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a b s t r a c t

One finds, in Maxwell’s writings on thermodynamics and statistical physics, a conception of the nature of

these subjects that differs in interesting ways from the way they are usually conceived. In particular,

though—in agreement with the currently accepted view—Maxwell maintains that the second law of

thermodynamics, as originally conceived, cannot be strictly true, the replacement he proposes is different

from the version accepted by most physicists today. The modification of the second law accepted by most

physicists is a probabilistic one: although statistical fluctuations will result in occasional spontaneous

differences in temperature or pressure, there is no way to predictably and reliably harness these to produce

large violations of the original version of the second law. Maxwell advocates a version of the second law that

is strictly weaker; the validity of even this probabilistic version is of limited scope, limited to situations in

which we are dealing with large numbers of molecules en masse and have no ability to manipulate individual

molecules. Connected with this is his conception of the thermodynamic concepts of heat, work, and entropy;

on the Maxwellian view, these are concept that must be relativized to the means we have available for

gathering information about and manipulating physical systems. The Maxwellian view is one that deserves

serious consideration in discussions of the foundation of statistical mechanics. It has relevance for the project

of recovering thermodynamics from statistical mechanics because, in such a project, it matters which version

of the second law we are trying to recover.

& 2011 Elsevier Ltd. All rights reserved.
When citing this paper, please use the full journal title Studies in History and Philosophy of Modern Physics
I carefully abstain from asking the molecules which enter where

they last started from. I only count them and register their mean

velocities, avoiding all personal enquiries which would only get

me into trouble.

James Clerk Maxwell quoted in Garber, Brush, and Everitt
(1995, p. 19).
1. Introduction

The nineteenth-century physicists who developed the kinetic
theory of heat and laid the groundwork for the science that we
now call statistical mechanics had to wrestle with the implica-
tions of their work for thermodynamics. On the kinetic theory,
heat is not a substance, but rather is associated with the kinetic
energy of molecules. Moreover, on the kinetic theory, the second
law of thermodynamics, as originally conceived, cannot be strictly
correct, although a suitable successor to it could be. These
considerations require a reconceptualizaton of thermodynamics.

One of those who thought deeply about the relations between
the theories was James Clerk Maxwell, and the conclusions that he
came to about the scope and limitations of the second law of
ll rights reserved.
thermodynamics, and about the nature of the distinction between
work and heat, deserve to be better known. For Maxwell, no matter
of physical principle precludes the operations of a Maxwell demon;
it is only our current, but perhaps temporary, inability to manipulate
molecules individually that prevents us from doing what the demon
would be able to do. For Maxwell, the distinction between work and
heat is not absolute, but relative to the means we have of keeping
track of the motion of molecules and of manipulating them. It
follows from this that the difference in thermodynamic entropy
between two equilibrium states of a system is also means-relative.

In this paper the Maxwellian view of thermodynamics and stati-
stical mechanics will be presented, together with Maxwell’s reasons
for holding such a view. In the final section the viability of the view
will be considered, and it will be argued that, at the very least, no con-
clusive refutation of the view exists in the literature. I conclude that
the view is one that ought to be on the table for serious consideration,
in our discussions of the foundations of statistical mechanics.
2. Three second laws of thermodynamics

It has become a commonplace that there are two distinct
versions of the second law of thermodynamics. The original deems
it impossible that there be a transfer of heat from a cooler body to

www.elsevier.com/locate/shpsb
dx.doi.org/10.1016/j.shpsb.2011.07.001
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a warmer body without a compensating increase of entropy of
some other body (to paraphrase Clausius’ formulation). This is in
tension with the kinetic theory of heat, which leads us to expect
that the thermal agitation of molecules will give rise to fluctua-
tions of temperature and pressure. These fluctuations entail that a
gas that is initially at a uniform temperature and pressure can
spontaneously develop differences in temperature or pressure—a
decrease (however slight) in entropy, which need not be compen-
sated by an increase elsewhere.

What most physicists today accept is something along the
lines of the following:

Although fluctuations will occasionally result in heat passing
spontaneously from a colder body to a warmer body, these
fluctuations are inherently unpredictable; there can be no
process that will consistently and reliably transfer heat from a
cooler to a warmer body without producing a compensating
increase in entropy elsewhere.

Call this the probabilistic version of the second law of
thermodynamics.

In the decade 1867–1877, the major figures in the develop-
ment of the kinetic theory came to accept that the second law
would have to be modified. Considerations of reversibility, which
show that anti-thermodynamic behaviour is not ruled out by the
laws of mechanics, were instrumental in this for Maxwell,
Thomson, and Tait, as they were for Boltzmann (see Brown,
Myrvold, & Uffink, 2009; Uffink, 2007, for discussions of Boltz-
mann’s probabilistic turn).

The reversibility argument is spelled out in a letter, dated
December 6, 1870, from Maxwell to John William Strutt, Baron
Rayleigh; Maxwell follows this with an exposition of what we
now call Maxwell’s demon,1 and then draws the

Moral. The 2nd law of thermodynamics has the same degree of
truth as the statement that if you throw a tumblerful of water
into the sea, you cannot get the same tumblerful of water out
again (Garber et al., 1995, p. 205).

Maxwell’s demon makes its first public appearance in Maxwell’s
(1871) Theory of Heat, in a section entitled, ‘‘Limitation of the
Second Law of Thermodynamics.’’

Gibbs’ recognition of the probabilistic nature of the second law
occurs in 1875. His statement occurs in the context of a discus-
sion of the mixture of distinct gases by diffusion, with which
there is an increase of entropy associated, called the entropy of

mixing.

when such gases have been mixed, there is no more impossi-
bility of the separation of the two kinds of molecules in virtue
of their ordinary motions in the gaseous mass without any
external influence, than there is of the separation of a homo-
geneous gas into the same two parts into which it as once been
divided, after these have once been mixed. In other words, the
impossibility of an uncompensated decrease of entropy seems
to be reduced to improbability (Gibbs, 1875, p. 229; 1961,
p. 167).

It is one thing to acknowledge that, given artificial and contrived
initial conditions, such as the reversal of all velocities, or those
1 Although Maxwell says that it was William Thomson (who was to become

Lord Kelvin) who gave the creatures this name (Knott, 1911, p. 214), Thomson

(1874, p. 441) attributes the name to Maxwell:

The definition of a ‘‘demon’’, according to the use of this word by Maxwell, is

an intelligent being endowed with free will, and fine enough tactile and

perceptive organisation to give him the faculty of observing and influencing

individual molecules of matter.
produced by the manipulations of a demon, violations of the
second law could be produced. This is enough to show that the
second law cannot be a consequence of molecular dynamics
alone. Such considerations leave open the possibility that such
conditions would, in the normal course of things, be so improb-
able that they would be expected to occur very rarely if at all.
Maxwell went a step further; he asserted that, on small enough
scales, the second law will be continually violated.

If we restrict our attention to any one molecule of the system,
we shall find its motion changing at every encounter in a most
irregular manner.

If we go on to consider a finite number of molecules, even if
the system to which they belong contains an infinite number,
the average properties of this group, though subject to smaller
variations than those of a single molecule, are still every now
and then deviating very considerably from the theoretical
mean of the whole system, because the molecules which form
the group do not submit their procedure as individuals to the
laws which prescribe the behaviour of the average or mean
molecule.

Hence the second law of thermodynamics is continually being
violated, and that to a considerable extent, in any sufficiently
small group of molecules belonging to a real body. As the
number of molecules in the group is increased, the deviations
from the mean of the whole become smaller and less frequent;
and when the number is increased till the group includes a
sensible portion of the body, the probability of a measurable
variation from the mean occurring in a finite number of years
becomes so small that it may be regarded as practically an
impossibility.

This calculation belongs of course to molecular theory and not
to pure thermodynamics, but it shows that we have reason for
believing the truth of the second law to be of the nature of a
strong probability, which, though it falls short of certainty by
less than any assignable quantity, is not an absolute certainty
(Maxwell, 1878b, p. 280; Niven, 1965, pp. 670–671).

The second law of thermodynamics, as originally conceived, must
be acknowledged to be false. A plausible successor to it is the
probabilistic version. Maxwell, also, thought that a suitably
limited version of the second law could be correct. But for
Maxwell, even a probabilistic version holds only so long as we
are in a situation in which molecules are dealt with only en masse.
This is the limitation of what he speaks, in the section of Theory of

Heat that introduces the demon to the world.

One of the best established facts in thermodynamics is that it
is impossible in a system enclosed in an envelope which
permits neither change of volume nor passage of heat, and in
which both the temperature and the pressure are everywhere
the same, to produce any inequality of temperature or pres-
sure without the expenditure of work. This is the second law of
thermodynamics, and it is undoubtedly true as long as we can
deal with bodies only in mass, and have no power of perceiv-
ing the separate molecules of which they are made up. But if
we conceive of a being whose faculties are so sharpened that
he can follow every molecule in its course, such a being, whose
attributes are still as essentially finite as our own, would be
able to do what is at present impossible to us. For we have
seen that the molecules in a vessel full of air at uniform
temperature are moving with velocities by no means uniform,
though the mean velocity of any great number of them,
arbitrarily selected, is almost exactly uniform. Now let us
suppose that such a vessel is divided into two portions, A and B,
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by a division in which there is a small hole, and that a being, who
can see the individual molecules, opens and closes this hole, so as
to allow only the swifter molecules to pass from A to B, and only
the slower ones to pass from B to A. He will thus, without
expenditure of work, raise the temperature of B and lower that of
A, in contradiction to the second law of thermodynamics.

This is only one of the instances in which conclusions which we
have drawn from our experience of bodies consisting of an
immense number of molecules may be found not to be applic-
able to the more delicate observations and experiments which
we may suppose made by one who can perceive and handle the
individual molecules which we deal with only in large masses.

In dealing with masses of matter, while we do not perceive the
individual molecules, we are compelled to adopt what I have
described as the statistical method of calculation, and to
abandon the strict dynamical method, in which we follow
every motion by the calculus (Maxwell, 1871, pp. 308–309).

Note that there is no hint that there might be some principle of
physics that precludes the manipulations of the demon, or
constrains it to dissipate sufficient energy that the net change of
entropy it produces is positive. Moreover, Maxwell leaves it open
that the requisite manipulations might become technologically
possible in the future—the demon does what is at present

impossible for us. What Maxwell is proposing, as a successor to
the second law, is strictly weaker than the probabilistic version.
For Maxwell, even the probabilistic version is limited in its
scope—it holds only in circumstances in which there is no
manipulation of molecules individually or in small numbers.
3. Work, heat, and entropy as means-relative concepts

Maxwell’s conception of the status of the second law ties in
with his conception of the status and purpose of the science of
thermodynamics.

Central to thermodynamics is a distinction between two ways
in which energy can be transferred from one system to another: it
can be transferred as heat, or else one system can do work on the
other. The second law of thermodynamics requires, for its very
formulation, a distinction between these two modes of energy
transfer. In Clausius’ formulation:

Heat cannot pass from a colder body to a warmer body
without some other change connected with it occurring at
the same time.2

To see that this hangs on a distinction between heat and work,
note that it becomes false if we do not specify that the energy is
transferred as heat. It is not true that no energy can be conveyed
from a cooler body to a warmer body without some other change
connected with it: if two gases are separated by an insulating
movable piston, the gas at higher pressure can compress—that is,
do work on—the gas at lower pressure, whatever their respective
temperatures.

The Kelvin formulation of the second law is,

It is impossible, by means of inanimate material agency, to
derive mechanical effect from any portion of matter by cooling
it below the temperature of the coldest of the surrounding
objects (quoted in Uffink, 2001, p. 327).
2 ‘‘Es kann nie Wärme aus einem kälteren Körper übergehen, wenn nicht

gleichzeitig eine andere damit zusammenhängende Aenderung eintritt.’’ Quoted

by Uffink (2001, p. 333).
This statement does not say that we cannot cool a body below the
temperature of the coldest surrounding objects. Refrigerators are
possible. The difference is though we can derive mechanical
effect—that is, do work—by extracting heat from a hotter body,
using some of the energy to do work, and discarding the rest into
a cooler reservoir, extraction of heat from a body that is already
cooler than any body that might be used as a reservoir requires
the opposite of deriving mechanical effect: it requires us to use up
some energy that could have been used for mechanical effect, in
order to effect the transfer. Thus the Kelvin statement, also,
requires a distinction between deriving mechanical effect from a
body and extracting heat from it.

What is this distinction? On the kinetic theory of heat, when a
body is heated, the total kinetic energy of its molecules is
increased, so, for body A to heat body B, parts of A must interact
with parts of B to change their state of motion. When A does work
on B, it is again the case that parts of A act on parts of B to change
their state of motion. The difference is in heat transfer, energy is
transferred to the parts of the body in a haphazard way; the
resulting motions cannot be tracked. This limits our ability to
recover the energy as work.

Put this way, the distinction seems to rest on anthropocentric
considerations, or, better, on consideration of the means we have
available to us for keeping track of and manipulating molecules.
We shall call considerations that turn on the means available to
an agent for gathering information about a system or for manip-
ulating it means-relative; these are matters that can vary between
agents, but it would be misleading to call them subjective, as we
are considering limitations on the physical means that are at the
agents’ disposal. On Maxwell’s view, the distinction between
work and heat is means-relative.

Available energy is energy which we can direct into any
desired channel. Dissipated energy is energy we cannot lay
hold of and direct at pleasure, such as the energy of the
confused agitation of molecules which we call heat. Now,
confusion, like the correlative term order, is not a property of
material things in themselves, but only in relation to the mind
which perceives them. A memorandum-book does not, pro-
vided it is neatly written, appear confused to an illiterate
person, or to the owner who understands thoroughly, but to
any other person able to read it appears to be inextricably
confused. Similarly the notion of dissipated energy could not
occur to a being who could not turn any of the energies of
nature to his own account, or to one who could trace the
motion of every molecule and seize it at the right moment. It is
only to a being in the intermediate stage, who can lay hold of
some forms of energy while others elude his grasp, that energy
appears to be passing inevitably from the available to the
dissipated state (Maxwell, 1878a, p. 221; Niven, 1965, p. 646).

That there is some energy that, for us, counts as dissipated energy
has to do, according to Maxwell, with the large number and small
size of the molecules that make up a macroscopic body.

The second law relates to that kind of communication of
energy which we call the transfer of heat as distinguished
from another kind of communication of energy which we call
work. According to the molecular theory the only difference
between these two kinds of communication of energy is that
the motions and displacements which are concerned in the
communication of heat are those of molecules, and are so
numerous, so small individually, and so irregular in their
distribution, that they quite escape all our methods of obser-
vation; whereas when the motions and displacements are
those of visible bodies consisting of great numbers of
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molecules moving all together, the communication of energy is
called work (Maxwell, 1878b, p. 279; Niven, 1965, p. 669).

If heat and work are means-relative concepts, then perforce so is
entropy. The entropy difference between two equilibrium states
of a system is given by

DS¼

Z
XQ

T
, ð1Þ

where the integral is taken over any quasistatic process joining
the two states, and XQ is the increment in heat absorbed from the
system’s environment. Thus, on Maxwell’s view, the very con-
cepts required to state the second law of thermodynamics are
means-relative.

One argument that Maxwell gives for the conclusion that the
distinction between available and dissipated energy is means-
relative is based on considerations of the entropy of mixing,
which, as we have seen above, was also the context of Gibbs’
remark about the probabilistic character of the second law.
Consider a container with two sub-compartments, of volume V1

and V2, containing samples of gas at the same temperature and
pressure. The partition is removed, and the gases from the two
sub-compartments are allowed to diffuse into each other. Has
there been an increase of entropy, or not?

Maxwell gives the now-standard answer, that, if the gases are
the same, there is no entropy increase, but, if they are distinct,
then there is an increase of entropy equal to the entropy increase
associated with free expansion of the two gases from their initial
to their final volumes. He then comments on this distinction:

Now, when we say two gases are the same, we mean that we
cannot distinguish the one from the other by any known
reaction. It is not probable, but it is possible, that two gases
derived from different sources, but hitherto supposed to be the
same, may hereafter be found to be different, and that a
method may be discovered of separating them by a reversible
process (Maxwell, 1878a, p. 221; Niven, 1965, pp. 645–646).

On Maxwell’s view, whether or not the interdiffusion of two gases
involves an increase of the entropy of the system is not a feature
of the physical change alone, but has to do with the abilities of the
agent. An agent who saw no way to separate two gases would not
regard their interdiffusion as a lost opportunity to do work.
Any distinction between the gases that is irrelevant to their
capacity to do work is irrelevant to their thermodynamic state,
so such an agent would regard the beginning and end states as the
same thermodynamic state, and hence judge no increase in
entropy.

If we are in possession of a means to separate the gases—say, a
membrane permeable to one gas and not to the other3—then we
can connect the initial and final states by a reversible process in
which each gas expands, raising a weight, while absorbing heat
from a reservoir. In such a process, the gas has increased its
entropy, while decreasing the entropy of the reservoir.

Thus, an agent with superior means of manipulation would be
able to perform what looked to another agent like a violation of
the second law of thermodynamics. Suppose that Bob regards the
samples of gas in two compartments separated by a partition as
identical. Alice, on the other hand, knows a difference between
them and is in possession of membranes, each permeable to one
gas but not the other. She can isothermally expand each gas,
raising a weight as she does so, while extracting heat from a
reservoir. On Bob’s parsing of things, the beginning and end states
3 As Daub (1969, p. 329) points out the device of a membrane permeable to

one gas but not the other, now a staple of textbook expositions, dates back to

Boltzmann (1878).
of the gas are counted as the same, and it looks as if Alice has used
the gas as a heat engine with perfect efficiency. Alice, of course,
does not regard the process as a violation of the second law, as
she does not regard the initial and final states of the gas as the
same thermodynamic state.

If we were to discover a hitherto unsuspected difference
between two types of molecules, one that permitted us to
perform manipulations that could not otherwise have been done,
we would not say that the second law of thermodynamics, in any
version, had been violated; we would revise our estimates of the
entropy of some systems involving these molecules. One can
imagine the process of refining our ability to manipulate mole-
cules to go on without limit, with consequent revisions in our
estimate of entropy of systems. In such a case, there would be no
absolute answer to the question of what the entropy difference of
two equilibrium states of a system is.

So far we have been discussing differing means of manipulat-
ing molecules in bulk. These yield differing judgments concerning
the value of the entropy change of a system as it goes from one
equilibrium state to another. If, however, there were an agent
capable of manipulating individual molecules, then, according to
Maxwell, the distinction between heat and work would break
down. ‘‘[W]e have only to suppose our senses sharpened to such a
degree that we could trace the motions of molecules as easily as
we now trace those of large bodies, and the distinction between
work and heat would vanish, for the communication of heat
would be seen to be a communication of energy of the same kind
as that which we call work’’ (Maxwell, 1878b, p. 279; Niven, 1965,
p. 669). As long as we are dealing with molecules in bulk, we can
distinguish between work, consisting of change of macroscopic
variables, and heat, energy distributed in a disorderly manner
among many molecules. But from the perspective of a Maxwell
demon, there would be no distinction between heat and work,
and the very concepts needed to formulate the second law would
break down, and thus the second law would be inapplicable,
because the very concepts needed to formulate it would fail to
apply. Its machinations would, however, look like a violation of
the second law, as formulated using any distinction between heat
and work.
4. Significance for statistical mechanics

There is more than historical interest in all of this. If it is a goal
of statistical mechanics to recover the laws of thermodynamics,
then it matters which version of the second law is to be recovered.
If the very concepts of thermodynamics are means-relative, then
it will be necessary to invoke means-relative considerations in the
task of finding statistical–mechanical analogues of thermody-
namic quantities. If the scope of what is to be recovered is limited
to situations in which large numbers of molecules are being
treated in bulk, then we can expect to invoke some version of the
law of large numbers.

What one would expect to be able to derive from statistical
mechanics, on Maxwell’s view, might be something akin to the
following. The object of our study will be a system with a large
number of degrees of freedom. Our knowledge of the state of the
system is limited to a small number of quantities, which, typically,
will involve sums of a large number of molecular quantities and so,
on a probability distribution on which the states of the molecules
are independent (as will be the case for equilibrium distributions)
these will have small dispersion, and so having precise knowledge
of their values will be compatible with considerable ignorance of
the microstate of our system. It is in terms of these quantities that
we define the thermodynamic state. We also distinguish between
types of interaction of the system with its environment. In many
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circumstances, the forces to which a system is subject can be
partitioned into terms dependent on a small number of parameters
that we can manipulate (think of the positions of the walls of the
container), plus terms that are effectively random (interaction with
a heat bath). Energy imparted to (or taken from) the system via
changes of the controllable external parameters is to be counted as
work; all other energy transfer between the system and the
environment, as heat. Assume that there is a reliable relation
between the values of the known variables and the controllable
parameters (equation of state). On the Maxwellian view, the
second law should say that, given such a distinction between
manipulable and uncontrollable parameters, and between the
known parameters, used to define the thermodynamic state, the
unknown, there can be no process that predictably and reliably has
the effect of converting heat energy entirely into work with no net
change in the thermodynamic states of the systems involved.

This is considerably weaker than the second law of thermo-
dynamics as usually construed. In particular, it says nothing at all
about whether it might become possible to convert quantities
that are at present beyond our cognizance into knowable quan-
tities, and parameters that we do not currently count as manip-
ulable into manipulable ones. As a consequence, this version
places no absolute limits on what can and cannot be done.

A view similar to Maxwell’s has, in more recent years, been
championed by Jaynes (1965, p. 398, 1989, p. 86), who expresses
his view as ‘‘Entropy is an anthropomorphic concept.’’4

If we work with a thermodynamic system of n degrees of
freedom, the experimental entropy is a function SeðX1 � � �XnÞ of
n independent variables. But the physical system has any
number of additional degrees of freedom Xnþ1,Xnþ2, etc. We
have to understand that these additional degrees of freedom
are not to be tampered with during the experiment on the n

degrees of interest; otherwise one could easily produce appar-
ent violations of the second law.

Jaynes (1992, p. 10) proposes his own modification of the
second law:

the correct statement of the second law is not that an entropy
decrease is impossible in principle, or even improbable; rather
that it cannot be achieved reproducibly by manipulating the
macrovariables fX1, . . . ,Xng that we have chosen to define our
macrostate.

This is much in the spirit of a Maxwellian view of thermo-
dynamics.
5. On the meaning of ‘‘statistical’’

For Maxwell, the truth of the second law is ‘‘a statistical, not
mathematical, truth’’ (Maxwell, 1878b, p. 279; Niven, 1965,
p. 670). In a letter to Tait he wrote that the chief end of a Maxwell
demon is to ‘‘show that the second law of thermodynamics has
only a statistical certainty’’ (quoted in Knott, 1911, p. 215). To a
modern reader, used to the idea that statistics and probability
theory are intimately intertwined, there may seem to be no
discernible difference between a statistical version of the second
law and a probabilistic one. Indeed, Maxwell has been read as
employing his demon in the service of a probabilistic version
of the second law. For example, Earman and Norton (1998,
p. 436) write
4 Jaynes attributes this phrase to Wigner. He arrives at this position via a close

reading of Gibbs (1875), and the view, as in Maxwell, is motivated by considera-

tion of the entropy of mixing.
Maxwell conceived of the Demon as a helpful spirit, assisting
us to recognize most painlessly that the Second Law of
thermodynamics can hold only with very high probability,
apparently in the sense that there is a very small subclass of
thermodynamic systems that assuredly reduce entropy.

If the demon is meant to illustrate the fact that the second law
can only hold with high probability, then, it must be admitted, the
example is not well chosen. As Maxwell himself pointed out,
statistical fluctuations will produce violations of the original
version of the second law, without the help of a demon. The
passage of faster molecules from one side of a container to the
other through the demon’s trap door will happen occasionally,
without the presence of the demon to close it to block unwanted
passages. What the demon does is build up a substantial differ-
ence in temperature by selectively accumulating fluctuations that
occur without its intervention. So, the demon does not help us see
that the original second law will be violated; rather, it exploits
microscopic violations to build up macroscopic ones. Equally
puzzling is the notion that the demon helps us see that the
second law will hold with high probability; in the presence of the
demon, large entropy decreases are not improbable, but virtually
certain.5

If the probabilistic reading is not what was meant, what did

Maxwell mean when he said that the demon’s chief end was to
show that the second law has only a statistical certainty? In order
to understand this, it is essential to understand what the word
‘‘statistical’’ meant, for Maxwell. The word ‘‘statistics’’ has its
origin in the Italian statista (statesman), and originally referred to
a collection of facts of interest to a statesman. By the nineteenth
century the word had come to be applied to systematic compila-
tion of data regarding population and economic matters (Hald,
1990, pp. 81–82), and this would have been the primary meaning
of the word for Maxwell’s readers.

In 1885, in his address to the Jubilee Meeting of the Statistical
Society of London, the Society’s president, Rawson W. Rawson,
defined statistics as

the science which treats of the structure of ‘‘human society,’’
i.e., of society in all its constituents, however minute, and in all
its relations, however complex; embracing alike the highest
phenomena of education, crime, and commerce, and the so-
called ‘‘statistics’’ of pin-making and London dust bins
(Rawson, 1885, p. 8).

There is no suggestion in Rawson’s address that statistics and
probability theory are closely interconnected, though he does
note that ‘‘mathematical principles of investigation are available,
and, the more closely these are applied, the nearer will be the
approach to mathematical precision in the results’’ (p. 9). This is a
symptom of the degree to which the field has been transformed;
imagine the current president of the Royal Statistical Society (as it
is now known) reminding its membership that mathematical
methods are available!

Although there were, of course, mathematicians who were at
the time applying probability theory in the field of statistics, this
was not yet the dominant approach.

In the social sciences . . . the successful use of probability-
based statistical methods did not come quickly . . . But begin-
ning in the 1880s there was a notable change in the intellec-
tual climate . . . (Stigler, 1986, p. 239).
5 Earman and Norton’s take on this seems to be that, though, in the presence

of a system that acts as a Maxwell demon, entropy will assuredly be reduced, such

systems are rare, so that we can expect thermodynamic behaviour from most

systems.
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Writing in the 1870s, Maxwell could not have assumed that his
readers would associate the word ‘‘statistical’’ with considera-
tions of probability.

In a lecture delivered to the British Association for the
Advancement of Science, Maxwell (1873) discussed the introduc-
tion of the statistical method into physics.

As long as we have to deal only with two molecules, and have
all the data given us, we can calculate the result of their
encounter; but when we have to deal with millions of
molecules, each of which has millions of encounters in a
second, the complexity of the problem seems to shut out all
hope of a legitimate solution.

The modern atomists have therefore adopted a method which
is, I believe, new in the department of mathematical physics,
though it has long been in use of the section of Statistics.
When the working members of Section F [the statistical
section of the BAAS] get hold of a report of the Census, or
any other document containing the numerical data of Eco-
nomic and Social Science, they begin by distributing the whole
population into groups, according to age, income-tax, educa-
tion, religious belief, or criminal convictions. The number of
individuals is far too great to allow of their tracing the history
of each separately, so that, in order to reduce their labour
within human limits, they concentrate their attention on a
small number of artificial groups. The varying number of
individuals in each group, and not the varying state of each
individual, is the primary datum from which they work.

This is, of course, not the only method of studying human
nature. We may observe the conduct of individual men and
compare it with that conduct which their previous character
and their present circumstances, according to the best existing
theory, would lead us to expect (Maxwell, 1873, p. 440; Niven,
1965, pp. 373–374).

To adopt the statistical method in physics means to eschew the
attempt to follow the trajectories of individual molecules—‘‘a-
voiding all personal enquiries’’ of molecules—and, on Maxwell’s
view, it is only insofar as we do so that the second law is
applicable.

It had long been noted that, though the behaviour of individual
humans might be hard to be predict, there are statistical regula-
rities at the population level. So, too, says Maxwell, there are
statistical regularities in physics.

The data of the statistical method as applied to molecular
science are the sums of large numbers of molecular quantities.
In studying the relations between quantities of this kind, we
meet with a new kind of regularity, the regularity of averages,
which we can depend upon quite sufficiently for all practical
purposes, but which can make no claim to that character of
absolute precision which belongs to the laws of abstract
dynamics (Maxwell, 1873, p. 440; Niven, 1965, p. 374).

It is this that he means when he says that the second law is
a statistical regularity. ‘‘The truth of the second law is . . . a
statistical, not a mathematical, truth, for it depends on the fact
that the bodies we deal with consist of millions of molecules,
and we can never get hold of a single molecule’’ (Maxwell, 1878b,
p. 279; Niven, 1965, p. 670).

There is, of course, a relation between a probabilistic version of
the second law, and a restriction of its scope to circumstances in
which molecules are dealt with en masse, rather than individually.
As Maxwell points out, measurable thermodynamic quantities are
averages over many molecular quantities; if the molecular quan-
tities exhibit fluctuations that are probabilistically independent of
each other, these fluctuations will tend to be washed out as the
number of molecules considered is increased. Thus the probabil-
istic version predicts that large deviations from the original
version of the second law will become overwhelmingly improb-
able when macroscopic numbers of molecules are involved, and
so it shares with Maxwell’s version the conclusion that the
original version will be observed to hold under ordinary condi-
tions of observation of macroscopic phenomena. This helps to
explain why Maxwell has been taken to be advocating the
probabilistic version widely accepted today.

Though a number of writers have attributed the probabilistic
version of the second law to Maxwell—the quotation from
Earman and Norton, above, is not atypical—it should be noted
that Stephen Brush, in his masterful study of the development of
the kinetic theory, does not. Brush correctly notes that the lesson
Maxwell draws from the demon is that ‘‘the Second Law . . . ‘has
only a statistical certainty’—it is valid only as long as we consider
very large numbers of molecules which we cannot deal with
individually.’’ Brush (1976, p. 589), adds,

It must not be assumed that ‘‘statistical’’ here implies random-
ness at the molecular level, for it is crucial to the operation of
the Maxwell Demon that he be able to observe and predict the
detailed course of motion of a single molecule.

Maxwell’s interpretation of the second law, Brush notes, ‘‘is
statistical rather than stochastic’’ (Brush, 1976, p. 593). Maroney
(2009), also, clearly distinguishes Maxwell’s view from the
probabilistic version. The operation of Maxwell’s demon is

simply a matter of scale and the statistical nature of the second
law not probabilistic, but due to our inability to discriminate
the exact state of a large number of particles (similar to our
inability to exploit Loschmidt’s reversibility objection). This
leaves open the possibility of a device which could discriminate
fluctuations in individual atomic velocities and it is not clear
that any probabilistic argument would prevent work being
extracted from this.
6. Exorcising the demon?

Most contemporary physicists believe in something consider-
ably stronger than this Maxwellian law. We should ask whether
we have a good reason to believe the stronger version; and this is
the question of whether we have reason to believe that there
could be no device that played the role of Maxwell’s demon,
predictably and reliably converting what we (presently) regard as
heat entirely into useful work. A reply that the second law is a
well-confirmed inductive generalization would not be persuasive.
On the Maxwellian view, the second law is valid in situations in
which there is no manipulation of individual molecules, and these
are the circumstances of the observations that form our basis for
induction. That something has never been observed is not a good
argument that it is not technologically feasible; we are familiar
with phenomena that can be produced artificially, but which
occur rarely, if at all, in nature. A convincing argument would
have to derive the probabilistic second law from some principle
for which we can provide independent grounds.

There is an extensive literature that attempts to do just this
(see Leff & Rex, 2003 for an overview, some of the key papers, and
an extensive bibliography). There are two main avenues of
approach. One, pioneered by the work of Smoluchowski, consists
of careful analysis of devices that prima facie might seem to be
able to function as Maxwell demons, to show that this appearance
is an illusion due to neglect of thermal fluctuations in some part
of the mechanism. The other avenue employs information-
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theoretical concepts in an endeavour to locate an unavoidable
dissipation of energy either in the act of information acquisition,
or in information processing. Along this avenue, the approach that
seems to find most favour currently invokes Landauer’s principle,
according to which erasure of a record that represents n bits of
information inevitably results in a minimum average entropy
increase of nk ln 2, where k is Boltzmann’s constant.

Earman and Norton (1998, 1999; see also Norton, 2005) argue
that, insofar as arguments of this sort are sound, they beg the
question by assuming the probabilistic second law. They are
particularly skeptical of the notion that informational considera-
tions can shed much light on the matter. Indeed, introduction of
such notions may seem like a fundamentally ill-conceived endea-
vour, as many proposed demonizing schemes seem to involve no
part that plays the role of an information processor. Moreover, as
Zhang and Zhang (1992) have shown, if one is willing to
countenance dynamics that does not preserve phase volume,
then an entropy-decreasing device can be constructed, and there
seems no natural way to construe the operation of Zhang and
Zhang’s device as involving information acquisition or processing.
‘‘[A]nthropomorphising of the Demon is a mistake’’ (Earman &
Norton, 1999, p. 4).

even if the operation of the Demon involves what deserves to
be called an information processor of computer—a dubious
assumption in some cases—the ultimate explanation for the
possibility or impossibility of various operations must be
traced to fundamental physical laws, laws which are stated
without the mention or use of information concepts. One thus
suspects that at best what information considerations can offer
us is a handy heuristic (Earman & Norton, 1999, p. 24).

‘‘At best’’; the bulk of Earman and Norton’s discussion suggests
that invocation of informational considerations more commonly
serves as a smoke-screen to hide the fact that the second law is
being assumed as a premise, only to be rederived as a conclusion.

The Maxwellian view casts an interesting light on this literature.
If the very concepts of thermodynamics are means-relative, and we
cannot even state the second law of thermodynamics without
invoking a means-relative distinction between heat transfer and
doing work, then anthropomorphising the demon no longer seems
like a mistake. On Maxwell’s view, dissipation of energy simply is

the transfer of energy from degrees of freedom we keep track of to
ones that we do not. Landauer’s principle, on this view, looks, not
like an unprovable and dubious assumption, but a tautology.

If Landauer’s principle is a tautology, though, it will be of no
avail in determining what is and is not physically possible. If all
we will obtain from statistical mechanics is an agent-relative
version of the second law, this will be of no use in determining
which manipulations might be feasible, and which are not. So,
even if we accept that information-theoretic conceptions deserve
a central place in thermodynamics and statistical mechanics, they
are out of place in determining what can and can not be done
physically. For this, we need to look to physics itself, and, as
Earman and Norton have argued, no argument of the requisite
sort has been produced.

In light of all this, the Maxwellian view, whether it is correct or
not, is the one that deserves to be on the table in discussions of the
foundations of statistical mechanics. We should take seriously the
idea that thermodynamic concepts are inherently means-relative. If
we are dealing with large numbers of molecule in bulk, there will
usually be a notion of dissipation of energy that is sufficiently clear
that, in practice, we can employ thermodynamic concepts in such a
way that ambiguity is kept small enough that it does not become a
nuisance, but, if the Maxwellian view is correct, it would be a
mistake to search for absolute physical meaning of these concepts.
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