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Tense and the Logic of Change

Reinhard Muskens

INTRODUCTION

In this paper I shall show that the DRT (Discourse Representation Theory) treatment of
temporal anaphora1 can be formalized within a version of Montague Semantics that is
based on classical type logic. This emulation has at least two purposes. In the first place
it may serve as one more illustration of the general point that although there are several
different frameworks for semantical analysis in the market today, each with its own
special rhetoric and technical set-up, we often find on closer examination that these
approaches are much less different than some of their proponents want us to believe.2

The frameworks that are under consideration here, DRT and Montague Grammar, may
both profit from knowing where exactly they differ and where they agree and in this
paper it is shown that they do not necessarily differ in their treatment of temporal
phenomena. Our reformulation also shows that we may be able to get rid of the level of
discourse representations that is characteristic of DRT. Since we can express large parts
of DRT in Montague Grammar and since Montague Grammar makes no essential use
of a level that is intermediate between syntax and interpretation, we may conclude that
we are not forced to adopt such an extra level. It is possible to make the same predic-
tions while assuming less entities. If nothing compels us to assume the existence of
representations, we should apply Occam’s razor to trim them away.

The second purpose of our reformalization is to extend the DRT analysis of tense to
the subclausal level. In the DRT approach whole clauses are taken as atomic while in
our set-up it will be possible to study how the meaning of an expression is built from
the meanings of its parts, how the meanings of those parts are built from the meanings
of other expressions, and so on, down to the level of single words. Languages can build
an infinity of meanings from a finite stock and it seems that  we can account for this
only by accepting some building block theory of meaning.3 A theory of tense should
describe what the temporal operators contribute to the meaning of the sentences and
texts they occur in.

1 As exemplified in Kamp [1979], Hinrichs [1981, 1986], Kamp & Rohrer [1983] and Partee
[1984].
2 For another illustration of this point see Muskens [1989a], or better, Muskens [1989b], in which
I emulate an early version of Situation Semantics within Montague Grammar.
3 This in itself does not entail that we must embrace the strict compositionality that is the norm in
Montague Grammar, of course.
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This is not the first paper that fuses DRT and Montague Semantics. For example
Rooth [1987], who bases himself upon Barwise [1987], gives a Montagovian reanalysis
of the DRT treatment of nominal anaphora and Groenendijk & Stokhof [1990] for the
same purpose develop a system called Dynamic Montague Grammar (DMG), a
generalization of their Dynamic Predicate Logic (DPL; Groenendijk & Stokhof
[1991]). But in this paper I’ll use a system of dynamic semantics that I have formulated
in Muskens [1991], a theory that, even though it borrows many ideas from DPL, uses
classical  logic only.4 Standard DMG is based on a highly complicated logic, and it is
here too that I want to apply Occam’s razor. Logics ought not to be multiplied except
from necessity. In order to keep things as simple as I can, I shall not make any use of
the devilish confetti of boxes, cups, caps and tense operators that we find in
Montague’s IL and I shall also refrain from using the ‘state switchers’, the ‘ups’ and
‘downs’, the special ‘quantifiers’ (that are no quantifiers in the usual sense) etc. that
are to be found in DMG. All these are redundant and we can stick to ordinary higher
order logic (with lambdas). The structure that is needed to get a dynamic system can be
obtained by using axioms. There is a price to be paid though: in general our formulae
will be relatively long. Since we restrict ourselves to classical type theory our formulae
will have to display all information that in specialized logics can be encoded in the
system itself. On the whole, however, I think that the much greater transparency of
classical logic in practice far outweighs any abbreviatory advantages that can be
obtained by complicating the logic.5

The organization of the paper is as follows. In the next section I’ll sketch a general
picture of the dynamic interpretation of discourse. According to this picture a text acts
upon its reader much in the same way as a computer program acts upon the machine
that it runs on, bringing him from one state to another and changing the values of
certain variables he is keeping track of. The axioms that I have just referred to model
this change and are given in section 3. The resulting system provides us with the tools
that we need for our purposes: on the one hand the axioms enable us to deal with
dynamic phenomena and to take a computational approach to natural language se-
mantics, while on the other the availability of lambdas allows us to build up meanings
compositionally in the usual Montagovian manner. That Discourse Representation
Theory can really be emulated in classical logic in this way is shown in section 4 where

4 I work in a many-sorted version of the logic in Church [1940] here. For the two-sorted variant see
Gallin [1975]; a generalization to a type logic with an arbitrary finite number of basic types is trivial.
5 I think this practical reason to prefer ordinary logic is much more important than any theoretical
consideration. Logicians should note however that IL does not have the diamond property: Friedman
& Warren [1980] give the following example. Consider the term λx (λy (^y  = f  (x ))x )c , where x
and y  are variables of some type α , c  is a constant of that type and f  is a variable of type (α (sα )).
Two reductions are possible. We can reduce to the term λy (^y  = f  (c ))c  which cannot be reduced
any futher, but we can also reduce the inner redex in order to obtain λx (^x  = f  (x ))c.  This term
neither can be simplified any further. This means that in IL a choice which simplification to make first
may crucially matter for the result.
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this theory is embedded into our system, both in a direct way and via an embedding into
a version of the Quantificational Dynamic Logic that is used in the study of
computation. Quantificational Dynamic Logic too can be embedded into our type logic
enriched with axioms.

These embeddings are not given for their technical interest primarily, but for the light
that they shed on our subsequent treatment of two fragments of English. In section 5 I
give the first of these. It contains nominal anaphora, and the section is in fact a quick
rehearsal of the theory that was given in Muskens [1991]. For our second fragment,
however, we need some more structure and in section 6 a basic ontology of eventualities
and periods of time is developed. At that point the ground will be prepared for our
treatment of temporal anaphora in section 7. The treatment will combine insights from
Reichenbach [1947], the DRT tradition and Montague Grammar.

2. CHANGING THE CONTEXT

The reader of a text must keep track of a list of items. While he is reading, the values of
these items may shift. For example, in the first sentence of the short dialogue in (1)
below (an exchange between a Cop and a Robber) the reference time  shifts several
times, so that the Robber’s purchase of the gun, his walking to the bank and his
entering the bank are interpreted as occurring in succession. At the turn of the dialogue,
the speaker  becomes the addressee  and the addressee  becomes speaker,  so that the
words ‘I’ and ‘you’ are interpreted correctly. Moreover, the two indefinite noun
phrases in the first sentence each create a discourse referent  that can be picked up at
later times by pronouns or definites. (Anaphoric linkage is represented by coindexing
here.)

(1) —You bought a1 gun, walked to a2 bank and entered it2.
i j k

—But I didn’t use the1 gun or rob the2 bank.
l

At each point in the text the reader may be thought to be in a certain contextual state; 6

in each contextual state items like reference time, speaker, addressee,  various
discourse referents and so on have certain values. We may thus identify these context
items with functions that take states as their arguments and assign values of an
appropriate kind to them.

i j k l

6 Compare the ‘conversational score’ in Lewis [1979].
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R: t1 t2 t3 t4
speaker: Cop Cop Cop Robber
addressee: Robber Robber Robber Cop
v1: ? S&W S&W S&W
v2: ? ? ABN ABN

figure 1

Suppose that our reader is in some state i  when he starts to read dialogue (1). Suppose
also that at this stage some initial reference time t1  is given and that it is settled that
speaker and addressee are the Cop and the Robber respectively. Now reading a small
portion of the text causes the reader’s list of items to change. Just after the word gun
has been processed, the reference time R  has moved forward and a discourse referent
for a gun  has been stored. So now the reader is in a state j  that differs from i   in the
two respects that R  has shifted to some time7 t2  just after t1  and that some gun (a
Smith & Wesson, say) is stored in a discourse marker v1.8  A bit later, when the word
bank  is read, the reference time has moved to a period of time t3  just after t2  and some
bank (say the ABN bank at the Vijzelgracht in Amsterdam) is now the value of a
discourse marker v2.  So at this point the reader may be in a state k  such that R (k ) = t3
and v2 (k ) = ABN.  The other items remain unchanged, so that speaker (k ) = speaker (j
) = Cop, v1 (k ) = v1 (j ) = S&W   and addressee (k ) = addressee (j ) = Robber.

At the start of the second sentence the values for speaker  and addressee  are
swapped, so that our reader is now in a state l  such that  speaker (l ) = Robber  and
addressee (l ) = Cop.  The interpretation of the VP entered it  has caused the reference
time to move again, so that R (l ) = t4  for some stretch of time t4  just after t3 ; the other
items remain unaltered.

Note that we must view the interpretation process as highly non-deterministic  if we
want to model it in this way. If we allow the reader only a single list of items we must
allow him many choices as to which objects he is going to store as the values for these
items. For example, our reader has chosen some particular Smith & Wesson to store as
the value for the discourse referent connected with a gun,  but of course he might have
taken any gun he liked; he might have chosen another value for the referent of a bank
as well. So a reader who starts reading (1) being in state i  does not need  to end up in
state l  at the turn of the dialogue, although he may  be in that state then. The state that
the reader is in at a given point in the text does not depend functionally on preceding
states. Given an input state, the processing of a text may lead to many different output
states. We identify the meaning of a text with the binary relation consisting of all tuples

7 In section 7 below the point of reference R  will range over eventualities.
8 The value of v1  in state i  is unimportant. We may either assume that v1  is undefined for state i,
or that it assumes some special dummy value, or that its value is completely arbitrary. Technically we
take the last option.
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〈i, j 〉 such that starting from state i  after interpreting the text the reader may be in state
j.

There is an analogy between texts and computer programs here that should be
pointed out. Just like the evaluation of a text causes the values in a list of contextual
items to change, running a program causes the values that are assigned to the program’s
variables to be altered. Our contextual states correspond to program states, and our
contextual items correspond to the variables in a program. Although it is true that
programs on an actual computer are deterministic—it is always completely decided
what action will come next—program semanticists have found it useful to consider
nondeterministic programs as well. These nondeterministic programs allow the machine
to choose which of two actions it wants to perform, or to choose how many times it
wants to iterate a given action.

3. THE LOGIC OF CHANGE

Let’s formalize our talk about state change within the Theory of Types. We can assume
that states are primitive objects (type s ), and that our contextual items are functions that
take states as arguments. Consequently, contextual items (or, stores ) have a type sα,
where α  is the type of the values to be stored. Let’s agree to have only a finite set of
types α  that the values of stores can have and let’s call this set Θ.  In the sections to
follow, Θ   will be the four element set {e, τ, ε, w }, where e  is the type of individuals, τ
is the type of periods of time, ε  is the type of eventualities and w   is the type of
possible worlds, so that stores can only contain individuals, periods of time,
eventualities or worlds. But for the sake of generality I’ll formulate the basic theory for
arbitrary finite Θ  here.

Of course state changes are highly controlled and a short piece of text can only alter
the values of a few stores. We need a simple way to express the fact that two states
agree up to the values of some given stores. In particular, we want to have at our
disposal a formula  i [v ]j   that says that all stores except v  return the same value for
arguments i  and j.  We can get such a formula in the following way. Introduce for each
α  ∈ Θ  a constant ST(sα )t  of type (sα )t . This constant intuitively stands for the
predicate “is a store of type sα ”. Now suppose that v  is a term of type sα, then we
want i [v ]j  to mean that (a) states i  and j  agree in all stores of type sα, except possibly
in v  and that (b) i  and j  agree in all stores of all other types. Here is a definition that
ensures this.

DEFINITION 1.  If v  is a term of type sα  (α  ∈ Θ  ), then i [v ] j  abbreviates the
conjunction of

(a) ∀usα ((ST(sα )t u  ∧ u ≠ v ) → uj  = ui ) and
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(b) the conjunction of all ∀usβ (ST(sβ )t u  → uj = ui ) for all β  ∈ Θ  – {α }.

The denotation of λij i  [v ]j  is of course an equivalence relation.
There is an important constraint to be imposed. We want only models in which each

state can be changed ad lib. Until now there is nothing that guarantees this. For
example, some of our typed models may have only one state in their domain Ds  of
states.  In models that do not have enough states an attempt to update a store may fail;
we want to rule out such models. In fact, we want to make sure that we can always
update a store selectively with each appropriate value we may like to. This we can do by
means of the following axiom scheme.9

AX1 ∀i∀vsα∀xα (ST(sα )t v  → ∃j (i [v ]j  ∧ vj  = x )) for all α  ∈ Θ

The axiom scheme is closely connected to Goldblatt’s [1987, pp. 102] requirement of
‘Having Enough States’ and with Janssen’s ‘Update Postulate’. We’ll refer to it as the
Update Axiom (Scheme). It follows from the axiom that not all type sα  functions are
stores (except in the marginal case that Dα  contains only one element), since, for
example, a constant function that assigns the same value to all  states cannot be updated
to another value. The Update Axiom imposes the condition that contents of stores may
be varied at will.

Below we shall use non-logical constants (R  for the point of reference, S  for speech
time, W  for the current world, v0, v1, v2, . . .  for various discourse markers etc.) that
are meant to refer to stores. We call these special constants store names  and we ensure
that store names refer to stores (and hence can be updated) by a simple axiom scheme.

AX2 ST(sα )t v for each store name v  of type sα,  for each α  ∈ Θ

Although two different stores may of course have the same value at a given state, we
don’t want two different store names to refer to the same store. From i [v ]j  we want to
be able to conclude that ui  = uj  if the store names u  and v  are syntactically different.
We enforce this by demanding that

9 Warning: some choices for Θ  lead to inconsistency. For example, if we choose st —sets of
states—to be an element of Θ  we’re in trouble. First, we get a problem with the cardinality of the set
of all states, since AX1 now would require that there are at least as many states as there are sets of
states, which is impossible. This problem could be circumvented by a suitable weakening of AX1:
instead of requiring that stores can be updated with any  existent set we may require that stores can be
updated with any set that is the value of some closed term in the language. In applications this would
be quite sufficient. The second problem is somewhat trickier. Suppose V  is a type s (st ) store name.
Consider the term λi ¬Vii.  By AX1 there is some j  such that Vj  = λi ¬Vii.  This immediately gives
Vjj  = ¬Vjj,  a contradiction. This diagonal argument is of course strongly reminiscent of the rea-
soning used in the Liar paradox and in Russell’s paradox. In this paper I evade the problem by simply
not letting any element of Θ  contain an s.  In a future paper I intend to tackle the problem by
choosing partial type theory as the underlying logic.
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AX3 u  ≠ v for each two different store names u  and v  of any type sα.

This is our logic of change: classical type theory plus our definition for i [v ]j  plus the
three axiom schemes given above. It is useful to extend the definition of i [v ]j   to an
arbitrary finite number of stores: by induction define i [u1, …, un ]j   to abbreviate the
formula ∃k (i [u1 ]k  ∧ k [u2, …, un ]j ).  Given the Update Axiom we can informally
paraphrase i [u1, …, un ]j  as: ‘states i  and j  agree in all stores except possibly in u1,
…, un ’.

The following fact is very useful. I call it the Unselective Binding Lemma  and it has
an elementary proof. Since a state can be thought of as a list of items, a quantifier over
states can have the effect of a series of quantifications.

UNSELECTIVE BINDING LEMMA .10 Let  u1, …, un  be store names, not necessarily of
one and the same type, let  x1, …, xn  be  distinct variables, such that xk  is of type α  if
uk  is of type sα,  let ϕ  be a formula that does not contain j  and let [u1j / x1, …, unj / xn
]ϕ  stand for the simultaneous substitution of u1j  for x1  and . . . and unj  for xn  in ϕ,
then:

(i) AX1-AX3  |= ∃j  (i [u1, …, un ]j   ∧ [u1j / x1, …, unj / xn ]ϕ ) ↔ ∃x1 … xn ϕ

(ii) AX1-AX3  |=∀j  (i [u1, …, un ]j   → [u1j / x1, …, unj / xn ]ϕ ) ↔ ∀x1 … xn
ϕ

4. DISCOURSE REPRESENTATION THEORY, DYNAMIC LOGIC AND TYPE THEORY

That the preceding exercise has some relevance for the dynamic interpretation of natural
language may be more easily appreciated if we consider the relation between our logic
and Discourse Representation Theory. I’ll assume familiarity with DRT here,
rehearsing only the basic facts. Definition 2 below characterizes the DRT language. The
expressions in this language can be divided into two categories: conditions and
Discourse Representation Structures (DRSs). As we see from the first clause, the
atomic formulae of ordinary predicate logic (without function symbols) are conditions.
The other two clauses allow us to build complex conditions and DRSs from simpler
constructs.

10 Another form of the Lemma states the equivalence of ∃j  [u1j / x1, …, unj / xn ]ϕ  and ∃x1 … xn
ϕ  if ϕ  does not contain j.
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DEFINITION 2 (DRT Syntax).11

i. If R  is an n- ary relation constant and t1,...,tn  are terms (constants or
variables), then Rt1...tn  is a condition.
If t1  and t2  are terms then t1  = t2  is a condition.

ii. If Φ  and Ψ  are DRSs then ¬Φ, Φ  ∨ Ψ  and Φ  ⇒ Ψ  are conditions.
iii. If ϕ1,...,ϕm  are conditions (m ≥ 1) and x1,...,xn  are variables (n  ≥ 0), then

[x1 ...xn][ϕ1 ,...,ϕm] is a DRS.

The language is evaluated on first-order models in the following way. Let M  = 〈D,  I 〉
be such a model (where D  is the domain and I  is the interpretation function of M ).
The value of a term t   in M  under an assignment a,  written as ||t  ||

M,a,  is defined as I
(t  ) if t  is a constant and as a (t  ) if t  is a variable. Definition 3 assigns a value ||δ  ||M

in M  to each condition or DRS δ ; the value of a condition will be a set of assignments,
the value of a DRS a binary relation between assignments for M.  (In the definition I
suppress all superscripts M  and write a [x1...xn] a'   to mean that the assignments a
and a'   return the same values for all variables, except possibly for x1,...,xn).

DEFINITION 3 (DRT Semantics).
i. ||Rt1 ... tn || = { a  | 〈||t1 ||a, ... , ||tn ||a 〉 ∈ I (R )}

||t1  = t2 || = { a  | 〈||t1 ||a  = ||t2 ||a 〉}
ii. ||¬Φ || = { a  | ¬∃a' 〈a,  a' 〉 ∈ ||Φ ||}

||Φ  ∨ Ψ || = { a  | ∃a' (〈a,  a' 〉 ∈ ||Φ || ∨ 〈a,  a' 〉 ∈ ||Ψ ||)}
||Φ  ⇒ Ψ || = { a  | ∀a' (〈a,  a' 〉 ∈ ||Φ || → ∃a'' 〈a',  a'' 〉 ∈ ||Ψ ||)}

iii. ||[x1,...,xn][ϕ1,...,ϕm] ||
= { 〈a, a' 〉  | a [x1 ...xn] a'  &  a'  ∈ ||ϕ1 || ∩...∩ ||ϕm ||}

A DRS Φ  is defined to be true  in a model M  under an assignment a  iff there is some
assignment a'   such that 〈a, a' 〉 ∈ ||Φ ||M; a condition ϕ  is true  in M  under a  iff a
∈ ||ϕ ||M.

Discourse Representation Theory comes with a set of construction rules that
translate certain English texts into DRSs and thus provide these texts with an
interpretation (see e.g. Kamp [1981] or Kamp & Reyle [to appear]). For example the
DRS associated with text (2) is (3) and the DRS connected to (4) is (5).

(2) A farmer owns a donkey. He beats it.
(3) [x1, x2][ farmer x1, donkey x2, own x2x1, beat x2x1]

(4) Every farmer who owns a donkey beats it.
(5) [][[ x1, x2][ farmer x1, donkey x2, own x2x1] ⇒ [][ beat x2x1]]

11 In this and the following definition I choose the transparent format of Groenendijk & Stokhof
[1991].
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The following function † gives an embedding of DRT into predicate logic, essentially
the one that is discussed in Kamp & Reyle [to appear].

DEFINITION 4 (Translating DRT into predicate logic).
i. (Rt1 ... tn )† = Rt1 ... tn

(t1  = t2 )† = t1  = t2
ii. (¬Φ )† = ¬Φ †

(Φ  ∨ Ψ )† = Φ † ∨ Ψ †

([x1 ,...,xn][ϕ1 ,...,ϕm]  ⇒ Ψ )† = ∀x1 ...xn((ϕ1 
† ∧...∧ ϕm 

†) → Ψ †)
iii. ([x1 ,...,xn][ϕ1 ,...,ϕm])† = ∃x1 ...xn(ϕ1 

† ∧...∧ ϕm 
†)

A simple induction on the complexity of DRT constructs shows that a condition or
DRS δ  is true in M   under a  if and only if its translation δ † is. Note that the
translation is sensitive to context: the translation of a condition Φ  ⇒ Ψ  is not  given as
a function of the translations of Φ  and Ψ.

 By way of example the images under † of the DRSs (3) and (5) are given in (6) and
(7).

(6) ∃x1x2 (farmer x1 ∧ donkey x2  ∧ own x2x1  ∧ beat x2x1)
(7) ∀x1x2 ((farmer x1  ∧ donkey x2  ∧ own x2x1 ) → beat x2x1)

We can go the other way around as well, translating predicate logic into the DRT
language. The function * defined here will do the job.

DEFINITION 5 (Translating predicate logic into DRT).
i. (Rt1 ... tn )* = [][ Rt1 ... tn ]

(t1  = t2 )*  = [][ t1  = t2 ]
ii. (¬ϕ )* = [][¬ ϕ * ]

(ϕ  ∨ ψ )* = [][ ϕ *  ∨ ψ *]
iii. (∃xϕ )* = [x ][ϕ * ∨ ϕ *]

Again it is easily seen that a formula ϕ  is true in M  under a  if and only if the DRS ϕ *
is, and indeed that ϕ * † is logically equivalent to ϕ.  So in a sense, as far as truth
conditions are concerned, DRT is a notational variant of ordinary predicate logic. It
should be observed, however, that † in fact ignores one of the most important aspects of
DRT, namely its dynamic character. It is here that DRT and predicate logic differ in
expressive power. While a DRS characterizes a (binary) relation  of assignments,
formulas of predicate logic take sets  of assignments as their values.

In order to compare DRT with the logical system described in the previous section
I’ll now give a translation of DRT into that system. Since the Kamp & Reyle function †
that we have just discussed is sensitive to context and loses the dynamic aspect of DRT,
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it is worth considering a slightly more complicated embedding. This new translation
will also generalise easier to translations of other systems of dynamic logic into type
logic.

Note that the context states that were introduced in the previous section in an obvious
way correspond to assignments. Even though for technical reasons we have decided to
let states be primitive objects and to let stores be functions from states to appropriate
values, we can intuïtively view states as functions from stores to values. This inspires us
to define the following translation ° from DRT into our logic. We let the translation
(xn)° of the n-th variable of the DRT language (in some fixed ordering) be vni,  where
vn  is the n-th store name of type se  (remember that store names are constants)  and i
is the first variable of type s.  The translation (c )° of any individual constant c  is just c
itself. The translations of conditions and DRSs we get simply by copying the clauses in
definition 3, sending conditions to closed type st  terms and DRSs to closed terms of
type s (st ) in the following way.

DEFINITION 6 (Translating DRT into the Theory of Types).
i. (Rt1 ... tn )° = λi (Rt1°...tn°)

(t1  = t2 )° = λi (t1 ° = t2 °)
ii. (¬Φ )° = λi ¬∃j (Φ °ij  )

(Φ  ∨ Ψ )° = λi∃j (Φ °ij   ∨ Ψ °ij )
(Φ  ⇒ Ψ )° = λi∀j (Φ °ij   → ∃k Ψ °jk )

iii. ([x1,...,xn][ϕ1,...,ϕm])° = λij (i [v1,...,vn]j  ∧ ϕ1°j  ∧...∧ ϕm°j )

Given our axioms AX1-AX3 definition 6 obviously does the same as definition 3 did,
but now via a translation into type logic. Let us apply ° to the two example DRSs given
above to see how things work out. It is not difficult to see that (3) gets a translation
that—after some lambda conversions—turns out to be equivalent to the following term.

(8) λ ij (i  [v1,v2] j   ∧  farmer (v1j ) ∧  donkey (v2j ) ∧ own (v2j )(v1j ) ∧
beat(v2j)(v1j ))

This term denotes the relation that holds between two states if they differ maximally in
two stores and in the second state the value of the first store is a farmer, while the value
of the second store is a donkey that he owns and beats. Copying the definition of truth
for DRSs, let’s say that an s (st ) term Φ  is true  in a given state i   if and only if there
is some state j  such that 〈i, j 〉 is in the denotation of Φ.  The set of all states i  such that
Φ  is true in i— the content  of Φ— we define as the denotation of λi∃j (Φij  ) (the
domain of the relation Φ ). This means that the content of (8) is the denotation of

(9) λ i∃ j (i  [v1,v2] j   ∧  farmer (v1j ) ∧  donkey (v2j ) ∧ own (v2j )(v1j ) ∧
beat(v2j)(v1j )).



11

An application of the Unselective Binding lemma readily reduces this to the simpler

(10) λi∃x1x2 (farmer x1 ∧ donkey x2  ∧ own x2x1  ∧ beat x2x1),

which is just (6) preceded by a vacuous λi  and which in an obvious sense gives the
right truth conditions: the text is true in all states if (6) is true, false in all states if this
sentence is false.

We get the translation of (5) in the following way. First we note that the subDRS
[x1,x2][ farmer x1, donkey x2, own x2x1] translates as

(11) λij (i [v1,v2]j  ∧ farmer (v1j ) ∧ donkey (v2j ) ∧ own (v2j )(v1j )),

while ([][ beat x2x1])° equals λij (i  =j  ∧ beat (v2j )(v1j )). Now using clause ii. of
definition 6, doing some lambda conversions and using predicate logic we find that (5)°
is equivalent to

(12) λij (i  = j   ∧ ∀k ((i [v1 ,v2 ]k   ∧  farmer (v1 k ) ∧ donkey (v2 k )
∧ own (v2 k )(v1 k )) → beat  (v2 k )(v1 k )),

which by Unselective Binding reduces to

(13) λij (i  = j   ∧ ∀x1x2 (farmer x1  ∧ donkey x2  ∧ own x2x1 ) → beat x2x1 )),

and which has the following term—(7) preceded by a vacuous lambda abstraction—for
its content.

(14) λi∀x1x2 (farmer x1  ∧ donkey x2  ∧ own x2x1 ) → beat x2x1 )

We thus see that it is possible to provide the DRT fragment with a semantics by
replacing definition 3 by our translation of DRSs into type theory. Kamp’s
construction rules will then send English discourses to DRSs, the function ° sends
DRSs to type logical terms and the usual interpretation function for type logic sends
these terms to objects in (higher order) models. In the next section we’ll see how we
can shortcut this process by by-passing the level of DRSs and sending English
expressions to logical terms directly.

But before we do this let me discuss the semantics of one more logical system, since
we’ll be able to borrow some ideas from this logic as well. The logic that I have in mind
is the Dynamic Logic of Pratt [1976] (for a survey see Harel [1984], for a good
introduction Goldblatt [1987], for connections with natural language Van Benthem
[1989] and Groenendijk & Stokhof [1991]).

Dynamic Logic was set up in order to study aspects of the behaviour of
(nondeterministic) computer programs. Like the expressions of DRT the expressions



12

of dynamic logic are of two kinds: where DRT has conditions dynamic logic has
formulae  and where DRT has DRSs dynamic logic has programs.  The following
definition characterizes the syntax of QDL±, a version of Pratt’s Quantificational
Dynamic Logic.12

DEFINITION 7 (QDL± Syntax).
i. If R  is an n- ary relation constant and t1,...,tn  are terms, then Rt1...tn  is a

formula.
If t1  and t2  are terms then t1  = t2  is a formula.
⊥ is a formula.

ii. If Φ  is a program and ϕ   is a formula then  [Φ ]ϕ   is a formula.
iii. If x  is a variable and t   is a term then  x  := ?  and  x  := t   are programs.
iv. If ϕ   is a formula then ϕ ? is a program.
v. If Φ  and Ψ  are programs then  Φ  ; Ψ  is a program.

Intuïtively these constructions are meant to have the following meanings:

[Φ ]ϕ   after every terminating execution of Φ, ϕ  is true
x  := ?  non-deterministically assign some arbitrary value to x
x  := t  assign the current value of t  to x
ϕ ? test ϕ : continue if ϕ  is true, otherwise fail
Φ  ; Ψ do Φ  and then Ψ

The meaning of a program is viewed as a relation between (program) states, each
program state being some assignment of values to the program’s variables. The idea is
that a pair of program states 〈a,  a' 〉 is an element of the denotation of a given program
iff starting in state a  after execution the program could be in state a' .  Since we study
non-deterministic programs here, the binary relations under consideration need not be
functions.

More formally, we can interpret the constructs of QDL± on first-order models M,
sending programs Φ  to binary relations ||Φ || of assignments and formulae ϕ  to sets
of assignments ||ϕ || in the following way.

DEFINITION 8 (QDL± Semantics).

12 I write QDL± because the definition on the one hand gives a slight extension of Quantificational
Dynamic Logic but on the other omits two clauses. Usually clause iv is restricted to read: if ϕ   is an
atomic formula then  ϕ ?  is a program. Since ϕ ?  is interpreted as a program that tests whether ϕ  is
true, the restriction is reasonable on a computational interpretation. Note that our translation of DRT
into QDL± given below depends on the extension to arbitrary formulae here. The clauses that are
omitted here are those for choice  and iteration.  My QDL± is Groenendijk & Stokhof’s [1991] QDL,
except for the treatment of the assignment x  := t.  Contrary to what Groenendijk & Stokhof assume
this atomic program cannot be defined as x  := ? ; x  = t ? (consider x  := x,  for example).
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i. ||Rt1 ... tn || = { a  | 〈||t1 ||a, ... , ||tn ||a 〉 ∈ I (R )}
||t1  = t2 || = { a  | 〈||t1 ||a  = ||t2 ||a 〉}
||⊥ || = ∅

ii. ||[Φ ]ϕ || = { a  | ∀a' (〈a,  a' 〉 ∈ ||Φ || → a'  ∈ ||ϕ ||)}
iii. ||x  := ?|| = { 〈a, a' 〉  | a [x ] a'  }

||x  := t  || = { 〈a, a' 〉  | a [x ] a'  & a' (x ) = ||t  ||a}
iv. ||ϕ  ?|| = { 〈a, a 〉  | a  ∈ ||ϕ ||}
v. ||Φ  ;Ψ || = { 〈a, a' 〉  | ∃a''  (〈a,  a'' 〉 ∈ ||Φ ||  &  〈a'',  a'  〉 ∈ ||Ψ ||)}

In the last clause ||Φ ;Ψ || is defined to be the composition of the relations ||Φ || and
||Ψ ||. Note that [Φ ]ϕ  is in fact a modal statement; the interpretation of Φ  giving the
relevant accessibility relation.

Quantificational Dynamic Logic in this formulation subsumes predicate logic. In
particular, we can consider ϕ  → ψ  and ∀xϕ  to be abbreviations of [ϕ ?]ψ  and [x  :=
?]ϕ   respectively. From → and ⊥ we can of course define all other propositional
connectives in the usual way.

That the logic subsumes DRT as well we can show by interpreting conditions as if
they were abbreviations for certain QDL± formulae and DRSs as shorthand for certain
programs. The following function ‡ preserves meaning.

DEFINITION 9 (Translating DRT into QDL±).
i. (Rt1 ... tn )‡ = Rt1 ... tn

(t1  = t2 )‡ = t1  = t2
ii. (¬Φ )‡ = [Φ ‡]⊥

(Φ  ∨ Ψ )‡ = ¬([Φ ‡]⊥ ∧ [Ψ ‡]⊥)
(Φ  ⇒ Ψ )‡ = [Φ ‡]¬[Ψ ‡]⊥

iii. ([x1 ,...,xn][ϕ1 ,...,ϕm])‡ = x1  := ? ; ... ; x1  := ? ; ϕ1
‡ ?; ... ; ϕm

‡?

A simple induction shows that ||δ  || = ||δ ‡|| for any condition or DRS δ.
A few examples may show that analysing natural language with the help of QDL±

rather than DRT can be advantageous. Let’s consider (2) again (here given as (15)). Its
DRT rendering was (16); the translation under ‡ of this DRS is (17). This program is
pretty close to the original text: each atomic program in (17) corresponds to a word in
(15) (the two random assignments match with the indefinite articles), each word in (15),
except the two pronouns, corresponds to an atomic program in (17). Moreover, each of
the two sentences in the little text matches with a constituent of (17): the first sentence
with the first five atomic programs, the second sentence with the last one. We can get
the translation of the text simply by sequencing the translations of its constituent
sentences. Here the QDL± program fares better as its DRT equivalent since (16) cannot
be split into two separate constituents.

(15) A farmer owns a donkey. He beats it.
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(16) [x1, x2][ farmer x1, donkey x2, own x2x1, beat x2x1]
(17) x1  := ? ; x2  := ? ; farmer x1 ? ; donkey x2 ? ; own x2x1 ? ; beat x2x1 ?
(18) x1  := ? ; farmer x1 ? ; x2  := ? ; donkey x2 ? ; own x2x1 ? ; beat x2x1 ?

When we consider the equivalent (18) we even get a bit closer to the text since there are
now constituents to match the two indefinite NPs in the first sentence as well. The
subprogram x1  := ? ; farmer x1 ? corresponds to a farmer  and x2  := ? ; donkey x2 ? to
a donkey.

Thus we see that dynamic logic can sometimes keep quite near to the form of an
English text, but there are also indications that we might need its greater expressibility
in order to be able to formalise texts correctly. Partee [1984], following a suggestion of
Ewan Klein, uses assignments to model the behaviour of the moving reference point in
linear narrative. Partee’s paper is written in the DRT format, but strictly speaking
assignments are not available within that framework. The idea can easily be expressed
in dynamic logic however. Consider text (19), a linear narrative in which the actions are
interpreted consecutively. It can be formalized as (20).

(19) A man entered a bar. He found a chair. He sat down.

(20) x1  := ? ; man x1 ? ; x2  := ? ; bar x2 ?; enter x2x1r ? ; h  := r  ; r  := ? ;
h  r  ? ;
x3  := ? ; chair x3 ? ;  find x3x1r ? ; h  := r  ; r  := ? ; h  r  ? ;
sitdown x1r ? ; h  := r  ; r  := ? ; h  r  ?

Here each verb is evaluated with respect to a current reference time r  (for example find
x3x1r  means that x1  finds x3  at reference time r ). Moreover, the evaluation of each
verb causes the reference time to move forward. This is achieved by the subprogram h
:= r  ; r  := ? ; h  r  ?  which first assigns the value of r  to a help variable h,  then
makes a random assignment to r,  and then tests whether the value of r  is ‘just after’
the value of h,  i.e. r ’s original value (h  r  means that r  is just after h ); the net effect
is that r  is nondeterministically shifted to a place just after its original position.13 Note
that again the program can be split into parts that each correspond to a sentence in the
original text. If a sentence is added, the translation of the new text simply becomes the
translation of the old text sequenced with the translation of that new sentence.

The following definition, a translation of QDL± into type logic, has much in
common with our translation of DRT into this logic. For each term t  we let t  ° be as
before.

13 For the moment we ignore that the reference point r  should be situated before the point of speech.
This will be taken into account in the theory that is sketched in section 7.
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DEFINITION 10 (Translating QDL± into the Theory of Types).14

i. (Rt1 ... tn )
% = λi (Rt1°...tn°)

(t1  = t2 )
% = λi (t1 ° = t2 °)

(⊥)% = λi  ⊥
ii. ([Φ ]ϕ )% = λi ∀j (Φ %ij  → ϕ %j )
iii. (xn  := ?)% = λij (i [vn ]j )

(xn  := t  )% = λij (i [vn ]j   ∧ vj  = t  °)
iv. (ϕ  ?)% = λij (i  = j  ∧ ϕ %i )
v. (Φ  ;Ψ )% = λij∃k (Φ % ik  ∧ Ψ % kj )

Again the embedding truthfully mirrors the definition of the semantics of the source
language given the axoims AX1-AX3. We say that a program Ψ follows from  a
program Φ  if and only if ||Φ || ⊆ ||Ψ || in all models. It is not difficult to prove that Ψ
follows from Φ  in QDL± if and only if  AX1-AX3 |=∀ij  (Φ %ij  → Ψ % ij ) in our type
logic.

Let us see what effect % has on (20). It is easily seen that its three constituent parts,
(20a), (20b) and (20c), are translated to terms that are equivalent to (21), (22) and (23)
respectively.

(20a) x1  := ? ; man x1 ? ; x2  := ? ; bar x2 ?; enter x2x1r ? ; h  := r  ; r  := ? ;
h  r  ?

(21) λij (i [v1,v2,H,R ]j  ∧ man (v1j ) ∧ bar (v2j ) ∧ enter (v2j )(v1j )(Ri ) ∧ Hj  =
Ri  ∧ Ri Rj )

(20b) x3  := ? ; chair x3 ? ;  find x3x1r ? ; h  := r  ; r  := ? ; h  r  ?
(22) λij (i [v3,H,R ]j  ∧ chair (v3j ) ∧ find (v3j )(v1j )(Ri ) ∧ Hj  = Ri  ∧ Ri  Rj )

(20c) sitdown x1r ? ; h  := r  ; r  := ? ; h  r  ?
(23) λij (i [H, R ]j  ∧ sitdown (v1j )(Ri ) ∧ Hj  = Ri  ∧ Ri  Rj )

In order to obtain the complete translation of (20) we must apply clause v of definition
10 twice. Sequencing (21) and (22) we get a term that after some tedious reductions15

turns out to be equivalent to (24).

14 For the translations of choice  and iteration  see Muskens [1991].
15 Sequencing gives

λij∃k (i [v1,v2,H,R ]k  ∧ man (v1k ) ∧ bar (v2k ) ∧ enter (v2k )(v1k )(Ri ) ∧ Hk  = Ri  ∧ Ri Rk  ∧
 k [v3,H,R ] j  ∧ chair (v3j ) ∧ find (v3j )(v1j )(Rk ) ∧ Hj   = Rk  ∧ Rk  Rj ).

Use the definition of k [v3,H,R ]j  to write this as
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(24) λij∃t1 (i [v1,v2,v3,H,R ]j  ∧ man (v1j ) ∧ bar (v2j ) ∧ enter (v2j )(v1j )(Ri ) ∧
chair (v3j ) ∧ find (v3j )(v1j )t1 ∧ Hj  = t1  ∧ Ri  t1  Rj )

Reductions of a similar kind show that the result of sequencing (24) with (23) is
equivalent to (25).

(25) λij∃t1t2 (i [v1,v2,v3,H,R ]j  ∧ man (v1j ) ∧ bar (v2j ) ∧ enter (v2j )(v1j )(Ri )
∧ chair (v3j ) ∧ find (v3j )(v1j )t1 ∧ sitdown (v1j )t2  ∧ Hj  = t2  ∧ Ri  t1  
t2  Rj )

We see the reference time Rj  move forward here. Each part of the text has an input
reference time Ri  and an output reference time Rj.  If a sentence is linked to the right of
a text, its input reference time Ri  will pick up the output reference time of the text, while
its output reference time Rj  provides the reference time for possible continuations. The
following term gives the content of (25).16

(26) λi∃x1x2x3∃t1t2t3 (man x1  ∧ bar x2  ∧ enter x2x1 (Ri ) ∧ chair x3  ∧ find
x3x1t1  ∧ sitdown x1t2  ∧ Ri  t1  t2  t3 )

Notice that not all store names have disappeared. The text can only be evaluated with
respect to a given input reference time, therefore R  should appear as a parameter whose
value is to be provided by the input context state.

5. MORE DONKEY BUSINESS

The embedding ° given in the previous section shows that it possible to combine the
dynamics of Discourse Representation Theory with the logical engine behind
Montague Grammar. I now want to cash in on this insight. I’ll define a little fragment
of English that has possibilities for anaphoric linkage and translate it into type logic,
thus providing the fragment with a semantics. The treatment will resemble the theories

λij∃k (i [v1,v2,H,R ]k  ∧ k [v3,H,R ] j  ∧ man (v1j ) ∧ bar (v2j ) ∧ enter (v2j )(v1j )(Ri ) ∧ Hk  = Ri
∧ chair (v3j ) ∧ find (v3j )(v1j )(Rk ) ∧ Hj   = Rk  ∧ Ri  Rk  Rj ).

Given our axioms this last term is equivalent to

λij ∃h (i [v1,v2,v3,H,R ] j  ∧ i [R ]h  ∧ man (v1j ) ∧ bar (v2j ) ∧ enter (v2j )(v1j )(Ri ) ∧ chair (v3j)
∧ find (v3j )(v1j )(Rh ) ∧ Hj   = Rh  ∧ Ri  Rh  Rj ),

which can be reduced to (24) with the help of Unselective Binding.
16 Clearly a suitable assumption on the ordering  would allow us to get rid of t3  in this term.
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given by Kamp and Heim in the sense that it makes the same predictions as these
theories do, but I’ll work in Montague’s way and shall employ nothing beyond the
resources of ordinary type logic and the axioms given in section 3. For the moment I
shall only consider nominal anaphora, but the treatment of temporal anaphora in section
7 below will extend the fragment that is given here. I’ll use a categorial grammar that is
based on a set of categories generated by the two following rules.

i. S  and E  are categories;
ii. If A  and B  are categories, then A / n B  and B  \n A  are categories (n  ≥ 1 ).

Here S  is the category of sentences (and texts). The category E  does not itself
correspond to any class of English expressions, but is used to build up complex
categories that do correspond to such classes. The notations / n  and \n  stand for
sequences of n  slashes (the possibility to have multiple slashes will not be used until
section 7). I write

N  (common noun phrase) for S / E,
NP  (noun phrase) for S /  (E  \ S ) ,
VP  (verb phrase) for E  \ S,
TV  (transitive verb phrase) for VP / NP,  and
DET  (determiner) for NP / N.

Table 1 below gives the lexicon of our toy grammar. Each basic expression of the
fragment is assigned to a category. From basic expressions complex expressions can
be built. An expression of category A / n B  (B  \n A ) followed (preceded) by an
expression of category B  forms an expression of category A.  For example, the word
a3  of category DET  (defined as NP / N ) combines with the word man  of category N
to the phrase a3 man,  which belongs to the category NP. The word see  of category
TV  can then combine with a3 man  to the verb phrase see a3 man.  I counterfactually
assume that agreement phenomena have been taken care of, so that the combination of
the NP  John0  with the verb phrase see a3 man  is written as the sentence John0
sees a3 man.
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Category Type Some basic expressions

VP [e ] walk, talk
N [e ] farmer, donkey, man, woman, bastard
NP [[e ]] I, you, Maryn, Johnn, itn, hen, shen    (n  ≥ 0 )
TV [[[ e ]]e ] own, beat, love, see
DET [[e ][e ]] an, everyn, then   (n  ≥ 0 )
(N  \ N ) / VP [[e ][e ]e ] who
S  \ (S / S ) [[][]] and, or, . (the stop)
(S / S ) / S [[][]] if

Table 1.

Determiners, proper names and pronouns in the fragment are randomly indexed.
Coindexing is meant to indicate the relation between a dependent (for example an
anaphoric pronoun) and its antecedent. I assume that some form of the Binding Theory
is used to rule out undesired coindexings such as in *John0 sees him0,  but I shan’t
take the trouble to spell out the relevant rules.

Since sentences and texts are treated as relations between states, we’ll associate type
s (st ) with category S.  Type e  is associated with category E.  The type associated with
a complex category A / n B  or B  \n A,  is (TYP (B ),TYP (A )), where TYP (B ) is the
type associated with B  and TYP (A ) is the type associated with A.  This means that an
expression that seeks an expression of category B  in order to combine with it into an
expression of category A  is linked with a function from TYP (B ) objects to TYP (A )
objects. Thus our category-to-type rule is

i. TYP (S ) = s (st ); TYP (E ) = e ;
ii. TYP (A / n B ) = TYP (B  \n A ) = (TYP (B ),TYP (A )).

To improve readability let’s write [α1...αn ] for (α1 (α2 ( . . .αn (s (st )) . . .). The
category-to-type rule assigns the types that are listed in the second column of Table 1 to
the categories listed in the first column. A type [α1...αn ] can be thought of as a stack;
α1  is at the top, application (to a type α1  object) is popping the stack, abstraction is
pushing it.

We now come to the translation into type theory of our little fragment of English.
Expressions of a category A  will be translated into terms of type TYP (A ) by an
inductive definition that gives the translations of basic expressions and says how the
translation of a complex expression depends on the translations of its parts. This last
combination rule is easily stated: if σ  is a translation of the expression Σ  of category
A / n B  or B  \n A  and if ξ  translates the expression Ξ   of category B, then the
translation of the result of combining Σ  and Ξ   will be the term σξ.  In other words,
combination will always correspond to functional application.
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In the translations of basic expressions I shall let h, i, j, k  and l  be type s  variables;
x  and y  type e  variables; (subscripted) P  a variable of type TYP (VP ); Q  a variable of
type TYP (NP ); p  and q  variables of type s (st ); mary  a constant of type e ; farmer
and walk  type et  constants; love  a constant of type e (et ) and speaker, addressee  and
each vn  store names of type se.

Conjunction of sentences is formalised as sequencing, i.e. composition of relations.
(Compare clause v. of definition 10.)

and   λpqλij∃h (pih  ∧ qhj )
.   λpqλij∃h (pih  ∧ qhj )

The translation of the indefinite determiner an  will be a term that searches for
predicates P1  and P2  as usual. If particular choices for P1  and P2  are plugged in, a
program results that consists of three parts: first a random assignment is made to vn
(compare clause iii. of definition 10); then the program that is the result of applying P1
to the value of vn  is carried out and after that the result of applying P1  to the value of
vn  is executed.

an λP1P2λij∃kh (i [vn ]k  ∧ P1 (vnk )kh  ∧ P2 (vnk )hj )

We let simple verbs and nouns essentially act as tests (compare clause iv. of definition
10).

farmer   λxλij (i  = j  ∧ farmer x )
walk   λxλij (i  = j  ∧ walk x )
own   λQλy (Qλxλij (i  = j  ∧ own xy ))

These basic translations provide us with enough material to translate our first sentences.
The reader may wish to verify e.g. that the sentence a1 farmer owns a2 donkey
translates as:17

(27) λij (i [v1,v2 ]j  ∧ farmer (v1 j )  ∧ donkey (v2 j ) ∧ own (v2 j )(v1 j )).

We see here that indefinites create discourse referents. Definites, on the other hand are
only able to pick up referents. Therefore the translation of the determiner then,  given
below, differs from the translation of an  in that the random assignment to vn  has been
skipped. For the rest the translation is similar: first the program that is the result of

17 Of course donkey  translates as λxλij (i  = j  ∧ donkey x ). Here and in the rest of the paper I
shall adopt the convention that a basic translation will not be explicitly given if it can easily be read
off from some obvious paradigm case.
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applying P1  to the value of vn  is carried out and then the result of applying P2  to the
value of vn  is executed. The translations of the proper name Maryn  and the pronoun itn
involve only one predicate. The first translation can be understood as the translation of
then  applied to the predicate ‘be Mary’, λxλij (i  = j  ∧ x = mary ), and the translation
of itn  can be understood as the translation of then  applied to the skip predicate λxλij (i
= j ).

then λP1P2λij∃k (P1 (vnk )ik  ∧ P2 (vnk )kj )
Maryn  λPλij (vni  = mary  ∧ P (vni )ij )
itn   λPλij (P (vni )ij )

Using these translations we find e.g. that the sentence the1 bastard beats it2
translates as:

(28) λij (i  = j   ∧  bastard (v1 i )  ∧ beat (v2 i )(v1 i )).

We can now combine the two sentences into the text a1 farmer owns a2 donkey. the1
bastard beats it2,  whose translation we obtain by sequencing (27) and (28). The
result is (29), which has (30) for its content.

(29) λij (i [v1 ,v2 ] j  ∧ farmer (v1 j )  ∧ donkey (v2 j ) ∧ own (v2 j )(v1 j )
∧ bastard (v1 j )  ∧ beat (v2 j )(v1 j )).

(30) λi∃xy (farmer x  ∧ donkey y  ∧ own yx  ∧ bastard x  ∧ beat yx).

We see that the definites the1  and it2  succeed in picking up the referents that were
introduced in the first sentence. On the other hand, if the1 bastard beats it2  is
interpreted without a previous introduction of the two relevant discourse referents the
context must provide for them: the text will only be true in context states i  such that v1 i
is a bastard that beats v2 i  then. This is the deictic use of definites.

Other modes of combination are possible as well. Let us translate the word if   as
follows. The word requires two arguments p  and q.  If if   is applied to particular p  and
q,  a program results that tests whether p  ⇒ q  is true in the current state, continues if
the answer is yes, but fails if the answer is no (compare clause ii. of definition 6 and
clause iv. of definition 10). In a similar way the translation of or  tests whether one of
the disjuncts is true.

if   λpqλij (i  = j  ∧ ∀h (pih  → ∃k qhk ))
or  λpqλij (i  = j  ∧ ∃h (pih  ∨ qih ))

Plugging in (27) and (28) into the translation of  if   after reductions gives:
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(31) λij (i  = j   ∧ ∀xy ((farmer x  ∧ donkey y  ∧ own yx ) → (bastard x  ∧
beat yx ))),

the translation of if a1 farmer owns a2 donkey the1 bastard beats it2.18

Here too the definites succeeded in picking up the relevant discourse referents, but
note that these referents are no longer available once (31) is processed. The translation
of this sentence acts as a test ;  it cannot change the value of any store but can only
serve to rule out certain continuations of the interpretation process. The discourse
referents that were introduced by the determiners a1  and a2  had a limited life span.
Their role was essential in obtaining a correct translation of the sentence, but once this
translation was obtained they died and could no longer be accessed.

The translation of every1 farmer who owns a2 donkey beats it2  becomes
available as soon as we have translations for the words who  and everyn.  These are
defined as follows.

who   λP1P2λxλij∃h (P2xih  ∧ P1xhj )
everyn   λP1P2λij (i  = j  ∧ ∀kl ((i [vn ]k   ∧ P1 (vnk )kl ) → ∃h P2 (vnk )lh ))

In fact the word who  dynamically conjoins two predicates and the translation of
everyn  is a variation upon the translation of if.  The reader is invited to check that the
famous donkey sentence translates as (32).

(32) λij (i  = j   ∧ ∀xy ((farmer x  ∧ donkey y  ∧ own yx ) → beat yx )).

We have seen that definites can either be used anaphorically, picking up referents that
were introduced earlier in the discourse, or deictically, putting restrictions on the initial
context state. Here are translations for two words that can only be used deictically.

I    λPλij (P (speaker i )ij )
you   λPλij (P (addressee i )ij )

For example, the1 girl loves you  is now rendered as (33), which has (34) for its
content. The context must provide a particular girl and a particular addressee for the text
to be true or false.

18 Note that a sentence like if Mary1 owns a2 donkey she1 beats it2  is predicted to be true  in
those states in which the value of v1  is not Mary. This is not very satisfying; however, if we would
let the sentence Mary1 owns a2 donkey  presuppose, rather than assert, the statement v1i  = mary,
the latter statement would be a presupposition of the whole conditional as well. In the context of this
paper there is hardly any reason to develop a full theory of presuppositions, but see Van Eijck [1991]
for an approach that may well be compatible with the present theory.
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(33) λij (i  = j   ∧  girl (v1 i )  ∧ love (addressee i )(v1 i ))
(34) λi (girl (v1 i )  ∧ love (addressee i )(v1 i ))

6. TEMPORAL ONTOLOGY

Our models have enough structure now to get the dynamics going, but we need some
more structure to be able to interpret the English tenses. In this section I’ll impose the
necessary temporal ontology. A special tense logic, or a logic with a special tense
component (such as Montague’s IL) is not needed, however, since with the help of
some axioms we can simply ensure that the ground domains of our models provide us
with as much structure as is required. We don’t need a tense logic to treat the tenses,
just as we don’t need a dynamic logic in order to handle the dynamics of language.

There are many ways to define the necessary structure, all of them compatible with
the dynamics that we have introduced. Here I shall assume a rather rich ontology,
consisting of possible eventualities, periods of time  and possible worlds.  For each of
these basic ingredients we’ll have a special ground type; type ε  for eventualities, type τ
for periods of time and type w  for worlds. Accordingly, the basic domain Dε  will be a
set of eventualities, Dτ  will be a set of periods and Dw  a set of worlds.

Let’s consider periods of time. It is natural to order these by a relation of complete
temporal precedence.  We use  <, a constant of type τ (τ t ), to express this precedence
relation and define four other useful relations in terms of it. We let

t1  ⊆ t2 abbreviate ∀t (t2  < t  → t1  < t ) ∧ ∀t (t  < t2  → t  < t1 ),
t1  Ot2 abbreviate ∃t (t  ⊆ t1  ∧ t  ⊆ t2 ),
t1  <<t2   abbreviate ∀t (t2  < t  → t1 < t ) and
t1   t2  abbreviate t1  < t2   ∧ ¬∃t3  t1  < t3  < t2.

The first two of these definitions are borrowed from Van Benthem [1983]. Note that the
definitions have as a consequence that  ⊆, temporal inclusion,  is reflexive and
transitive, that  O, temporal overlap,  is reflexive and symmetric and that  <<  is
reflexive and transitive.

I assume the following five temporal axioms.

AX4 ∀t  ¬t  < t
AX5 ∀t1t2t3 ((t1  < t2   ∧ t2  < t3 ) → t1  < t3 )
AX6 ∀t1t2t3 (t1  < t2   ∨ t1 Ot2   ∨  t2  < t1 )
AX7 ∀t1t2t3 ((t1  ⊆ t2   ∧ t2  ⊆ t1 ) → t1  = t2 )
AX8 ∀t1∃t2  t1   t2   ∧ ∀t1∃t2  t2   t1
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The first two axioms simply state that temporal precedence is a strict partial order, the
third says that any two periods are comparable: either they overlap, or one of the two
precedes the other. The fourth axiom gives us antisymmetry for the inclusion relation
⊆, and thus makes  ⊆ into a partial ordering. The last axiom, which is useful for
technical reasons, states that any period is immediately followed by another and
immediately preceded by one. Some elementary reasoning shows that AX5 and AX6, in
conjunction with the definitions that were given above, entail  ∀t1t2 (t1  << t2   ∨  t2  <<
t1 ).

The intuition behind AX4-AX8 is that we view periods of time as segments of a
Euclidean straight line and that we interpret  <  as ‘lying completely to the left of’.
Under this interpretation,  ⊆  is inclusion of segments,  O  is having a segment in
common, t1 << t2  means that t2 ’s end point is not to the left of t1 ’s, and t1   t2
means that t1’s end point coincides with t2’s start. The axioms given here do not entail
everything that is true under this geometrical interpretation (for example, we cannot
derive that for any two overlapping periods there is a period that is their intersection),
but I consider anything that is true under the interpretation acceptable as an axiom for
our time structures.

Eventualities differ from periods of time in several ways. Firstly, two eventualities
that occur simultaneously need not be identical, while a period is completely determined
by its temporal relations to other periods (AX7 ensures this). Secondly, eventualities are
contingent, but periods are not. For example, while it is completely sure now, in May,
that there will be a next month of June (a period), it is still a contingent matter whether I
shall make a trip to Portugal (an eventuality) in that month. The future is contingent. On
the other hand, everything that has happened last March is fixed now and can no longer
be altered. Therefore, while periods are ordered as segments on a line, we may view the
relation of precedence on the set of eventualities as branching in the direction of the
future. Each eventuality has a unique past, but it may have many possible futures.
Dowty [1979] has pointed out that we need this kind of branching if we want to avoid
the so-called Imperfective Paradox, a puzzle that arises in connection with the semantics
of the progressive. We shall deal with the progressive below and shall avoid the
Imperfective Paradox in Dowty’s way.

The picture that I have in mind looks as follows.19 Periods of time are ordered like
the segments of a straight line. Eventualities have a branching ordering. We can
associate with each eventuality e  the period ϑe  at which it takes place (hence ϑ  must
be a function of type ετ ). Each eventuality occurs in many possible worlds since each
has many possible futures. In fact, worlds could be construed as maximal chains (as
branches) in the branching precedence ordering of eventualities.

19 Leonoor Oversteegen’s Two Track Theory of Time  (see Oversteegen [1989]) partly inspired me
to consider the structures in this section. My Dε  resembles Oversteegen’s ‘E track’ and my Dτ  her ‘S
track’.
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e

time                                           ϑe

world 1

world 2

world 3

However, we shall let worlds be primitive and define the precedence relation on
eventualities with their help. Let  in  be a constant of type ε (w t ). We say that
eventualities e1  and e2  are comparable  if and only if ∃w (e1 in w  ∧ e2 in w ). Each
branch in the structure of eventualities now inherits the relations that were defined on
the domain of periods. We write

e1  < e2   for ϑe1  < ϑe2  ∧ ∃w (e1 in w  ∧ e2 in w ),
e1  ⊆ e2 for ϑe1  ⊆ ϑe2  ∧ ∃w (e1 in w  ∧ e2 in w ),
e1  O e2 for ϑe1  O ϑe2  ∧ ∃w (e1 in w  ∧ e2 in w ),
e1  << e2   for ϑe1  << ϑe2  ∧ ∃w (e1 in w  ∧ e2 in w ), and
e1   e2  for ϑe1  ϑe2  ∧ ∃w (e1 in w  ∧ e2 in w ).

We may also write e  < t   for ϑe  < t   if e  is an eventuality and t  is a period, or t  < e
for t  < ϑe,  and we can have similar abbreviations for ⊆, O, << and . I write e at t   for
ϑe  = t.

Note that ∃w (e1 in w  ∧ e2 in w ) is now equivalent to e1  < e2   ∨ e1 O e2   ∨  e2  <
e1  and to e1 << e2   ∨  e2  << e1,  so that these are three equivalent formulations of
comparability.  We impose three more axioms. The first says that each eventuality
occurs in some possible world; the second that if e1  and e2  are comparable, e2  occurs
in w,  and e2’s end point is not to the left of e1’s end point, then e1  occurs in w  as
well; the third—slightly idealizing—says that in each world at each period of time some
eventuality takes place.

AX9 ∀e ∃w  e in w
AX10 ∀e1e2 (e1  << e2  → ∀w (e2 in w  → e1 in w ))
AX11 ∀t ∀w∃e  (e at t  ∧ e in w )

Axiom AX10 in fact says that the past is immutable: whatever has happened will always
have happened. It is easy to verify that the precedence relation on eventualities is a strict
partial ordering and that any two eventualities that both precede a third are comparable.
That is, the following three sentences are now provable.
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(35) ∀e  ¬e  < e
(36) ∀e1e2e3 ((e1  < e2   ∧ e2  < e3 ) → e1  < e3 )
(37) ∀e1e2e3 ((e1  < e3   ∧ e2  < e3 ) → (e1  < e2   ∨ e1 O e2   ∨  e2  < e1 ))

Replace ‘O ’ in (37) by ‘=’ and you get the usual axioms for backwards linear
orderings  or branching time structures  (see Thomason [1970]). Of course here we
don’t want overlap to imply identity, since our eventualities have duration and may
occur at the same time and yet be different.

7. TENSE

Bach [1983] gives a treatment of the English auxiliary within the context of categorial
grammar. Bach provides categorial grammars with a feature system and assumes that
tenses and aspects are functions on verb phrases (as argued for in Bach [1980]).
Although we do not need the full sophistication of Bach’s grammar here, we shall
follow him in this last assumption and we shall use Montague’s multiple slashes to
encode a rudimentary feature system. In particular, revising the definitions given above,
we shall write

N  (common noun phrase) for S / E,
V0 (untensed verb phrase) for E  \ S,
V1  for E  \2 S,
V2  for E  \3 S,
VP  (tensed verb phrase) for E  \4 S ,
NP  (noun phrase) for S / VP,
TV  (transitive verb phrase) for V0 / NP,  and
DET  (determiner) for NP / N.

The idea is that V0—V1—V2—VP  forms a ‘projection line’ that provides for
possibilities to hook on certain temporal operators. In particular, we shall have operators
for Past, Present and Future as well as a Perfective and a Progressive operator. The
following table assigns a category to each of them. Since our category-to-type rule will
remain unchanged, each of these operators is interpreted as a function that takes
predicates to predicates (type [[e ]e ]).

Category Type Basic expressions

V1 / V0 [[e ]e ] PROG
V2 / V1 [[e ]e ] PERF
VP / V2 [[e ]e ] PRES, PAST, FUT
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These five temporal operators can now be used to bridge the gaps between V0  and V1,
V1  and V2,  and V2  and VP,  as in (38).

(38) S

NP
Mary0

VP

VP /V2

FUT

V2

V2 /V1

PERF

V1

V1 /V0

PROG

V0

TV
kiss

NP

John1   

(39) S

NP
Mary0

VP

VP /V2

PAST

V2

V1

V0

TV
tu rn

NP

DET
the7

N
corner   

In order to allow for some operators to be skipped we add the following rule to our
categorial system: any expression of category V0  belongs to category V1  as well, and
any expression of category V1  belongs to category V2.  As a consequence we have, for
example, that (39) is generated.

It is now possible to skip PROG  or PERF  or both, but a choice between PAST,
PRES  and FUT  remains obligatory. This leaves us with twelve tenses. Of course,
sentences like Mary0 PAST turn the7 corner  should not be left as they are and I
assume some rules to convert such expressions into an acceptable form (into Mary0
turned the7 corner  in this case). The same rules should ensure that (say) John0 FUT
PERF PROG kiss she4  comes out as John0 will have been kissing her4.
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Vendler [1967], following a tradition dating back to Aristotle, classifies predicates as
states (e.g. be drunk ), activities (walk ), accomplishments (build a house ), and
achievements (die ). There are many semantic and syntactic tests that help us to
distinguish between these categories (see Dowty [1979]). It has been observed that
verbs that express accomplishments and achievements, being kinesis  verbs, verbs of
motion, push the point of reference forward. States and activities, on the other hand, are
assumed to leave the reference point as it is. Another difference is that states are
interpreted as including the current point of reference, while an event expressed by a
kinesis verb is either included in or (in our slightly simplified set-up) is equal to the
reference point.

These differences are formalized in the translations below. As before, we let
intransitive verbs and common nouns be translated as expressions of type [e ] and
transitive verbs as expressions of type [[[e ]]e ], but now we make a distinction between
kinesis verbs such as yawn  and see  on the one hand and states such as be drunk  on
the other. A kinesis verb such as yawn  tests whether the subject yawns at the current
reference point (yawn xe  intuitively stands for ‘e  is an event of x  yawning’20) and
then assigns a new value to that reference point, setting it just after its old value. A state
like  be drunk  doesn’t move the reference point, it just tests whether the current
reference point is included in an event of the subject’s being drunk. Common nouns are
treated on a par with state-like verbs (‘be president’, for example, is a state). We let the
reference point R  be a store name here; its value will always be an eventuality, so R  is
an expression of type sε.

yawn λxλij (yawn x (Ri )  ∧ i [R ]j   ∧ Ri   Rj )
see  λQλy (Qλxλij (see xy (Ri )  ∧ i [R ]j   ∧ Ri   Rj ))
be drunk λxλij∃ e (i  = j  ∧ drunk xe  ∧ Ri  ⊆ e  ))
president λxλij∃ e (i  = j  ∧ president xe  ∧ Ri  ⊆ e  ))

Here yawn  and be drunk  are expressions of category V0,  while see  belongs to
category TV  and president  is an N.  In order to get translations of tensed verb phrases
we need at least translations for the operators Past, Present and Future. I give them
below. In these translations the point of speech S   is a store name of type sτ ,  while W
(the current world) is a store name of type sw.  Note the difference between R  and S;
one store contains eventualities, the other periods of time.21

PAST λPλxλij (Pxij  ∧ Ri  < Si  ∧ Ri in Wi )
PRES λPλxλij (Pxij  ∧ Ri at Si  ∧ Ri in Wi )

20 Note how close this brings us to a Davidsonian event semantics. I think that a theory along the
lines of Parsons [1990] could easily be implemented within the present framework.
21 This asymmetric treatment of point of speech and point of reference is chosen for technical
convenience and can easily be replaced by a symmetrical setup.
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FUT λPλxλij (Pxij  ∧ Si  < Ri  ∧ Ri in Wi )

As is easy to see now, the translation of yawned,  which we get by applying the
translation of the past tense to that of the untensed verb phrase  yawn  gives the term
λxλij (yawn x (Ri )  ∧ i [R ]j   ∧ Ri   Rj   ∧ Ri  < Si  ∧ Ri in Wi ). We also find that will
be drunk  translates as λxλij∃e (i  = j  ∧ drunk xe  ∧ Ri  ⊆ e   ∧ Si  < Ri  ∧ Ri in Wi ).
The past, present and future tenses each add an extra condition. The past requires that
the current reference point is before the point of speech, the present requires that the
reference point is at speech time and the future says that the point of reference is after
speech time. In all cases the reference point is situated in the actual world. A sentence
like Mary0 will be drunk,  for example, makes a statement about the actual future, not
just about one of all possible futures.

We can apply the above tense operators directly to untensed verb phrases or we may
apply a perfective or progressive operator (or both) first. I translate the last two
operators as shown below. The effect of PERF  can be described as follows: first the
reference point is non-deterministically set to an event that completely precedes the
input reference point, then the verb is evaluated, and then the reference point is reset to
its old value. The effect of PROG  is similar: the reference point is non-
deterministically set to an event that includes the input reference point, the untensed verb
is evaluated, and the reference point is set back again.

PERF λPλxλij ∃kl (i [R ]k   ∧ Rk  < Ri  ∧ Pxkl  ∧ l [R ]j   ∧ Ri  = Rj )
PROG λPλxλij ∃kl (i [R ]k   ∧ Ri  ⊆ Rk  ∧ Pxkl  ∧ l [R ]j   ∧ Ri  = Rj )

The reader may wish to verify that e.g. the future perfect will have yawned,  the result
of first applying the perfective operator to yawn  and then the future tense to the result,
is now translated as in (40). We also find for example that had been drunk  is
translated as in (42). In (41) and (43) pictures are drawn that in an obvious way
correspond to models for the results of applying (40) and (42) to particular x, i  and j.
(The lower line gives the time axis while the upper line is a possible world.)

(40) will have yawned
λxλij∃e (i  = j  ∧ yawn xe  ∧ e  < Ri  ∧ Si  < Ri  ∧ Ri in Wi )

(41) yawn

S i

Wi
Ri

(42) had been drunk
λxλij∃e1e2 (i  = j  ∧ drunk xe2  ∧ e1  ⊆ e2  ∧ e1 < Ri  < Si  ∧ Ri in Wi )
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(43)

e1

drunk

S i

Wi
Ri

In a similar way we can find translations for stative and kinesis VPs in twelve tenses:
Simple Past, Simple Present, Simple Future, Past Perfect, Present Perfect, Future
Perfect, Continuous Past, Continuous Present, Continuous Future, and the Continuous
forms of Past Perfect, Present Perfect and the Future Perfect. There is of course a clear
connection between our translations and Reichenbach’s temporal structures. For
example, in the translation of had been drunk  we recognize Reichenbach’s E—R—S
and will have yawned  admits not only of the structure S—E—R,  but also of S, E—R
and of E—S—R.  In Table 2 below I have given a systematic listing of the twelve tenses
of the verb yawn  that our grammar predicts, the translations it assigns to these twelve
forms and—in the first six cases—the Reichenbachian forms that these translations
admit.

Expression Translation

PRES yawn
yawns

λxλij (yawn x (Ri )  ∧ i [R ] j   ∧ Ri   Rj  ∧ Ri at Si  ∧ Ri in Wi ) E, R, S

PAST yawn
yawned

λxλij (yawn x (Ri )  ∧ i [R ] j   ∧ Ri   Rj  ∧ Ri  < Si  ∧ Ri in Wi ) E, R—S

FUT yawn
will yawn

λxλij (yawn x (Ri )  ∧ i [R ] j   ∧ Si  < Ri   Rj  ∧ Ri in Wi ) S—E, R

PRES PERF yawn
has yawned

λxλij∃e (i  = j  ∧ yawn xe  ∧ e  < Ri  ∧ Ri at Si  ∧ Ri in Wi ) E—R, S

PAST PERF yawn
had yawned

λxλij∃e (i  = j  ∧ yawn xe  ∧ e  < Ri  < Si  ∧ Ri in Wi ) E—R—S

FUT PERF yawn
will have yawned

λxλij∃e (i  = j  ∧ yawn xe  ∧ e  < Ri  ∧ Si  < Ri  ∧ Ri in Wi ) E—S—R
S, E—R
S—E—R

PRES PROG yawn
is yawning

λxλij∃e (i  = j  ∧ yawn xe  ∧ Ri  ⊆ e  ∧ Ri at Si   ∧ Ri in Wi )

PAST PROG yawn
was yawning

λxλij∃e (i  = j  ∧ yawn xe  ∧ Ri  ⊆ e  ∧ Ri  < Si   ∧ Ri in Wi )
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FUT PROG yawn
will be yawning

λxλij∃e (i  = j  ∧ yawn xe ∧ Si  < Ri  ⊆ e  ∧ Ri in Wi )

PRES PERF PROG
yawn
has been yawning

λxλij∃e1e2 (i  = j  ∧ yawn xe2  ∧ e1  ⊆ e2  ∧ e1  < Ri  ∧ Ri at Si   ∧ Ri in Wi )

PAST PERF PROG
yawn
had been yawning

λxλij∃e1e2 (i  = j  ∧ yawn xe2  ∧ e1  ⊆ e2  ∧ e1  < Ri  < Si  ∧ Ri in Wi )

FUT PERF PROG yawn
will have been yawning

λxλij∃e1e2 (i  = j  ∧ yawn xe2  ∧ e1  ⊆ e2  ∧ e1  < Ri  ∧ Si  < Ri  ∧ Ri in Wi )

TABLE 2.

Clearly, on this account the crudest forms of the so-called Imperfective Paradox (see
Dowty [1979]) are avoided. From I am crossing the2  street,  for example, the future
perfect I shall have crossed the2  street  will not follow.22

Note that in our approach we have reached a true synthesis between a referential and
a quantificational approach to the English tenses. On the one hand we have translated
the expressions given in Table 2 to closed terms of ordinary (quantificational) type
logic, on the other hand Reichenbach’s point of reference is clearly recognizable. We
also see that although the Progressive and the Perfective operators are treated in terms
of movement of the point of reference, the effect is nevertheless one of quantification
over events.

A second point to note is that our treatment did not require an alteration of the
category-to-type rule. In classical Montague Semantics the transition from a purely
extensional fragment to a fragment in which intensions and times are taken into account
demands a complication of the total set-up. In our approach this is no longer necessary.
Since a state can be thought of as a list  of items, we can simply add more items to the
list if we wish to treat more complicated fragments of the language. We can thus
proceed in a more or less modular way, extending our treatment of English by adding
more parameters where necessary, while retaining previous analyses. For example, the
present treatment of tenses is compatible with our previous account of the semantic
behaviour of nominal anaphora and we can accept all translations given in section 5
except those for verbs and common nouns.

It is also possible to extend our fragment with a treatment of intensional phenomena
without having to revise it. For example, we could let the following term be a translation
for the auxiliary may  of category (NP  \ S )/ V2.

22 Logical consequence is inclusion of denotations. A sentence A  follows from a sentence B  iff in
all models the relation that is the denotation of the translation of B  is contained in the relation that is
the denotation of the translation of A.  An alternative would be the DRT notion of consequence where
entailment is inclusion of contents.
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may λPλQλij∃kh (i  = j   ∧ i [R, W ]k  ∧ QPkh  ∧ Rk in Wk  ∧ Rk at Sk )

Some reasoning shows that, given this translation, e.g.  A3  unicorn may be yawning
is rendered as in (44).

(44) A3  unicorn may be yawning
λij∃e1e2e3∃x (i  = j   ∧ unicorn xe1  ∧ yawn xe2  ∧ e3  ⊆ e1 ∧ e3  ⊆ e2  ∧ e3
at Si  )

This is the (preferred) de dicto  reading of the sentence, the reading that does not entail
the existence of a unicorn in the actual world and that does not license a pronoun
picking up the referent created by the indefinite noun phrase. In order to get it we had to
assign a ‘lifted’ category to the auxiliary may.  To get a de re  reading we may use one
of the usual scoping mechanisms.23

Let’s see how our little fragment models the consecutio temporum  that is typical for
linear narrative. In (45)-(49) some sentences are given from which we shall form short
texts; the translations are given as well. In order to facilitate comparison with Partee
[1984], the first three sentences are taken from this paper.

(45) Mary1 turned the2 corner
λij∃e (v1 i  = mary  ∧ corner (v2 i )e  ∧ Ri  ⊆ e  ∧ i [R ]j  ∧ turn (v2 i )(v1 i
)(Ri ) ∧
Ri   Rj   ∧ Ri  < Si  ∧ Ri in Wi )

(46) John3 saw her1
λij (v3 i  = john  ∧ i [R ]j   ∧ see (v1 i )(v3 i )(Ri ) ∧ Ri   Rj  ∧ Ri  < Si  ∧ Ri
in Wi )

(47) She1 crossed the4 street
λij∃e (street (v4 i )e  ∧ Ri  ⊆ e  ∧ i [R ]j   ∧ cross (v4 i )(v1 i )(Ri ) ∧ Ri   Rj
∧
Ri  < Si  ∧ Ri in Wi )

(48) She1 was drunk
λij∃e (i  = j  ∧ drunk (v1 i )e  ∧ Ri  ⊆ e  ∧ Ri  < Si  ∧ Ri in Wi )

(49) John3 had seen her1
λij∃e (i  = j  ∧ v3 i  = john  ∧ e  < Ri  < Si   ∧ see (v1 i )(v3 i )e  ∧ Ri in Wi )

23 It may be that some of the temporal operators discussed above need similarly ‘lifted’ translations.
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In (50) and (51) it is shown what happens if two kinesis sentences like the ones given
in (45) and (46) are chained. The first event (the turning) occurs at the original
reference time. Then the reference time is pushed forward to a place just after its
original position; this new reference time is the time of the second event (the seeing).24

After this the reference time is moved again, waiting for more events to come. In (52)
the little text is indeed continued with one more kinesis sentence,  and the process goes
on: the new event is interpreted at the now current reference time and the reference time
is pushed forward again. The result can be pictured as in (53).25

(50) Mary1 turned the2 corner. John3 saw her1
λij∃e1e2 (v1 i  = mary  ∧ corner (v2 i )e1  ∧ Ri  ⊆ e1  ∧ turn (v2 i )(v1 i )(Ri )
∧ i [R ]j ∧ v3 i  = john  ∧ see (v1 i )(v3 i )e2  ∧ Ri    e2   Rj   ∧ e2  < Si  ∧ e2
in Wi )

(51)

S i

Wi
R jRi

seeturn

(52) Mary1 turned the2 corner. John3 saw her1. She1 crossed the4 street
λij∃e1e2e3e4 (v1 i  = mary  ∧ corner (v2 i )e1  ∧ Ri  ⊆ e1  ∧ turn (v2 i )(v1 i
)(Ri ) ∧
i [R ]j  ∧ v3 i  = john  ∧ see (v1 i )(v3 i )e2  ∧ street (v4 i )e3  ∧ e4  ⊆ e3  ∧
cross (v4 i )(v1 i )e4 ∧ Ri    e2   e4   Rj   ∧ e4  < Si  ∧ e4 in Wi )

24 The relation ’just after‘,  ,  was defined to hold between two events iff the period of time
associated with the first event immediately precedes the period associated with the second event. The
result here is that the seeing must immediately follow the turning and that in (52) below the crossing
must be immediately after the seeing. In general our account is too strict, since on the ordinary
interpretation there might be short lapses of time between turning and seeing and between seeing and
crossing. Natural language is vaguer than our theory predicts it to be. For the moment however, we
may be content with the precise relation as a first approximation to the vague one. See Partee [1984]
for a suggestion of Ewan Klein that e1   e2  be interpreted as ‘e2  is after e1  and there is no
contextually relevant e3  between e1  and e2 ’.
25 In these pictures I do not draw those states that are connected to the interpretations of common
nouns. The output reference time Rj  will in all cases be drawn as an eventuality occurring in Wi  even
if this is not enforced by the translation of the text. The reason is that other choices for Rj  will be
ruled out by continuations of the text. For example, in (50) the output reference time Rj  need not be
in Wi,  but in (52) the crossing must be.
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(53) cross

S i

Wi
R jRi

seeturn

Text (54) shows what happens if a series of kinesis sentences is interrupted by one or
more states. The first event after the interruption is interpreted to have occurred just
after the last event before the interruption. The states all include the second event. Thus
Mary’s turning the corner is just before her crossing the street, but her being drunk and
her being stoned take place at periods that include at least the time of her crossing. A
possible model is given in (55).

(54) Mary1 turned the2 corner. She1 was drunk. She1 was stoned. She1
crossed the4 street
λij∃e1e2e3e4e5 (v1 i  = mary  ∧ corner (v2 i )e1  ∧ Ri  ⊆ e1  ∧

       turn (v2 i )(v1 i)(Ri ) ∧ i [R ]j  ∧ street (v4 i )e4  ∧ e5  ⊆ e4  ∧ drunk (v1 i )e2
∧ e5  ⊆ e2  ∧ stoned (v1 i )e3  ∧ e5  ⊆ e3  ∧ cross (v4 i )(v1 i )e5  ∧ Ri    e5

 Rj   ∧ e5  < Si  ∧ e5 in Wi )

(55)

stoneddrunk

cross

S i

Wi
R jRi tu rn

Something similar happens when a consecution of kinesis sentences is interrupted by
one or more perfective sentences. In (56) the crossing is again just after the turning, but
the seeing is interpreted as having occurred at some time before the crossing. (57)
suggests a model.

(56) Mary1 turned the2 corner. John3 had seen her1. She1 crossed the4
street
λij∃e1e2e3e4 (v1 i  = mary  ∧ corner (v2 i )e1  ∧ Ri  ⊆ e1  ∧
turn (v2 i )(v1 i )(Ri ) ∧ i [R ]j  ∧ v3 i  = john  ∧ see (v1 i )(v3 i )e2  ∧ e2  < e4
∧ street (v4 i )e3  ∧ e4  ⊆ e3  ∧ cross (v4 i )(v1 i )e4  ∧ Ri    e4   Rj   ∧ e4  <
Si  ∧ e4 in Wi )
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(57) cross

S i

Wi
R jRi

tu rnsee

Of course, there are other ways to connect sentences besides just sequencing them.
Temporal connectives  for instance provide alternative possibilities. Here are some
possible translations for the temporal connectives when, after  and before.  The idea
of the translation of when  is that the reference point is first moved forward before
antecedent and consequent are interpreted (in that order). The translation of after
moves the reference point forward, then interprets the antecedent, then moves the
reference point again and finishes with interpreting the consequent. Before  is
somewhat more complicated. First the reference point is moved forward to a position
that need not necessarily be in the current world. The antecedent is evaluated there; but
the consequent is evaluated at a new position, which is situated between the input
reference point and the antecedent reference point; this new reference point is located in
the current world again.

when  λpqλij∃kl (i [R ]k   ∧ Ri  < Rk  ∧ pkl  ∧ qlj )
after  λpqλij∃klh (i [R ]k   ∧ pkl   ∧ l [R ]h   ∧  Ri  < Rk   < Rh   ∧ qhj )
before  λpqλij∃klh (i [R, W ]k   ∧ i [R ]h   ∧ pkl   ∧ qhj  ∧ Ri  < Rh  < Rk  )

In (58) and (60) below we work out two example sentences and in (59) and (61) we
draw pictures again that suggest possible models. As is apparent from (61) a before
sentence does not entail its antecedent.

(58) When John3 saw her1 she1 crossed the4 street
λij∃e1e2e3 (i [R ]j  ∧ v3 i  = john  ∧ see (v1 i )(v3 i )e1  ∧ street (v4 i )e2  ∧

 cross (v4 i)(v1 i )e3  ∧ Ri   < e1   e3   Rj   ∧ e3  < Si  ∧ e3  ⊆ e2  ∧ e3 in Wi)

(59)

Si

RjRi

crosssee
Wi

(60) Before John3 saw her1 she1 crossed the4 street
λij∃e1e2e3 (i [R ]j  ∧ v3 i  = john  ∧ see (v1 i )(v3 i )e1  ∧ street (v4 i )e2  ∧

 cross (v4 i )(v1 i )e3  ∧ Ri   < e3  < e1  ∧ e3   Rj   ∧ e1  < Si  ∧ e3  ⊆ e2  ∧ e3
in Wi )
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(61)

Si

RjRi

cross

see

Wi
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