2?
This depends on our identification criteria for queries.

(27) ← d(and Φ1Φ2, τ)

← d(Φ1, τ1), d(Φ2, τ2)
...

τ := λi.τ1i ∧ τ2i

← d(and Φ2Φ1, τ)

← d(Φ2, τ2), d(Φ1, τ1)
...

τ := λi.τ2i ∧ τ1i

In (27) it is shown how the first proposition under consideration leads to
← d(Φ1, τ1), d(Φ2, τ2), while the second leads to← d(Φ2, τ2), d(Φ1, τ1).
These queries are certainly equivalent and that would warrant the con-
clusion that the two propositions are identical.16 On the other hand,
while in computations that arise from (16) atoms can always be selected
in any order, it is evident that as soon as things are scaled up and
anaphora and presuppositions are taken into account, dependencies will
arise that will make some form of control imperative (the next section
will give an example). In fact, it seems almost unavoidable to assume
that natural language has a control regime that computes subgoals
more or less strictly in the left-to-right order in which they appear in
syntax (either surface syntax or LF). If control is factored in into the
identity criteria for queries in some way, the propositions andΦ1Φ2 and
andΦ2Φ1 may well be distinguished.

At the start of this section we decided to replace the function r, that
was sending propositions to their corresponding sets of possible worlds,

16 This conclusion agrees with the one reached in Moschovakis (1994).

sense.tex; 15/12/2004; 21:44; p.21



22 Reinhard Muskens

← d(π, λi.∃x[woman xi ∧ walk xi]→ ¬∃x[man xi ∧ talk xi])

← d(π1, λi.∃x[woman xi ∧ walk xi]), d(π2, λi.¬∃x[man xi ∧ talk xi])

← d(π1, λi.∃x[woman xi ∧ walk xi]), d1(P1,man), d1(P2, talk)

← d(π1, λi.∃x[woman xi ∧ walk xi]), d1(P2, talk)

← d1(P3,woman), d1(P4,walk), d1(P2, talk)

← d1(P4,walk), d1(P2, talk)

← d1(P4,walk)

←

π := if π1π2

π2 := noP1P2

P1 := man

π1 := aP3P4

P3 := woman

P2 := talk

P4 := walk

Figure 3. A refutation of← d(π, λi.∃x[woman xi∧walk xi]→ ¬∃x[man xi∧talk xi]).
Selected literals are underlined. π = (if((a woman)walk))((no man)talk) results if
substitutions are composed.

by a relation d (or rather a family of relations dn). This necessitates
a redefinition of the notion of entailment between propositions, as the
definition in section 4 depended on r. Although it is true that for every
closed term Φ ∈ TLF of type p there is a ϕ such that d(Φ, ϕ) is derivable
from the meaning postulates, this property will not be retained in the
following section. The definition of entailment between propositions
must therefore take into account the possibility that propositions may
fail to determine a set of worlds. (28) gives two notions that seem
reasonable, one of strict entailment, where all propositions involved are
required to provably determine a set of worlds, and a derived notion of
entailment that leaves room for non-determining propositions, as long
as these are redundant to the argument.

(28) Entailment between Propositions. Let Φ1, . . . ,Φn and Ψ be
terms of type p and let MP be a set of meaning postulates. We
say that Φ1, . . . ,Φn strictly entail Ψ given MP if

1. MP |= ∃τ d(Ξ, τ) holds for all Ξ ∈ {Φ1, . . . ,Φn,Ψ}, and

2. MP, d(Φ1, ϕ1)∧ . . .∧ d(Φn, ϕn)∧ d(Ψ, ψ)∧ϕ1w∧ . . .∧ϕnw |=
ψw, where the ϕk and ψ are any terms of type st and w is
any constant of type s

If Γ is a set of type p terms, Γ is said to entail Ψ given MP if
there are Φ1, . . . ,Φn ∈ Γ such that Φ1, . . . ,Φn strictly entail Ψ
given MP.

sense.tex; 15/12/2004; 21:44; p.22



Sense and the Computation of Reference 23

The fact that some propositions may fail to determine a set of worlds in
extensions of our system also creates room for variation where meaning
postulates are concerned. Consider the treatment of and, or and if. If
the meaning postulates in (16) are all we can go by, a term ifΦ1Φ2 can
only provably determine a set of worlds if both Φ1 and Φ2 do. Similar
remarks can be made about and and or. The situation resembles that
of having a Weak Kleene evaluation scheme in a logic with truth value
gaps, where a complex formula will be undefined if one of its constituent
parts is. Additional meaning postulates can be adopted and then lead
to behaviour reminiscent of stronger evaluation schemes. Adding the
following set, for example, gives a Strong Kleene way of evaluating:17

(29) a. d(π1, λi.⊥)→ d(andπ1π2, λi.⊥)

b. d(π2, λi.⊥)→ d(andπ1π2, λi.⊥)

c. d(π1, λi.⊤)→ d(orπ1π2, λi.⊤)

d. d(π2, λi.⊤)→ d(orπ1π2, λi.⊤)

e. d(π1, λi.⊥)→ d(ifπ1π2, λi.⊤)

f. d(π2, λi.⊤)→ d(ifπ1π2, λi.⊤)

Whether such extra meaning postulates need be adopted may be a mat-
ter of empirical investigation. But it is curious that one can, within one
logic, have options that are strongly reminiscent of evaluation schemes
that in the usual setting are constitutive of different logics.

7. Circular Propositions

‘A logical theory,’ Russell famously wrote in On Denoting, ‘may be
tested by its capacity for dealing with puzzles . . . ’ The puzzles we are
turning to in this section are the Liar and friends. Linguistic semantics
has an obligation to say something about these puzzles for the simple
reason that they can be formulated very easily in natural languages,
with the help of mechanisms that seem central to the workings of lan-
guage itself and that, in a vast majority of cases, present no puzzle at all.
Semantic theory must explain the workings of these mechanisms, and
if it does, the behaviour of the Liar should follow from this explanation
as a corollary.

The ingredients of the Liar are well-known: self-reference and the
capacity to talk about truth and falsity. But, as Kripke (1975) has
argued convincingly, the property of self-reference, although it needs

17 The formulation in (29) can easily be extended to deal with dn for arbitrary n.

sense.tex; 15/12/2004; 21:44; p.23



24 Reinhard Muskens

to be present if a sentence18 or set of sentences is to be circular, need
not be evident from a Liar-like sentence at all, and even a seemingly
innocent statement like (30), may, under unfavourable circumstances,
turn out to be paradoxical.

(30) Most of Blair’s assertions about Iraq are false

A set of unfavourable circumstances which turn (30) into a paradox
are: (30) is uttered by Jones, whose other statements about Iraq are
all true. Blair’s statements about Iraq, on the other hand, are evenly
divided among the True and the False, with the exception of one extra
claim, the contention that everything Jones says about Iraq is true. It
is easy to see that paradox results.

This shows that circular sentences need not wear self-referentiality
upon their sleeves, that highly normal utterances can turn out to be
circular, and that the normal mechanisms that allow reference to other
statements, the kind of mechanisms linguistic theory has to deal with,
are sufficient to also obtain circular reference.

What about the other ingredient for the paradox, the possibility to
pronounce a statement true (or false)? We are conditioned to think
about languages that can express their own syntax here, and about
a truth predicate that can hold or fail to hold of syntactic objects
expressed with the help of coding (e.g. Gödel numbering). But in a
setting such as the present one, where propositions are available as
first-class citizens, it seems much more natural to let truth and falsity
attach directly to the latter (see also Barwise and Etchemendy, 1987).
In fact, as Moschovakis (1994) makes clear, as soon as self-reference is
present in such a setting, the paradoxes already pop up with the help
of negation only. The following are informal examples of the Liar (31a)
and the Truth-teller (31b) considered by Moschovakis (1994).

(31) a. ¬(31a)

b. (31b)

Let us build truth, falsity, and reference to propositions into the TLF
language by adding the non-logical constants true and false of type pp
and the constants this, that, this0, that0, this1, that1, . . . of type p to
the list of sans serif constants in Table II and by closing off as before.

(32) a. A: If a woman is walking no man is talking. B: That’s true.

b. (if((a woman)walk))((no man)talk)
18 I will take a sentence to be circular if the proposition it expresses (on the

intended reading) is circular.

sense.tex; 15/12/2004; 21:44; p.24



Sense and the Computation of Reference 25

← d(true that, τ)

← d(that, τ)

← ant(that, π), d(π, τ)

← d((if((a woman)walk))((no man)talk), τ)
...

(continued as in Figure 1)

π := (if((a woman)walk))((no man)talk)

Figure 4. A refutation tree for d(true that, τ). Added to the database is the
information that ant(that, (if((a woman)walk))((no man)talk)).

c. (true that)

d. ant(that, (if((a woman)walk))((no man)talk))

The little dialogue in (32a)ncan be translated with the help of (32b) and
(32c), which are closed TLF terms of type p under the new definition.
But the translation is incomplete if it does not additionally represent
the fact that the demonstrative in B’s utterance is anaphorically linked
to A’s observation. This is expressed in (32d), where the p(pt) constant
ant expresses antecedenthood. It is assumed that ant ∈ A, so that the
constant is treated on a par with the dn.

We need meaning postulates for the new constants. Those for the
truth predicates in (33), essentially treat false as negation and true as
the redundant connective that Frege already thought it was.

(33) a. d(π, τ)→ d(true π, τ)

b. d(π, τ)→ d(false π, λi.¬τi)

The postulates for the constants translating demonstrative pronouns
are given in (34). The basic idea is that the set of worlds determined by
such a constant is simply the set of worlds determined by its antecedent.

(34) a. ant(this, π) ∧ d(π, τ)→ d(this, τ)

b. ant(that, π) ∧ d(π, τ)→ d(that, τ)

Now assume that whenever a hearer figures out that an anaphoric
relation holds between a demonstrative pronoun that (or this) and
some sentence translated by the p term Φ, he adds ant(that,Φ) to his
database of definite clauses. For example, a person overhearing (32a)
who interprets the anaphoric relation between that and A’s utterance
in the way obviously intended by B may add (32d) to his logic program.

sense.tex; 15/12/2004; 21:44; p.25



26 Reinhard Muskens

← d(false this, τ)

← d(this, τ1)

← ant(this, π), d(π, τ1)

← d(false this, τ1)

← d(this, τ2)

...

τ := λi.¬τ1i

π := false this

τ1 := λi.¬τ2i

← d(true this, τ)

← d(this, τ)

← ant(this, π), d(π, τ)

← d(true this, τ)

← d(this, τ)

...

π := true this

a.– Liar b.– Truth-teller

Figure 5. Search trees for the Liar (a) and the Truth-teller (b). In case of the
Liar ant(this, false this) was added to the program; for the Truth-teller this was
ant(this, true this). In both cases search results in an infinite loop.

This seems to be a natural way to deal with anaphoric elements. While
other words have more or less fixed meanings and thus can obtain mean-
ing from postulates permanently present in the database, the meaning
of an anaphoric element depends on its antecedent and therefore must
lead to an addition to the logic program after that antecedent has been
established.

Now consider the query ← d(true that, τ) in a context where (32d)
was added to the database. Figure 4 gives a refutation tree,19 that in
a few steps leads to the query considered in Figure 1. Executing this
query (or remembering its result) will establish that (32b) and (32c)
determine the same set of worlds.

We have now set up a rudimentary mechanism dealing with reference
to propositions and truth that will work in perfectly unspectacular ways
in normal cases. But it will also lead to circular behaviour. Consider
the Liar, formalized in (35).

(35) a. false this

b. ant(this, false this)

When ← d(false this, τ) is evaluated against a database which contains
(35b), a search as in Figure 5a results, with a variant of the original
query reached in a few steps. A very similar behaviour results if the
Truth-teller is evaluated.

19 Note that here we have an example where adding control is necessary. It would
not be a good idea to select the atom d(π, τ) from the query ← ant(that, π), d(π, τ)
in Figure 4 as this would lead to unnecessary indeterminism.

sense.tex; 15/12/2004; 21:44; p.26



Sense and the Computation of Reference 27

(36) a. true this

b. ant(this, true this)

The latter’s formalization is given in (36) and a search tree is given in
Figure 5b. A simple example of a Liar cycle is found in (37), with (37a)
referring to (37b) and vice versa. If← d(true that0, τ) is evaluated with
(37c) and (37d) added to the database, circular behaviour will occur.

(37) a. true that0

b. false that1

c. ant(that0, false that1)

d. ant(that1, true that0)

A difference between the Liar and the Truth-teller is that it seems pos-
sible to arbitrarily assume that the Truth-teller is true (or false), while
no such assumption is possible in case of the Liar. The present formal-
ization agrees with this intuition, as adding an extra d(true this,⊤) (or
d(true this,⊥)) to the database considered in (36) is perfectly possible
(and leads to a one-step refutation of ← d(true this, τ)), but adding
d(false this,⊤) to the database for (35) leads to conflict with (14).

Thus the senses-as-queries view, when combined with mechanisms
for referring to propositions and talking about truth, leads to normal
results in normal cases and to circular results in cases of simple Liar-
like sentences. Queries may diverge and propositions therefore may fail
to determine a set of worlds. What about more elaborate forms of the
Liar paradox such as the Strengthened Liar in (38)?

(38) This sentence is false or does not denote

Unlike the simple Liar, the strengthened Liar uses a word that is not
part of the common vernacular but is technical, and it may well be that
here we reach a limit of what is expressible in ordinary language. Can
a language contain a word denote that is applicable to any statement
of that language? We are used to be able to express about anything
we like and this creates an illusion that the answer must be ‘yes’, but
the senses-as-queries view strongly suggests a negative answer. After
all, we know that, in general, there can be no program H that, given
the description of any program Π, decides whether Π halts or not, i.e.
the Halting Problem is undecidable. But since, in the senses-as-queries
view, the question whether a sentence denotes is closely related to the
question whether a certain query halts, we should not be surprised if
this result carries over to natural language. If senses are queries then
the limits of computation are also limits of language.

sense.tex; 15/12/2004; 21:44; p.27



28 Reinhard Muskens

Suppose we had a pp term denotes with the property that, in any
model M , d(denotes Φ, λi.⊤) holds in M if there is a ϕ such that
d(Φ, ϕ) holds in M and d(denotes Φ, λi.⊥) is true in M if there is no
such ϕ. The usual diagonalization proof that shows the undecidability
of the Halting Problem can be turned into a reductio ad absurdum
of this assumption provided that meaning postulate (29e) is adopted.
Consider (39).

(39) a. (if (denotes this1))(false this2)

b. ant(this2, false this2)

c. ant(this1, (if (denotes this1))(false this2))

It is clear that in any model satisfying (39b) and the previous meaning
postulates (39a) will denote iff this1 does not denote. Adding (39c)
therefore immediately leads to inconsistency. We conclude that a term
denotes with the required properties cannot be part of our system.
The reductio follows that of the existence of a machine H deciding the
halting problem by constructing a machine H ′ from it that halts iff its
input does not halt ((39a) with (39b) added to the database) and then
feeding H ′ to itself (adding (39c)).

8. Conclusion

We have shown how a relatively standard fragment of logical grammar
can deal with the foundational problems of intentionality and circular-
ity if propositions are accepted as primitive objects, in Thomason’s way,
and if the determination relation which associates propositions with
sets of possible worlds is axiomatized by means of a logic program. Such
a set-up pushes part of the usual Tarski-style interpretation procedure
from the metalevel of the logic to the object level and allows us to
interpret propositions as queries. Often the result of a query will be
some set of possible worlds, but in some cases the query will not lead
to a result because it diverges. Distinct queries can lead to the same
result and identity criteria on queries can be very strict, thus leading
to an intentional (hyperintensional) semantics.

A third possibility for queries, besides diverging or duly returning
an answer, we have not gone into because it did not fall within the
boundaries drawn up for this paper. This is the possibility of aborting
with error because necessary preconditions for computation have not
been satisfied. This possibility corresponds to the notion of presupposi-
tion in natural language but its treatment within (a liberalized version
of) the present framework will have to await future work.

sense.tex; 15/12/2004; 21:44; p.28



Sense and the Computation of Reference 29

Acknowledgements

This paper is based on talks held at the Sinn und Bedeutung workshop
in Osnabrück 2001 and the Sinn und Bedeutung workshop in Konstanz
2002. I would like to thank my audiences there for asking the right
questions. Two anonymous referees gave valuable comments.

References

Andrews, P.: 1971, ‘Resolution in Type Theory’. Journal of Symbolic Logic 36(3),
414–432.

Apt, K.: 1990, ‘Introduction to Logic Programming’. In: J. van Leeuwen (ed.):
Handbook of Theoretical Computer Science, Vol. B. Amsterdam: Elsevier, pp.
495–574.

Barwise, J.: 1997, ‘Information and Impossibilities’. Notre Dame Journal of Formal
Logic 38(4), 488–515.

Barwise, J. and J. Etchemendy: 1987, The Liar: An Essay on Truth and Circularity.
New York, N.Y.: Oxford University Press.

van Benthem, J.: 1988, ‘The Semantics of Variety in Categorial Grammar’. In: W.
Buszkowski, W. Marciszewski, and J. v. Benthem (eds.): Categorial Grammar.
Amsterdam: John Benjamins, pp. 37–55.

Benzmüller, C., C. E. Brown, and M. Kohlhase: 2004, ‘Higher Order Semantics and
Extensionality’. Journal of Symbolic Logic 69, (to appear).

Blackburn, P., J. Bos, and K. Striegnitz: 2001, Learn Prolog Now! www.consem.org.
Carnap, R.: 1947, Meaning and Necessity. Chicago: Chicago UP.
Chierchia, G. and R. Turner: 1988, ‘Semantics and Property Theory’. Linguistics

and Philosophy 11, 261–302.
Church, A.: 1940, ‘A Formulation of the Simple Theory of Types’. Journal of

Symbolic Logic 5, 56–68.
Cooper, R.: 1983, Quantification and Syntactic Theory. Dordrecht: Reidel.
Cresswell, M.: 1972, ‘Intensional Logics and Logical Truth’. Journal of Philosophical

Logic 1, 2–15.
Cresswell, M.: 1985, Structured Meanings. Cambridge, MA: MIT Press.
Dowek, G.: 2001, ‘Higher-Order Unification and Matching’. In: A. Robinson and A.

Voronkov (eds.): Handbook of Automated Reasoning. Amsterdam: Elsevier, pp.
1009–1062.

Dummett, M.: 1978, Truth and Other Enigmas. London: Duckworth.
Fitting, M.: 2002, Types, Tableaus, and Gödels God. Dordrecht: Kluwer Academic

Publishers.
Fox, C. and S. Lappin: 2001, ‘A Framework for the Hyperintensional Semantics of

Natural Language with Two Implementations’. In: P. De Groote, G. Morrill,
and C. Retoré (eds.): Logical Aspects of Computational Linguistics. Berlin, pp.
175–192, Springer-Verlag.

Fox, C., S. Lappin, and P. C.: 2002, ‘A Higher-order Fine-grained Logic for Inten-
sional Semantics’. In: G. Alberti, K. Balough, and P. Dekker (eds.): Proceedings
of the Seventh Symposium for Logic and Language. Pecs, Hungary, pp. 37–46.

Goldfarb, W.: 1981, ‘The Undecidability of the Second-order Unification Problem’.
Theoretical Computer Science 13, 225–230.

sense.tex; 15/12/2004; 21:44; p.29



30 Reinhard Muskens

Hintikka, J.: 1975, ‘Impossible Possible Worlds Vindicated’. Journal of Philosophical
Logic 4, 475–484.

Huet, G.: 1973, ‘The Undecidability of Unification in Third-Order Logic’. Informa-
tion and Control 22, 257–267.

Kripke, S.: 1975, ‘Outline of a Theory of Truth’. Journal of Philosophy 72, 690–716.
van Lambalgen, M. and F. Hamm: 2003, ‘Moschovakis’ Notion of Meaning as Applied

to Linguistics’. In: M. Baaz and J. Krajicek (eds.): Logic Colloquium ’01, ASL
Lecture Notes in Logic.

Lappin, S. and C. Pollard: 2000, ‘Strategies for Hyperintensional Semantics’. ms.
Larson, R. and G. Segal: 1995, Knowledge of Meaning. Cambridge, MA: MIT Press.
Lewis, D.: 1972, ‘General Semantics’. In: D. Davidson and G. Harman (eds.):

Semantics of Natural Language. Dordrecht: Reidel, pp. 169–218.
Miller, D.: 1991, ‘A Logic Programming Language with Lambda-abstraction, Func-

tion Variables, and Simple Unification’. Journal of Logic and Computation 1,
497–536.

Montague, R.: 1970, ‘Universal Grammar’. In: Formal Philosophy. New Haven: Yale
University Press, pp. 222–246.

Montague, R.: 1973, ‘The Proper Treatment of Quantification in Ordinary English’.
In: Formal Philosophy. New Haven: Yale University Press, pp. 247–270.

Moschovakis, Y.: 1994, ‘Sense and Denotation as Algorithm and Value’. In: Logic
Colloquium ’90 (Helsinki 1990), Vol. 2 of Lecture Notes in Logic. Berlin: Springer,
pp. 210–249.

Moschovakis, Y.: 2003, ‘A Logical Calculus of Meaning and Synonymy’. Corrected
and edited notes for a course in NASSLLI 2003.

Muskens, R.: 1991, ‘Hyperfine-Grained Meanings in Classical Logic’. Logique et
Analyse 133/134, 159–176.

Muskens, R.: 2005, ‘Higher Order Modal Logic’. In: P. Blackburn, J. van Benthem,
and F. Wolter (eds.): Handbook of Modal Logic, Studies in Logic and Practical
Reasoning. Dordrecht: Elsevier. (to appear).

Prawitz, D.: 1968, ‘Hauptsatz for Higher Order Logic’. Journal of Symbolic Logic
33(3), 452–457.

Rantala, V.: 1982, ‘Quantified Modal Logic: Non-normal Worlds and Propositional
Attitudes’. Studia Logica 41, 41–65.

Takahashi, M.: 1967, ‘A Proof of Cut-elimination Theorem in Simple Type Theory’.
Journal of the Mathematical Society of Japan 19(4), 399–410.

Thomason, R.: 1980, ‘A Model Theory for Propositional Attitudes’. Linguistics and
Philosophy 4, 47–70.

Tichý, P.: 1988, The Foundations of Frege’s Logic. Berlin: De Gruyter.
Turner, R.: 1987, ‘A Theory of Properties’. Journal of Symbolic Logic 52(2), 455–

472.
Zalta, E.: 1997, ‘A Classically-Based Theory of Impossible Worlds’. Notre Dame

Journal of Formal Logic 38(4), 640–660.

sense.tex; 15/12/2004; 21:44; p.30


