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Is Geometry Analytic? 
 

1. Introduction 
 
In the fourth chapter of Language, Truth and Logic, Ayer undertakes the task of showing 

how a priori knowledge of mathematics and logic is possible. In doing so, he argues that 

only if we understand mathematics and logic as analytic1, by which he memorably meant 

“devoid of factual content”2, do we have a justified account of a priori knowledge of 

these disciplines.3 In this chapter, it is not clear whether Ayer gives an argument per se 

for the analyticity of mathematics and logic. For when one reads that chapter, one sees 

that Ayer is mainly criticizing the views held by Kant and Mill with respect to 

arithmetic. 4  Nevertheless, I believe that the positive argument is present. Ayer’s 

discussion of geometry5 in this chapter shows that it is this discussion that constitutes his 

positive argument for the thesis that analytic sentences are true in virtue of the definitions 

of the terms in them and are thus “devoid of factual content”.  

 Here’s my summary of the argument Ayer makes in his discussion of geometry. 

Suppose, as Kant believed in his Critique of Pure Reason, that Euclidean geometry is 
																																																								
1 Now, I am aware that ‘analytic’ was understood differently by Kant, Carnap, Ayer, Quine and Putnam. It 
is not even clear whether there is even an agreed definition of ‘analytic’ today. For the purposes of my 
paper, the meaning of ‘analytic’ is Carnap’s sense as described in Michael, Friedman, Reconsidering 
Logical Positivism (New York: Cambridge University Press, 1999) in terms of the relativized a priori.  
2 Alfred Jules, Ayer, Language, Truth and Logic (New York: Dover Publications, 1952),  p. 79, 87. In these 
sections of the book, I think the reason Ayer chose to characterize analytic statements as “devoid of 
factual” content is in order to give an account of why analytic statements could not be shown to be false on 
the basis of observation. In other words, the reason why the analytic statements were necessary truths, 
according to Ayer, is that they did not assert that which required further facts or observation in order to 
establish their truth. One just needed to know the “meanings” or definitions of the terms in those 
statements in order to “see” that they are true independent of further observation or empirical data. For 
example it is a fact that ‘Euclidean triangle’ refers to a plane three-sided figure. And it is a fact that every 
Euclidean triangle has angles adding up to 180 degrees. But given these facts, it follows that every plane 
three-sided figure has angles adding up to 180 degrees without need of any further observation. So ‘every 
plane three-sided figure has angles adding up to 180 degrees’ is an analytic statement in Ayer’s sense of 
‘analytic’. 
3 Ayer, Language, Truth and Logic, p. 73  
4 Kant believed arithmetic is synthetic a priori while Mill believed that we arrive at mathematical beliefs on 
the basis of scientific induction. See Ayer, Language, Truth and Logic, p. 74 – 75; 77 – 78. 
5 Ayer, Language, Truth and Logic, p. 82. 
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synthetic a priori. On the one hand, Euclidean geometry is synthetic because one could 

not by conceptual analysis alone arrive at the truths of Euclidean geometry. Moreover, 

that geometry is synthetic because unlike analytic judgments, which, according to Kant, 

do not amplify (or increase) our knowledge, geometry does increase our knowledge. On 

the other hand, Euclidean geometry is a priori for it is grounded in our a priori idea of 

space, which for Kant was the pure form of sensible intuition. The idea of space itself is a 

priori, in the transcendental sense, insofar as it is only if we have that idea, due to the 

unfathomable constitution of our mind, is any experience possible. But, since Kant’s 

Critique of Pure Reason, other consistent (and practically useful) non-Euclidean 

geometries6 have been developed. Thus, it cannot be case that Euclidean geometry is 

synthetic a priori in Kant’s sense and that its a priori status is due to the constitution of 

our mind. “We see now,” Ayer says, “that the axioms of a geometry are simply 

definitions, and that the theorems of a geometry are simply the logical consequences of 

these definitions. A geometry is not in itself about physical space; in itself it cannot be 

said to be “about” anything. But we can use a geometry to reason about physical space.”7 

 Fast-forward about 30 years later to Hilary Putnam. In a chapter entitled Analytic 

and Synthetic in his book Mind, Language and Reality, Putnam, (somewhat) following 

Quine8, argues that principles of geometry are not analytic if the paradigmatic analytic 

sentence is ‘all bachelors are unmarried’. Apart from the separate reasons that Putnam 

gives for the analyticity of ‘all bachelors are unmarried’ that I shall not speak of here, 

there are other reasons that he uses to argue that principles of geometry are not analytic. 

																																																								
6 For example Einstein used a non-Euclidean geometry to describe space-time in his formulation of the 
general theory of relativity. 
7 Ayer, Language, Truth and Logic, p. 82 
8 Cf. Hilary, Putnam, “Analytic and Synthetic” printed in Mind, Language, and Reality (Hilary, Putnam 
Philosophical papers Vol. 2) (New York: Cambridge University Press, 1975) p. 40 
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First of all, he rejects the “linguistic convention” account of analyticity that some 

philosophers were using to argue that the principles of geometry, like physical definitions 

(e.g. 𝑒 = !
!
𝑚𝑣!), are true by (linguistic) convention or stipulation, hence analytic.9 

Putnam argues that these definitions introduced by stipulation lose their conventional 

character and acquire systematic import within our conceptual system in such a way that 

it would be a mistake to construe them as analytic if analyticity is understood to mean 

true by linguistic convention or stipulation.10 Secondly (and this is where Putnam’s 

acceptance Duhemian and Quinean holism11 is very evident) mathematics and principles 

of geometry are characterized by their centrality, as framework principles, within our web 

of beliefs – revisable but only after holistic considerations. Thus, principles of Euclidean 

geometry, once thought to be analytic, in the sense of immune from revision, were 

abandoned because a rival theory was available.12 

 What is intriguing, especially in light of Ayer’s argument, is Putnam’s conclusion 

that Euclidean geometry is false (my emphasis):  

If the paradigm for an analytic sentence is “all bachelors are unmarried” - 
and it is - then it is of course absurd to say that the principles of geometry 
are analytic. Indeed we cannot any longer say that the principles of 
geometry are analytic; because analytic sentences are true; and we no 
longer say that principles of Euclidean geometry are true.13 
 

In this paper I want to attempt to answer the questions: is geometry analytic? and in what 

sense? In doing so, I will begin by critically evaluating Ayer and Putnam’s arguments on 

the analyticity (or lack thereof) of geometry on the basis of historico-philosophical work 

																																																								
9 Putnam, “Analytic and Synthetic”, pp. 36, 38ff 
10 Ibid. 
11 See Friedman, Reconsidering Logical Positivism p. 70 for further discussion of Duhemian and Quinean 
holism.  
12 Putnam, “Analytic and Synthetic”,  pp. 47ff 
13 Ibid. 
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on the foundations of geometry by Roberto Torretti Philosophy of Geometry from 

Riemann to Poincaré  (1978) and Michael Friedman Reconsidering Logical Positivism 

(1999). My critical evaluations of Ayer and Putnam will show that in their arguments 

against Kant and Linguistic Conventionalism respectively, they fail to distinguish clearly 

between what Einstein called “pure axiomatic geometry” and “practical geometry.”14On 

the one hand, I will show that Ayer fails to notice that Kant could have been talking about 

pure geometry not applied geometry when Kant argued that geometry is synthetic a 

priori. On the other hand, I will show that Putnam fails to distinguish between applied 

Euclidean geometry and pure Euclidean geometry in the quoted passage. After my 

critical evaluations of Ayer and Putnam’s arguments, I will conclude by suggesting how 

someone could plausibly think that applied Euclidean geometry is analytic in Carnap’s 

sense. I will be drawing from Friedman, Reconsidering Logical Positivism in my 

presentation of Carnap’s sense of ‘analytic’. For Friedman argues in that book that 

Carnap can accept Duhemian holism while still rejecting Quinean holism. “To obtain 

Quinean holism,” Friedman says, “we must exhibit the incoherence of Carnap’s Logical 

Syntax program, and only this, I suggest, demonstrates the ultimate failure of the logical 

positivists’ version of the relativized a priori”15(my emphasis) 

2. Pure Geometry and Applied Geometry 
 
 On the one hand, what I choose to call pure geometry is geometry studied as a 

branch of pure mathematics. Specifically, I take pure geometry to include classical 
																																																								
14 See Albert, Einstein, Sidelights on Relativity (New York: Dover, 1983), p. 32. I thank Peter Koellner for 
suggesting this approach to my paper. I think pure geometry is a better term than pure axiomatic geometry. 
Pure axiomatic geometry implies that all the pure geometries are approached axiomatically which is not 
necessarily the case. Also applied geometry sounds more accurate than practical geometry; for it suggests 
that what we are talking about is pure geometry as it is applied to the study of physical space or in physics 
e.g. in optics. In this paper I may sometimes use the terms ‘physical geometry’ and ‘applied geometry’ 
interchangeably  
15 Cf. Friedman, Reconsidering Logical Positivism, p. 70 
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Euclidean geometry, say as was pursued in Classical Antiquity and through the Middle 

Ages in Euclid’s Elements; the analytical coordinate geometry invented by René 

Descartes in the 17th century, the non-Euclidean geometries developed independently by 

Bolyai and Lobachevsky in the 1820s; Gauss’s intrinsic geometry of surfaces in his 

Disquisitions of 1827, which together with the earlier non-Euclidean geometries of 

Bolyai and Lobachevsky influenced Riemann in his 1854 lecture: On the Hypotheses that 

Lie at the Foundations of Geometry to come up with a generalized conception of space as 

a n-fold extended quantity i.e. an n-dimensional differentiable manifold – a conception 

which could accommodate both the Euclidean and non-Euclidean geometries.16 I would 

also include under pure geometry the work of Felix Klein and Sophus Lie on 

transformation groups; projective geometry, which was axiomatized by Moritz Pasch in 

1882; and the axiomatic conception of Euclidean geometry and both Euclidean and non-

Euclidean geometry found in David Hilbert’s 1899 Foundations of Geometry and 1902 

article “On The Foundations of Geometry” respectively.17 Topology could also be classed 

within the study of pure geometry as well. Pure geometry is a priori in both senses of the 

term: “known independent of experience” and “[demonstrated] from the grounds.”18 But 

																																																								
16 Cf. Roberto, Torretti, Philosophy of Geometry from Riemann to Poincaré (Dordrecht-Holland; Boston: 
D. Reidel Pub., 1978) Chapter 1 and 2 and 3. See Torretti, Philosophy of Geometry from Riemann to 
Poincaré, p. 185 for Hilbert’s works.  
17 Torretti also points out the work of Levi-Cività into the geometric meaning of curvature and that of Weyl 
with the idea of an affine structure. So, we may include their contributions as contributions to pure 
geometry. 
18 The “from the grounds” sense of the a priori comes from the theory of demonstration. In Peter 
Koellner’s seminar class: Topics in the Philosophy of Mathematics: The Concept of Apriority (Philosophy 
243, Fall 2015) for which I wrote this paper, Koellner had shown that ‘a priori’ did not always mean what 
it means today i.e. “known independent of experience”. ‘A priori [demonstration]’ was used earlier by 
William of Ockham (ca. 13 Century) when he distinguishes: (1) Demonstration from what is prior i.e. why 
it is so from explanatory grounds; from (2) Demonstration from what is posterior i.e. that it is so. He cited 
Ockham’s Summa Logicae Part III Tractate II Chapter 17. This sense of ‘a priori’ Peter argued in seminar 
can serve to illuminate certain accounts of justifications in mathematics. 
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as we shall see subsequently in this paper, saying why pure geometry is a priori generates 

a lot of controversy. 

 On the other hand, what I call applied geometry is geometry in the literal sense of 

the term i.e. “earth measuring.”19 Applied geometry arises whenever the formal terms in 

pure geometry receive a physical interpretation i.e. when their designata are specified for 

use in the exact sciences like physics. In classical mechanics, for example, Euclidean 

geometry was used in kinematics by “building bridge equations”20 from pure Euclidean 

geometry to physics. These bridge equations are such as those that grew out of 

Descartes’s analytic geometry, where he introduced the coordinate systems and algebra to 

geometry e.g. the equation of a straight line (ax + by + c = 0), which found fruitful 

application in analysis and subsequently in kinematics. I think that physical geometry in 

classical mechanics was still a priori. For I do not think that ‘straight line’ had received a 

physical interpretation in optics. However, in General Relativity, the apriority of physical 

geometry gets lost as physical geometry becomes entangled with the physical structure of 

the universe, especially with the distribution of mass and energy in the universe. For in 

General Relativity, the metric of the underlying topology of space-time depends on the 

distribution of mass-energy across the universe.21 Specifically, if a geodesic (which is the 

non-Euclidean equivalent of the straight line in Euclidean geometry) in a 4-dimensional 

semi-Riemannian manifold of non-constant curvature is interpreted as the path of an 

unimpeded beam of light, the physical structure of the universe is such that two 

																																																								
19 See Einstein, Sidelights on Relativity  p. 31 
20 This is a term that Peter Koellner explicitly used in his presentation during this seminar class. Since I was 
submitting this paper for that class, I wanted to acknowledge that it is not my own. 
21 Cf. Friedman, Reconsidering Logical Positivism, p. 62 
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unimpeded parallel beams of light can converge globally (if not locally or infinitesimally) 

as they go past a star.22  

3. Critical Evaluation of Ayer 
 
Armed with this distinction between pure geometry and applied geometry, I would now 

like to engage in critical evaluation of Ayer’s argument in the fourth chapter of Language 

Truth and Logic. One way of critically evaluating Ayer’s argument is to ask whether the 

argument works in refuting Kant’s epistemology of geometry as Ayer intended. With 

respect to this aspect of critical evaluation, the first point I want to make is that Ayer is 

correct in saying, “A geometry is not in itself about physical space23; in itself it cannot be 

said to be “about” anything.” He is correct insofar as he is talking about pure geometry as 

I have distinguished it above. But I do not believe that this particular argument succeeds 

in refuting Kant’s thesis that geometry is synthetic a priori. Here’s why. 

 First, for Kant the ‘synthetic’ had a primary sense and a secondary sense. The 

primary sense of ‘synthetic’ is well known. It is roughly the idea that a judgment is 

synthetic whenever the predicate B of a judgment is not contained (covertly) in the 

subject A of the judgment. So, one can think of A without necessarily thinking of B. Or 

put another way, mere conceptual analysis does not reveal that the predicate B was 

contained in subject A all along. The secondary sense of the synthetic is that while 

analytic judgments are explicative, which means that they reveal the concepts already 

																																																								
22 I thank Peter Koellner for fruitful discussion of these points as I was writing this paper in Fall 2015. 
23 Cf. Friedman, Reconsidering Logical Positivism, pp. 46f for the distinctions that Carnap drew between 
formal, intuitive and physical space. 
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contained in the subject albeit confusedly or less clearly; synthetic judgments are 

ampliative, which means that synthetic judgments extend our knowledge.24 

 Secondly, the ‘a priori’ also had two distinct senses for Kant. First, whatever was 

a priori was necessary and had universal validity. Secondly, whatever was a priori was 

so in a transcendental sense, namely that it arose out of the unfathomable constitution of 

our mind insofar as it made experience possible. The implication here being that 

whatever makes experience possible cannot itself be known through experience.25 

 On the basis of these clarifications, I want to argue that Ayer’s argument that 

seeks to refute Kant’s epistemology of geometry in terms of geometry not being “about” 

anything does not succeed. To see why, recall that for Ayer a proposition has factual 

content if and only if it “provides information about matters of fact”.26 Elsewhere, he says 

that propositions that have factual content are empirical hypotheses.27 So, when Ayer 

says (emphasis mine), “[It] is natural for us to think, as Kant thought, that geometry is the 

study of the properties of physical space, and consequently that its propositions have 

factual content,” I am at a loss to know why. For there is no evidence in Kant’s Critique 

to suggest that Kant’s view of geometry was such that the propositions of geometry 

expressed empirical hypotheses. In fact, Kant is very clear: 

Geometrical propositions are one and all apodeitic…such propositions 
cannot be empirical or, in other words, judgments of experience, nor can 
they be derived from any such judgments.28 
 

																																																								
24 Cf. Immanuel, Kant, Critique of Pure Reason (Smith Norman K., Trans.) (China: Palgrave Macmillan, 
2007) (2nd edition: Original work published in German 1787) Introduction Part IV p. 48f 
25 Cf. Kant, Critique of Pure Reason (Smith Norman K., Trans.) Introduction Part II p. 43f and p. 70f and 
Friedman, Reconsidering Logical Positivism, p.  7  
26 Ayer, Language, Truth and Logic, p. : 79 
27 Ayer, Language, Truth and Logic, p. : 15 - 17 
28 Cf. Kant, Critique of Pure Reason (Smith Norman K., Trans.) p. 70 
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It may be objected that in the context of the quoted passage Kant says, “Geometry is a 

science which determines the properties of space synthetically, and yet a priori.” This 

objection may be put forward to suggest that the phrase ‘science’ and the clause 

‘determines the properties of space synthetically’ together imply that for Kant geometry 

was empirical and that it was about something (that it had factual content and that this 

content was physical space). Couldn’t this, after all, be what Ayer is objecting to? My 

response is yes. Ayer is objecting to this view. But his objection does not work for the 

following reasons. First, the quotation from Kant does not establish that the propositions 

of geometry are empirical hypotheses. That geometry is a “science” could just mean that 

it is a systematically organized body of knowledge, which is just what a science means. 

Pure mathematics is also sometimes viewed as a science in the sense of being a 

systematically organized body of knowledge. Secondly, the quoted passage does not 

imply that the space in question is the actual physical space. In fact, that the passage does 

not imply physical space is strongly suggested by the fact that part of what Kant has in 

mind throughout the Transcendental Aesthetic is arriving at our idea of space. This idea 

of space – as a form of our sensible intuition – is a priori in the transcendental sense. So, 

if geometry is about this a priori idea, then it cannot be the case that in the quoted 

passage the space in question is physical space. Lastly, ‘synthetically’ for Kant does not 

mean that synthetic judgments are known by experience; for after all there are synthetic a 

priori judgments. The right way of interpreting ‘synthetically’ is in the primary and 

secondary senses of synthetic judgments that I have described above.29 

 What the foregoing aspect of critical evaluation shows is that one cannot explain 

away Ayer’s overthrow of Kant’s epistemology of geometry by saying that Ayer is 
																																																								
29 Cf. Kant, Critique of Pure Reason (Smith Norman K., Trans.) p. 53 
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talking about pure geometry while Kant is talking about applied geometry. For the 

passages from Kant I have quoted above strongly suggest that Kant possibly had pure 

geometry in mind. The way that Ayer’s argument does succeed is in challenging the 

grounds of the apriority of geometry. While Kant grounds the apriority of geometrical 

propositions on the a priori idea of space that arises as a result of the constitution of our 

mind, Ayer believes that a geometry is a priori because it is analytic (although not in 

Kant’s sense of the term). Moreover, since Kant’s time there have been other consistent 

theories of pure geometry other than the classical Euclidean one that was the only one 

known to him. For within these geometrical theories the theorems are logical 

consequences of the axioms and so these theories are all a priori because they are 

analytic. It is on this basis that Ayer is able to endorse the conventionalism of Poincaré in 

the quoted passage: roughly the idea that the choice of a pure geometry to be applied in 

physical theory is a matter of convention based on expediency and the overall fruitfulness 

and simplicity of working with the said geometry.30 

 The conventionalism of Poincaré will be better appreciated in the context of 

critical evaluation of Putnam’s essay. For in that essay, Putnam targets linguistic 

conventionalism. Although some logical positivists (especially Moritz Schlick) were 

inspired by Poincaré’s conventionalism, the linguistic conventionalism advocated by 

Carnap is unique and has important differences from the conventionalism of Poincaré. 

4. Critical Evaluation of Putnam 
 

4.1. Why was Euclidean Geometry abandoned? 

																																																								
30 Ayer, Language, Truth and Logic, p. 83 
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I begin my critical evaluation of Putnam’s essay by looking at where Putnam says that 

laws of geometry were abandoned because there was a rival theory.31 Here we make use 

of our distinction between pure geometry and applied geometry. While it is true to say 

that when Euclidean geometry is applied to our physical space, it turns out to be 

incorrect, it does not follow that pure Euclidean geometry itself is false and that it was 

abandoned. Viewed historico-philosophically, what actually happened is that geometers 

doubted that Postulate 5 was self-evident and hence they doubted that it ought to be 

included with the rest of Euclid’s axioms. Torretti points out that mathematicians like 

Proclus, John Wallis, Girolamo Saccheri, John Heinrich Lambert and Adrien Legendre 

made attempts to prove Postulate 5 from the other axioms.32 Although Gauss thought that 

there were no mathematical reasons for preferring Euclidean geometry to the non-

Euclidean one33, it was in the 1820s that Bolyai and Lobachevsky working independently 

of each other developed non-Euclidean geometry, which was constructed by denying 

postulate 5 and using the rest of Euclid’s axioms that do not depend on Postulate 5.34 

Lobachevsky indeed did not view his system as contrary to Euclidean geometry. He 

viewed both systems as equally consistent.35 Then Riemann, by building on Gauss’s work 

on the intrinsic geometry of surfaces, produced a generalized geometry capable of 

accommodating both the Euclidean and non-Euclidean geometries – Euclidean space is a 

special case of the genus of the manifold.36 

																																																								
31 Putnam, “Analytic and Synthetic”,  pp. 46, 48 
32 Torretti, Philosophy of Geometry from Riemann to Poincaré, pp.  43, 44, 50 
33 Torretti, Philosophy of Geometry from Riemann to Poincaré, p.  53 
34 Torretti, Philosophy of Geometry from Riemann to Poincaré, p.  40 
35 Torretti, Philosophy of Geometry from Riemann to Poincaré, p.  66 
36 Torretti, Philosophy of Geometry from Riemann to Poincaré, p.  101 
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 Moreover, where Putnam says, “before the development of non-Euclidean 

geometry by Riemann and Lobachevski, the best philosophic minds regarded the 

principles of geometry as virtually analytic. The human mind could not conceive their 

falsity.” Putnam’s remarks need to be corrected in light of what actually happened 

historico-philosophically. If by the best philosophic minds he counts Kant, then Kant did 

not regard the principles of geometry as analytic. For Kant, principles of geometry were 

synthetic a priori. It is important to distinguish analyticity from apriority. Analyticity is 

one way of explaining the apriority of mathematics and geometry. In fact, given my 

discussion in section 3 above, Kant’s epistemology of geometry is compatible with the 

existence of non-Euclidean geometries. Friedman points out that the only difference 

between Poincaré and Kant is that the former was familiar with non-Euclidean geometry 

while the latter was not.37   

4.2. The Rationale of the Analytic-Synthetic Distinction 

A second way we may critically evaluate Putnam’s argument is with the preliminary 

remarks leading up to his discussion of the analyticity (or lack thereof) of principles of 

geometry. One such remark he makes is intended to defend the Quinean insight that he 

thinks is underappreciated by the philosophers who undertake to challenge Quine’s 

views. Putnam thinks that citing garden variety examples of analyticity will not do as a 

reply to Quine. Instead he insists that what is needed is the nature and rationale of the 

analytic-synthetic distinction: “what point is there to having a separate class of statements 

called analytic statements?”38 So, we may begin our critical evaluation of Putnam’s view 

here by responding to this question historico-philosophically. 

																																																								
37 Friedman, Reconsidering Logical Positivism, p.  83 
38 Putnam, “Analytic and Synthetic”,  p. 35 
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 On the one hand, I believe that the nature and rationale of the analytic-synthetic 

distinction lay in the fact that the logical positivists in general, and Carnap in particular, 

wanted to respond to the Kantian problem: how is pure mathematics possible?39 In doing 

so, they also wanted to avoid the Kantian synthetic a priori doctrine of the transcendental 

aesthetic.40 Since Putnam directs some of his criticisms of the analyticity of geometry to 

Reichenbach41, whose conventionalism he says grew out of the Viennese circle, seeing 

what Reichenbach actually thought at one time in his career will serve us well as we seek 

to understand the nature and rationale of the analytic-synthetic distinction.  

4.3. The Relativized A priori 

As Friedman points out, Reichenbach had a unique conception of the relationship 

between the a priori and empirical science that was neither strictly Kantian nor radically 

empiricist.42 Friedman argues that in his 1920 book General Relativity and A Priori 

Knowledge, Reichenbach distinguished between axioms of coordination and axioms of 

connection.43 On the one hand, the axioms of coordination preserved part of the Kantian 

sense of the a priori, namely that they make science, through the physical theory, 

possible. He held that whatever the axioms of coordination were, they were a priori 

relative to the scientific theory that was employing them. Friedman notes that for 

Reichenbach, “these nonempirical axioms of coordination – which include, 

paradigmatically, the principles of physical geometry – are ‘constitutive of the object of 

knowledge.’” 44  Axioms of connection, on the other hand, are scientific inductive 

																																																								
39 Friedman, Reconsidering Logical Positivism, p.  165 
40 Cf. Ayer, Language, Truth and Logic, p.  Chapter 4 and Friedman, Reconsidering Logical Positivism, pp. 
165 and Kant, Critique of Pure Reason (Smith Norman K., Trans.) p. 56 
41 Putnam, “Analytic and Synthetic”,  pp. 33, 47 
42 Friedman, Reconsidering Logical Positivism, p.  7 
43 Friedman, Reconsidering Logical Positivism, p.  7 
44 Friedman, Reconsidering Logical Positivism, p.  7 
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generalizations. What is important to note, according to Friedman, is that for 

Reichenbach, the axioms of coordination, relative to a given scientific theory (Newtonian 

Mechanics, Special Relativity or General Relativity), are a priori and as such are not 

subject to any empirical confirmation or disconfirmation. But whichever axioms of 

coordination are in fact used depends on the scientific theory. So, the axioms of 

coordination could in principle be revised as a result of scientific advances, e.g. physical 

Euclidean geometry is a priori in classical mechanics but is not a priori in General 

Relativity, where “topology (sufficient to admit a Riemannian structure)” is instead a 

priori.45 This is the relativized a priori – the idea that relative to a scientific theory, a 

geometry, for example, is a priori. 

 Friedman notes that Schlick, in an exchange of letters, rebuked Reichenbach for 

holding on to elements of the Kantian doctrine. Instead, Schlick wanted Reichenbach to 

adopt the conventionalism of Poincaré. By acquiescing to Schlick, the notion of 

relativized a priori was lost.46 For later, as Friedman points out, Reichenbach devoted his 

writing to reconciling post-general relativity science to the conventionalism of Schlick 

and Poincaré.47 

 Schlick’s conventionalism grew out of that of Poincaré and the work of David 

Hilbert. From the former, Schlick was persuaded that the question of which of the 

geometries is to be applied to space is a matter to be settled by experience and 

requirements of overall simplicity of our scientific conceptual system. Applying the 

																																																								
45 Friedman, Reconsidering Logical Positivism, p. 7 and especially pp. 66 – 68  
46 Friedman, Reconsidering Logical Positivism, pp. 64 This is important because Putnam, “Analytic and 
Synthetic” in a footnote on p. 47 cites Reichenbach’s 1928 Philosophy of Space and Time and 
(Reichenbach, 1956) which suggest publication dates much later than the ones which Friedman, 
Reconsidering Logical Positivism, p.  7 is drawing on to explain Reichenbach’s conception of the 
relativized a priori. 
47 Friedman, Reconsidering Logical Positivism, pp.  63 
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Helmholtz-Lie theorem, which states that based on the experience (or idealization in the 

case of Poincaré) that rigid motion is possible in our space, our space must be either 

Euclidean or characterized by one of the manifolds of constant curvature48, Poincaré 

thought that the choice between the non-Euclidean and Euclidean geometries was 

conventional based on which was the most expedient to work with.49 From Hilbert, 

Schlick got the idea of “implicit definitions”, namely that the axioms of a geometry 

implicitly define the geometry’s primitive terms. Different geometries differ in so far as 

they employ different implicit definitions of “point”, “line”, “between” and so on.  

 But as Friedman points out that the conventionalism of Poincaré and Schlick is in 

no way different from Duhemian holism, which is the idea that the theoretical 

components of our conceptual system face the tribunal of experience not in isolation but 

as a whole. 50 So, Schlick’s conventionalism does not do justice to the apriority and 

analyticity of the principles of geometry and differs from the linguistic conventionalism 

of Carnap that I shall now proceed to explain. 

 
4.4. Linguistic Conventionalism 

 
According to Friedman, where Reichenbach had failed to give a clear explication of the 

difference between the axioms of coordination and the axioms of connection, Carnap in 

the Logical Syntax of Language had the machinery to do so: L-rules51 (the analytic) and 

P-rules (the synthetic) of the physical language of science. The choice of L-rules and the 

																																																								
48 Cf. Friedman, Reconsidering Logical Positivism, p.  77 
49 Since he died in 1912, Poincaré was not aware that Einstein would in fact use a non-Euclidean geometry 
of variable curvature. See Friedman, Reconsidering Logical Positivism, p.  79 
50 Cf. The foregoing discussion with Friedman, Reconsidering Logical Positivism, pp. 64 – 65 and pp. 78 - 
79 
51 Cf. Friedman, Reconsidering Logical Positivism, p.  13. “The L-rules or logical rules represent the purely 
formal, non-empirical part of our scientific theory, whereas P-rules or physical rules represent its material 
or empirical content.” 
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interpretation that made them true is a matter of convention, for these rules are purely 

formal and one has a lot of leeway in selecting the L-rules in the formulation of a 

language. In Classical Mechanics, for example, the L-rules include the principles of 

Euclidean geometry while the P-rules are the general principles and laws of physics. In 

General Relativity, the L-rules include a topology sufficient to admit the 4-dimensional 

semi-Riemannian manifold of non-constant curvature, while the P-rules now include 

applied geometry through optics and the other general laws of physics. What is important 

to note for Carnap, says Friedman, is that the L-rules (or analytic sentences) are 

distinguished from the P-rules at a given stage in the development of the scientific 

enterprise.52 That they are revisable in light of the development of the scientific enterprise 

is exemplified by applied or physical geometry in the move from classical mechanics to 

general relativity. But Carnap can still say this and hold on to the idea that in a physical 

language there is a distinction between analytic sentences and synthetic sentences. For it 

is the analytic sentences, axioms of coordination in the case of Reichenbach and 

conventions in the case of Poincaré and Schlick, that are constitutive of any endeavor to 

gain any objective scientific knowledge.53 In other words, only if we are armed with the 

axioms of coordination or L-rules can we begin to generate hypotheses and test them.54 

So, it is useful to have the distinction between the analytic and the synthetic even in 

science.   

																																																								
52 Friedman, Reconsidering Logical Positivism, p.  13. 
53 Friedman, Reconsidering Logical Positivism, p.  13. 
54 Cf. Rudolf, Carnap, Foundations of Mathematics and Logic (International Encyclopedia of Unified 
Science ; Vol. 1, no. 3) (Chicago: The University of Chicago Press, 1939) p. 1 where he says, “In these 
theoretical activities, deduction plays an important part; this includes calculation, which is a special form of 
deduction applied to numerical expressions.” 
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 On the other hand, I would argue that holists, like Putnam, who oppose the 

distinction in science, have a hard time responding to the Kantian question, “How is pure 

mathematics possible?” That is, they have a hard time explaining why mathematics and 

logic seem to be necessarily true, and therefore a priori. While they would say that 

mathematics and logic are framework principles which are to be identified with centrality 

and priority within our conceptual scheme such that if revisions become necessary due to 

advances in science they are the last to be considered for revision55, I’d still argue that the 

holists would be hard pressed to explain away our belief that there is a marked difference 

between mathematics on the one hand and physical laws on the other. The former cannot 

be otherwise while the latter can.  

4.5. Applied Geometry and the Physical Interpretation of a straight line 

Lastly we may critically evaluate Putnam’s essay with respect to the physical 

interpretation of a straight line. Hume, Putnam says, would rather deny that light rays 

travel in straight lines than conclude that Euclid’s postulate 5 is false.56 In other words, 

optical theory was synthetic for Hume and (pure) Euclidean geometry analytic. In a 

footnote to a remark on Reichenbach, Putnam points out that Reichenbach actually 

claimed that there were other possible alternative coordinative definitions of ‘straight 

line’.57 I take this to imply that for Reichenbach, the optical theory was analytic (in the 

sense of stipulated true by convention) while the principles of geometry in general 

relativity were synthetic.58 Putnam says that both Hume and Reichenbach are wrong: 

The principle that light travels in straight lines is a law of optics, nothing 
more or less serious than that. We test the conjunction of geometry and 

																																																								
55 Putnam, “Analytic and Synthetic”,  p. 40 
56 Putnam, “Analytic and Synthetic”,  pp. 46 - 47 
57 Putnam, “Analytic and Synthetic”,  p. 47. 
58 Putnam, “Analytic and Synthetic”,  p. 49. 
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optics indeed, and if we get into trouble, then we can alter either the 
geometry or the optics, depending on the nature of the trouble.59 
 

It is possible that Reichenbach was right in Putnam’s footnote discussion.60 For in a very 

enlightening discussion on the empiricism with respect to geometry of Ernst Mach, 

Torretti points out that there are alternative physical interpretations of the straight line. In 

fact, interpreting straight line as the path of a light ray may not be the best approximation 

of a straight line. In this discussion from Mach on how planes are constructed in practice: 

Physically a plane is constructed by rubbing three bodies together until 
three surfaces A, B, C, are obtained, each of which exactly fits the others – 
a result which can be accomplished […] with neither convex nor concave 
surfaces, but with plane surfaces only. 61 
 

Torretti observes, “If you construct two adjacent planes by this method, their common 

edge will provide a better approximation of the straight line than any taut string or light 

ray.”62  

5. Conclusion 

What this observation by Torretti on the passage from Mach suggests to me is that we 

have a choice of what physical interpretation to give our pure geometrical concepts. 

Therefore, Reichenbach could have been right in saying that the optical theory is analytic, 

hence a priori relative to pre-General Relativity physics. Recall that in presenting 

Carnap’s view, I said that Friedman argues that for Carnap the choice of L-rules and the 

interpretation that made them true is a matter of convention.63 Now when we stipulate 

the interpretation of a straight line as the path of a ray of light, the stipulation is a matter 

of convention since there are alternatives that are equally good physical interpretations. 

																																																								
59 Putnam, “Analytic and Synthetic”,  p. 49f 
60 Putnam, “Analytic and Synthetic”,  p. 47. 
61 Torretti, Philosophy of Geometry from Riemann to Poincaré , p.  283 
62 Torretti, Philosophy of Geometry from Riemann to Poincaré , p.  283 
63 Friedman, Reconsidering Logical Positivism, p.  13. 
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Now, given that in the discussion of kinetic energy, Putnam seems to grant that 

conventions are valid only if there are alternatives;64 and given that there are alternative 

interpretations of a straight line, it follows that statements in the optical theory that 

interpret geometrical concepts are valid conventions hence analytic. So, using the idea of 

the relativized a priori from Friedman, I want to suggest that Reichenbach could have 

been right in saying that the optical theory, which is a kind of applied geometry, was 

analytic (in the sense of stipulated true by convention) hence a priori relative to pre-

General Relativity science. But optical theory (applied geometry) is now synthetic and 

hence not a priori, relative to General Relativity physics. But we can say this without 

having to deny the view that pure Euclidean geometry is analytic in Carnap’s sense.  

																																																								
64 Putnam, “Analytic and Synthetic”,  p. 45 He says, “[′𝑒 = !

!
𝑚𝑣!′] would be true by stipulation, yes, but 

only in a context which is defined by the fact that the only alternative principle is ‘e = mv’” 
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