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Abstract

How do multiple reasons combine to support a conclusion about what
to do or believe? This question raises two challenges: (1) how can we
represent the strength of a reason? (2) how do the strengths of multiple
reasons combine?. Analogous challenges about confirmation have been
answered using probabilistic tools. Can reductive and non-reductive the-
ories of reasons use these tools to answer their challenges? Yes, or more
exactly: Reductive theories can answer both challenges. Non-reductive
theories, with the help of a (new?) result in confirmation theory, can
answer one and there are grounds for optimism that they can answer the
other.
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Introduction

A popular albeit controversial idea in moral philosophy is that what we ought
to do can be explained by our reasons.1 One challenge for this view is to provide
illuminating explanations of what we ought to do in cases where multiple reasons
combine to support an act. We can illustrate this by considering the following
example:

[. . . ] there is a movie theater and a restaurant across town. And
suppose that in order to get to that side of town I must cross a
bridge that has a $25 toll. The toll is a reason not to cross the
bridge. The movie is a reason to cross the bridge and the restaurant
is also a reason to cross the bridge. It may be that if there were just
the movie to see, it wouldn’t be worth it to pay the toll and if there
were just the restaurant, it wouldn’t be worth it to pay the toll. But
given that there is both the movie and the restaurant, it is worth it
to pay the toll. (Nair 2016: 56)

In this case, the movie theater provides a reason to cross the bridge, the restau-
rant provides a reason to cross the bridge, and the toll provides a reason to not
cross the bridge. Individually, the reason provided by the restaurant is worse
than the reason provided by the toll and the reason provided by the movie is
worse than the reason provided by the toll. But the two reasons to cross the
bridge together—what is sometimes called the “accrual” of these reasons—are
better than the reason provided by the toll.

Cases of this sort are ubiquitous and arise not just for action but also for
belief. Here is another example:

I am curious about what color the feathers of a certain bird are.
My friend seems to remember reading in a textbook that they are
black. I seem to remember seeing in a nature documentary that
they are white. I also seem to remember seeing in the travel guide
that they are white. It may be that my friend’s memory based
on the textbook is a better reason to believe that the feathers are
black than my memory of the documentary or the travel guide taken
individually. But it may be that together these reasons to believe
that the feathers are white are better than the reason to believe that
the feathers are black so that I have more reason to believe that the
feathers are white. (ibid.: 57)

If we also accept the idea that what we ought to believe can be explained in
terms of reasons, then we would like to understand how reasons combine in
these cases as well.

My goal in this paper is to explain the challenge posed by cases of accrual
and to develop some strategies for meeting this challenge. But an important

1This idea appears (in different terminology) at least as early as Ross 1930. Other im-
portant discussions include Dancy 2004, Hampton 1998, Nagel 1970, Parfit 2011, Raz 2002
[1975], Scanlon 1998, and Schroeder 2007.
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complication arises immediately: Philosophers with very different theoretical
commitments accept the idea that reasons explain what we ought to do and
believe. In particular, some philosophers who accept this idea are reductivists—
they believe reason are reducible to other normative properties or facts or to
other non-normative properties or facts—while others are non-reductivists—
they believe reasons are not reducible to any other normative or non-normative
fact or property.2,3 Accordingly, the strategies for meeting this challenge must
be sensitive to these differences. Indeed, much of this paper is dedicated to this
task.

Here’s my plan: In reflecting on our examples above, we encountered the
challenge of providing illuminating explanations of what we ought to do or
believe in cases where multiple reasons combine to support an act or belief. I
will show how this actually factors into two distinct, but related challenges posed
by cases of accrual (§1). I then observe that analogous issues about how pieces
of evidence confirm hypotheses have been fruitfully explored using probabilities.
(§2). With this background in hand, the central issue of the paper is whether
reductive and non-reductive theories can make use of these probabilistic tools.
It turns out that both theories can but in different ways. Reductive theories can
relatively straightforwardly make use of these tools to answer both challenges
posed by cases of accrual (§3). But the situation is more complicated for non-
reductive theories (§4). For non-reductive theories of reasons for belief, the issue
turns on certain (until-now-unanswered?) questions in the probabilistic theory
of confirmation. But I present results that answer these questions. For non-
reductive theories of reasons for action, this same approach will not work because
there are structural differences between reasons for action and probabilities. But
recent work from Itai Sher (Sher 2019) develops a decision-theoretic account that
can accommodate these differences. Nonetheless, both of these approaches for
the non-reductivist require the assumption that the strength of reasons can be
numerically represented. By contrast, this claim is a result of the reductivist
account rather than an assumption it has to posit.4

Though the topic of this paper is obviously relevant for those who think that
reasons explain what we ought to do and believe, it should also be of interest to
anyone who thinks that there is some systematic theory about the interaction of

2For theories that reduce reasons to some non-normative notion see Finlay 2014 and
Schroeder 2007. For theories that reduce reasons to some normative notion see Maguire 2016,
McHugh and Way 2016, Portmore 2011, Setiya 2014, Smith 1994, and Wedgwood 2009. For
theories that are non-reductive, see Dancy 2004, Scanlon 1998, and Parfit 2011.

3The distinction between reducibility, analyzability, fundamentality, grounding, metaphys-
ical dependence, etc. will not matter for our purposes. So I will also call theories according
to which reasons are analyzable, non-fundamental, grounded, metaphysically dependent, etc.
reductive theories of reasons. On the other hand, non-reductive theories are theories according
to which reasons are not analyzable, are fundamental, are not grounded, and are metaphysi-
cally independent.

4Though this paper is primarily concerns the prospects of probabilistic approaches, n. 55
briefly discusses qualitative accounts such as those from the default logic and argumentation
theory traditions as well as Nair 2016 and Maguire and Snedegar 2021. As mentioned above,
§4.2 also discusses a decision-theoretic rather than purely probabilistic account.
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reasons (even if reasons do not explain ‘ought’s)5 and to anyone who is interested
in confirmation theory (especially §4.1 and §A) Furthermore, though our focus
is on answering the two challenges posed by cases of accrual, the ideas here
also have methodological implications. For instance, it turns out that though
sometimes times two reasons are better than one, this is not always so. This
means that even if we have some example where we know the strength of two
reasons individually, there are still further questions to ask about the strengths
of these reasons. Do we, as theorists, have free reign to choose whether the two
reasons together are better than each individually? Do we have free reign to
choose how much better? If not, what do these choices depend on?6 The ideas
developed here answer these questions.7

1 The Accrual of Reasons: Two Challenges

In cases like the ones from the beginning of the paper, we would like to know
how the strength of the accrual is related to the strength of its members. Off
hand, it seems that the strength of the two reasons together to cross the bridge
is some kind of increasing function of the strength of the reasons individually.
Indeed it may tempting to say that the strength of an accrual is some how the
sum of the strengths of its members.

If we take talk of the “sum of strengths” at face value, it presupposes that the
strength of a reason is somehow sensibly represented by a number. But since we
have no pretheoretical grip on how to construct such a numerical representation,
it is a pressing question whether strengths can be numerically represented and
what the basis for such a representation might be.

If, on the other hand, the strengths of reasons cannot be numerically rep-
resented, it is a pressing question how to state in purely qualitative terms the

5Thanks to the referee who encouraged me to emphasize this. Some distinctions due to
Selim Berker (Berker 2018) can make this point more vivid. Berker observes that what he
had called in earlier work (Berker 2007) a “combinatorial function”—a function that maps
individual reasons and their strengths to verdicts about what we ought to do—can be thought
of a composition of two other functions. The first is what he calls a “aggregation function”
which maps individual reasons and their strengths to results about how strongly supported
by the reasons overall each act or belief is. The other is a “comparison function” that maps
the outputs of the first function to verdicts about what we ought to do or believe. The issues
here are most directly about Berker’s aggregation function.

6To illustrate, suppose an agent faces a choice to do act A that saves a person x or do act
B that saves person y and z. There are various theories about whether the fact that some act
will save a life provides a reason. But suppose we consider a theory according to which the
fact that doing A will save x is a reason to do A, the fact that doing B will save y is a reason to
do B, and the fact that doing B will save z is a reason to do B. And suppose further that the
theory says these reasons are each individually exactly as strong as one another. Given these
assumptions, does the general theory of how reasons interact settle whether the individual
reasons to do B together also provide a reason to do B? If so, does it settle how strongly the
reasons together support doing B? Or, instead, do we need to make further assumptions in
order to settle whether and how strongly the reasons together support doing B?

7The answers that follow from the accounts developed below are ‘no’, ‘no’, ‘each strategy
gives its own (somewhat precise) answer to which factors these choices depend on’.
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relationship between the strength of an accrual and the strengths of its mem-
bers. For example, it is not enough to say that the accrual of reasons to cross the
bridge is stronger than the individual reasons. We must also somehow translate
into qualitative terms the idea that the extent to which the accrual is stronger
makes it so that the reasons together to cross the bridge are stronger than the
reason to not cross the bridge.8

This, then, is the first challenge posed by cases of accrual: We must deter-
mine a suitable way of representing the strengths of reasons that allows us to
understand how the strength of the accrual in certain cases is the right sort of
increasing function of the strengths of its members. And we must provide some
basis for such a representation.9,10

The second challenge concerns sorting different cases of accrual. As we
have seen, there are cases where a collection of reasons to do a given act has
a strength that is (strictly) greater than the strength of any individual reason.
But sometimes the strength of a collection is not (strictly) greater than the
strength of each individual reason.

The literature on this topic includes a variety of cases that illustrate this
including putative cases where the collection is exactly as strong as an individual
reason, where the collection provides a reason that is weaker than the individual
reasons (and perhaps supports an incompatible act), and where the collection
provides a no reason at all. It is perhaps simplest to start by illustrating this
with minimal variant of the case involving reasons for action that we began the
paper with:

As before, the toll is $25 dollars, as before, there is a restaurant and
a movie theater that I can access only by paying this toll. But in
this case, let’s suppose that the movie only has one showing and
the restaurant only has one seating and they are at the same time
so that I cannot attend both. Still, the movie is a reason to cross
the bridge and the restaurant is a reason to cross the bridge. But
the accrual of these reasons is not any stronger than these reasons
individually. (Nair 2016: 66)

We can then consider the following case involving reasons for belief:

8N. 55 discusses this and related concerns for theories of accrual that do not involve
numerical representation. That said, the best developed views for understanding certain
features of reasons (e.g, undercutting, attenuation, and intensifying) are views such Horty
2012 that do not involve numerical representation.

9Issues about numerical representation or measurability regarding the strength of reasons
are mentioned (in different terminology) as early as Nozick 1968. See Krantz et al. 2007 for a
general introduction to philosophical and formal issues related to measurability.

10The answers that we consider below assume a simple theory according to which reasons
can be directly compared as better than or worse than or equally good as one another. This
ignores a number of complications. For example, Patricia Greenspan has argued that that
reason against an act and reason for refraining from doing the act must be distinguished
(Greenspan 2005, Greenspan 2007, Greenspan 2010). And a variety of philosophers have
argued that some reasons are incommensurable (see Chang 1997 for a classic collection on this
topic). Though these are serious complications, I think it is good to approach our problem
by first seeing how simple views can address it.
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You know that John and Bill are rarely found together—they dislike
each other and make it a point to avoid each other. There is a
party this week and you are wondering whether John or Bill but
not both John and Bill will attend. In this setting finding out John
will attend is a reason to believe that John or Bill but not both
will attend. Similarly, finding out Bill will attend is also a reason to
believe John or Bill but not both will attend. [. . . ] But their accrual
is not a reason to believe John or Bill but not both will attend. (Nair
2016: 59-60)

And finally we can consider the following sampling of cases to get a sense of the
variety of examples that have been offered:

Consider by way of example two reasons not to go jogging, viz.
that it is hot and that it is raining. For a particular runner the
combination of heat and rain may be less unpleasant than heat or
rain alone so that the accrual is a weaker reason not to go running
than the accruing reasons. And for another jogger the combination
of heat and rain may be so pleasant that it is instead a reason to go
jogging. (Prakken 2005: §3.1)

Suppose, for example, that Symptom 1 is a reason for the adminis-
tration of Drug A, since it suggests Disease 1, for which Drug A is
appropriate, and that Symptom 2 is also a reason for the adminis-
tration of Drug A, since it suggests Disease 2, for which Drug A is
also appropriate; still, it might be that Symptoms 1 and 2 appear-
ing together suggest Disease 3, for which Drug A is not appropriate.
(Horty 2012: 61)

Suppose that I have a disease. My doctor proposes a treatment, and
the question I am considering is, “Should I take the treatment?” [. . . ]
Suppose that R1 is now the proposition that the treatment would
prolong my life by at least 1 year, and R2 is the proposition that the
treatment would prolong my life by at least 2 years. [. . . ] the sum
w1 + w2 of the weights of reasons R1 and R2 does not represent a
meaningful quantity. This sum double counts the weight of the fact
that the treatment will prolong my life by at least one year, as this
fact is entailed by both R1 and R2. (Sher 2019: 104-105)

While there are ways of resisting the force of these putative cases in which the
strength of the accrual is not greater than the strengths of the individual reasons,
I will not discuss this here. I take it that the diversity of form and subject
matter of these cases will allow different readers to find at least one to agree
with. In any event, their diversity of form and subject matter make it apparent
that something substantive must be said to explain the difference—whether
genuine or merely apparent—between these cases and cases where the accrual
of reasons has a strength that is greater than the strengths of its members. This
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is the second challenge posed by cases of accrual. If one has answered the first
challenge by providing a suitable representation of the strength of reasons, the
second challenge is to show that this representation allows “adding up” in the
correct cases and deals with the range of possible cases in which “adding up”
does not occur.

2 How Confirmation Theory Meets the Confir-
mation Analogues of These Challenges

An issue analogous to the issue of the accrual of reasons is that sometimes two
pieces of evidence may confirm a theory more than one. But other times they
may not. As it turns out, theories of confirmation that make use of probabilities
are capable of shedding light on this phenomena.11

2.1 Probabilities, Confidences, and Confirmation

To start, we need to state what a probability function is. For our purposes, a
probability function is any function that assigns (real) numbers to (an algebra
of) propositions in a way that obeys the following axioms:

Non-Negativity: Pr(A) ≥ 0 for any A

Normalization: Pr(>) = 1 where > is a logical truth

Finite Additivity: Pr(A∨B) = Pr(A)+Pr(B) for any A,B such that A∧B
is a logical falsehood

Ratio: Pr(A | B) = Pr(A∧B)
Pr(B) when Pr(B) 6= 0

This purely formal definition of a probability function tell us little of interest
on its own.

There are however interesting philosophical arguments that purport to show
that the confidences of a rational agent can be represented by a probability
function. According to these arguments, a rational agent, S, who is very con-
fident, e.g., that it will snow tomorrow can have her confidence represented by
a probability function, PrS , according to which PrS(It will snow tomorrow)
is some number close to one. Rational agents also have conditional confi-
dence. So while S may have very little confidence that it will rain tomorrow
(so PrS(It will rain tomorrow) is low), she may nonetheless be very confident
that it will rain tomorrow conditional on the meteorologist saying that it will
rain tomorrow. This can be represented by:

PrS(It will rain tomorrow | The meteorologist says that it will rain tomorrow)

taking some value close to one. In my stipulative usage, a Bayesian interpreta-
tion of a given probability function is one on which the function is understood
to represent these kinds of states of an agent.

11Thanks Kenny Easwaran for encouraging me to pursue this approach.
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Importantly, Bayesians have arguments that explain why it is sensible to rep-
resent a state of confidence with a probability function. Unfortunately, we do
not have the space to consider even the basic details of these arguments. But it
suffices for now to know the general strategy behind them. The arguments work
by providing a set of axioms characterizing rational confidences that are qualita-
tive (e.g, if you are more confident in A than in B and you are more confidence
in B than in C, then you are more confident in A than in C). They then show
that a particular kind of numerical representation is, in a certain sense, equiva-
lent to this qualitatively characterized notion of rational confidence. This set of
qualitative axioms, then, is the sensible basis of the numerical representation.12

If we have a Bayesian interpretation of a given probability function, we can
say something interesting about confirmation. The idea is that we can determine
whether some E (e.g., that the meteorologist says that it will rain) confirms some
hypothesis H (e.g., that it will rain) for you by comparing your confidence in H
(it raining) with your conditional confidence in H on E (it raining given that
the meteorologist says that it will rain). If you are more confident in H on E
than you are in H, then plausibly E confirms H for you. If we use PrS to
represent S’s confidences, we can state this analysis as follows:

What it is for E to confirm H for S is for PrS(H | E) > PrS(H)

This gives us a theory of when a piece of evidence confirms a hypothesis.
But it does not tell us how much a piece of evidence confirms a hypothesis.

As it turns out, there are different measures that have been proposed to answer
this question. For example, one approach is that we just look at the difference
in your confidence in H and your confidence in H on E.

But for the purposes of our discussion, it proves convenient to focus on
another confirmation measure that will initially seem less straightforward:

Log Likelihood Measure: l(H,E) = log
(

Pr(E|H)
Pr(E|¬H)

)
There is much to be said about this measure and why it is, despite how it might
seem at first, quite intuitive. And I give a brief indication of this in a note.13

12 The historically most prominent arguments supporting the Bayesian view have not fo-
cused on an epistemic state of confidence. Rather they have focused on the idea that a
probability function is one of pair of functions (the other being a utility function) that repre-
sents the preferences of a rational agent. Important representation theorems in this tradition
include Ramsey’s representation theorem (Ramsey 1931 [1923]), Savage’s representation the-
orem (Savage 1972), Jeffrey-Bolker’s representation theorem for evidential decision theory
(Jeffrey 1990), and Armendt’s and Gibbard’s representation theorems for causal decision the-
ory (Armendt 1986, Gibbard 1986). See Joyce 1999 (esp. ch. 7) for useful discussion.

That said, there are also results that can be understood as directly about states of con-
fidence. These are results from the comparative probability tradition initiated by Bruno de
Finetti. Though the first representation theorem in this family is Kraft, Pratt, and Seiden-
berg 1959, these results have come to be closely associated with Dana Scott (Scott 1964) due
to Scott’s elegant way of axiomatizing confidences. See for Konek 2019 for a contemporary
survey that also breaks new ground.

13Let’s start with an example. Suppose you are wondering whether it will rain and con-
sidering consulting the meteorologist. Suppose further your conditional confidence that the
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But the details of how l measures confirmation are not central to this paper.
This is because I am not assuming that l is the only legitimate measure of
confirmation. I discuss other measures (including the one that involves taking
the difference) in §B. The main text focuses on just one measure to allow for a
clearer and more streamlined discussion. And I opt for l as our focus because
it allows us to most easily state the results about “adding up” reasons that are
our main focus.14

Now that we have selected a measure of confirmation to focus on, we can state
the Bayesian analysis of how much confirmation a piece of evidence provides. If
we write, lS for a version of l that is defined using the probability function that
represents S’s confidences, PrS , the idea is that:

What it is for E to confirm H to degree n for S is for lS(H,E) = n

This analysis answers both challenges posed by the confirmation-analog of cases
of accrual.

We can sensibly represent confirmation numerically: Confirmation is under-
stood in terms of a numerical representation of confidences via the equation

meteorologist says that it will rain on it raining is the same as your conditional confidence
that the meteorologist says that it will rain on it not raining. This is a kind of skepticism
about the reliability of the meteorologist. So it is natural to take this to mean that you don’t
regard the meteorologist saying that it will rain as providing confirmation for the claim that
it will rain.

But consider another set of attitudes that you might have about what the meteorologist
says. You might be way more confident that the meteorologist says that it will rains on it
raining than you are confident that the meteorologist says that it will rain on it not raining.
Here you seem to regard the meteorologist saying that it will rain as providing confirmation
of it raining. And it also seems like if you are ten times more confident in the meteorologist
saying that it will rain on it raining than in the meteorologist saying that it will rain on it
not raining, you regard it as pretty good evidence. On the other hand if you are only twice
as confident, you regard it as good evidence but not as good evidence.

We can build on these observations to see what is plausible about l. Let E represent the
claim that the meteorologist says that it will rain. Let H represent the claim that it will rain.
What we have seen is comparing Pr(E | H) to Pr(E | ¬H) tells about how much confirmation
the meteorologist says that it will rain provides for the claim that it will rain. In particular,
it looked plausible to compare the ratio of Pr(E | H) to Pr(E | ¬H) to determine how much
confirmation is provided.

Of course, l also places a log in front of this ratio. The purpose of this is two fold. First,
it is a feature of a log that log(1) = 0. If we are using 0 to represent no confirmation either
way, then this feature of a log is useful. Recall that what the meteorologist says provides no
confirmation either way about it raining when you are equally confident that the meteorologist
says that it will rain on it raining and on it not raining. When you are equally confident in
this way, the relevant ratio is 1. l applies a log to this ratio. So it represent the degree of
confirmation as 0—this correctly tells us that there is no confirmation.

Second, the log keeps track of how many times larger (or smaller) the top term in the ratio
is than the bottom. For example, if we choose a log of base 2, it says that when the top term
is twice as large as the bottom, we represent the confirmation as 1. We can choose whatever
base for the log that we like (so long as it is greater than 1). Which base we choose will change
exactly what numbers we use to represent the strength of confirmation. But otherwise, all
the comparisons between claims about confirmation will, in a certain sense, be the same.

14Since we allow the log to take on any base (greater than 1), l defines a family of measures.
As I have said, I do not assume it is the only legitimate measure but I am sympathetic to the
idea that it is an especially plausible one (see Good 1983 and Fitelson 1999 for discussion).
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defining the confirmation measure. We can sensibly represent confidences nu-
merically because of the Bayesian arguments. This answers the confirmation-
analog of the first challenge.

We can also answer the confirmation-analog of the second challenge. In order
to state the answer, I will make use of the notion of probabilistic independence.
The intuitive idea of A (e.g., the coin came up heads on the second toss) being
independent of B (e.g., the coin came up heads on the first toss) is that your
confidence in A wouldn’t change if you learned B. So more formally, A is
independent of B just in case Pr(A | B) = Pr(A).15 We can also generalize
this idea to say that A is independent of B conditional on C just in case
Pr(A | B ∧ C) = Pr(A | C).

The challenge is answered, then, by the following result: Suppose E is inde-
pendent of E′ are conditional on H and conditional on ¬H. Then, the strength
of confirmation E∧E′ provide for H is the sum of the strength of confirmation E
provides for H and E′ provides for H. In symbols, if the relevant independence
conditions hold:

l(H,E ∧ E′) = l(H,E) + l(H,E′)

I leave the proof of this to a note.16

Indeed, there is a generalization of it (see Claim 1 in n. 16) that applies
even in cases where the relevant independence conditions do not hold. We do
not need to get bogged down by the exact details of the generalization. But
what this illustrate is that l provides a numerical representation and model of
cases in which confirmation “adds up”, doesn’t “add up” at all, and anything in

15As is illustrated here, Bayesians often take your confidence in A conditional on B to
represent a commitment about how you will change your confidence in A on learning (all and
only) B (for certain).

16It is easiest to prove this by first proving a slightly more general result. If we define

l|E(H,E′) = log
(

Pr(E′|H∧E)
Pr(E′|¬H∧E)

)
, then the following result is known to hold:

Claim 1. l(H,E ∧ E′) = l(H,E) + l|E(H,E′)

Proof of Claim 1.

l(H,E) + l|E(H,E′) = log

(
Pr(E | H)

Pr(E | ¬H)

)
+ log

(
Pr(E′ | H ∧ E)

Pr(E′ | ¬H ∧ E)

)
= log

(
Pr(E | H)Pr(E′ | H ∧ E)

Pr(E | ¬H)Pr(Pr(E′ | ¬H ∧ E)

)
= log

(
Pr(E ∧ E′ | H)

Pr(E ∧ E′ | ¬H)

)
= l(H,E ∧ E′)

Claim 1 has the following corollary:

Corollary 1.1. l(H,E ∧ E′) = l(H,E) + l(H,E′) if l(H,E′) = l|E(H,E′)

Turn now to the additivity claim in the main text. Assume that the relevant independence
conditions hold so that Pr(E′ | H ∧ E) = Pr(E′ | H) and that Pr(E′ | ¬H ∧ E) = Pr(E′ |
¬H). In this setting, l|E(H,E′) = l(H,E′). So given our corollary, the additivity claim in the
main text holds.
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between. As I alluded to before, similar results hold for several other measures
of confirmation (§B).

Of course, there is much more that could be said about the resources of
Bayesian theories of evidence to analyze different cases. And there are certain
potential problems that have been raised for these theories (e.g., old evidence,
logical learning, new theories). A full investigation of this subject matter is
worthy of (and has been given) monograph-length treatment. But hopefully I
have conveyed, at least in outline, why Bayesian confirmation theory is relevant
to our topic: that theory is a model of how two pieces of evidence for given
hypothesis can interact that answers the confirmation analog of both of our
challenges. The question now is how this idea can be adapted to tell us about
reasons.

2.2 A Bayesian Reduction of Reasons for Belief to Confi-
dences

And it is not hard to see how we might adapt the theory to give an analysis of
reasons. Suppose PrS is a representation of S’s confidences, then we can say:

• What it is for P to be a reason for S to believe Q is for PrS(Q | P ) >
PrS(Q)

• What it is for P to be a reason for S to believe Q of strength n is for
lS(Q,P ) = n

Call this the Bayesian Simple Theory of Reasons. It analyzes reasons for belief
in terms of the structure of an agent’s rational confidences.17,18

This theory provides a sensible basis for numerically representing the strength
of reasons by reducing this to a numerical representation of confidences that is
known to be sensible (due to the Bayesian arguments). This answers the first
challenge posed by cases of accrual.

17This analysis is not uncontroversial. As an editor at Ethics pointed out to me, Foley
1991 gives a putative counterexample where if one believes what the evidence supports, this
changes what the evidence is. John Hawthorne has also suggested several counterexamples.
The one that concerns me the most is a case where E is the proposition that H has objective
chance, e.g, .4 but nonetheless E raises the probability of H because H’s prior probability
is lower than .4. Though I cannot discuss the issue fully, I believe that it is not devastating
to bite the bullet in either case. In the first case, some comfort can be provided by ideas
philosophers have developed in response to the wrong kind of reasons problems. In the second
case, some comfort is provided by looking at a different feature of the force of reasons. In
particular, the feature of a collection of reasons that concerns whether what is currently most
supported my one’s reasons is liable to change (a feature sometimes called “resilience” or
“weight” in the literature on confirmation, see Joyce 2005: §3-5 for an introduction.). In any
case, our focus is on clarifying the attractive features of probabilistic approaches rather than
answering these objections.

18There are two noteworthy complications for this analysis. First, it does not require
reasons to be truths or known. But arguably, reasons have these features. We can deal with
this complication by adding this as an additional condition of the analysis (see, however, n.
37 below for how this issue arises for non-reductive approaches). Second, there is a general
difficulty involving if and when to invoke background bodies of information in applying the
Bayesian analysis of confirmation that also will arise for reasons.
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Turning now to the second challenge, return to the example of John and
Bill who are rarely found together. There we said that John is going to the
party is a reason to believe exactly one of John or Bill will be at the party
and that Bill is going to the party is a reason to believe exactly one of John
or Bill will be at the party. But together these two do not provide a reason to
believe that exactly one of John or Bill will be at the party. The approach we
have been considering suggests that cases like this arise only when the relevant
independence condition that we mentioned does not hold.

That independence condition is that the two pieces of evidence, E and E′, are
independent conditional on H and conditional on ¬H. And recall, in symbols
the idea that E′ is independent of E conditional on H can be written as Pr(E′ |
E ∧H) = Pr(E′ | H). But in the example of John and Bill this independence
condition does not hold. To see this, begin by noting that

0 = PrS(Bill goes to the party |
John goes to the party ∧ Exactly one of John and Bill go to the party)

But on the other hand:

0 < PrS(Bill goes to the party |
Exactly one of John and Bill go to the party)

Thus, our approach (correctly) does not tell us to expect that the strength
of the accrual in this case is the sum of the strengths of the individual reasons.

What’s more, depending on the details of how we spell the case out, it may
be that the example concerning the color of the feathers of a certain bird satisfies
the independence condition. And therefore, we can explain why the accrual is
stronger than the individual reasons in this case.

The main problem for the Bayesian Simple Theory of Reasons is that it is
not clear how to generalize it so that we can have an account of reasons for
action.

3 Some Reductive Theories

We can do better by adopting certain kinds of reductive theories. First, I
illustrate this by discussing the reductive theory of Kearns and Star 2009 as it
is easy to see how their theory fits with a probabilistic approach. I then isolate
the features of their theory that make it such a good fit and describe alternative
theories that are also good fits with the probabilistic model. As it turns out,
many theories can be regimented so that they have a probabilistic structure.

3.1 Kearns and Star’s Reduction of Reasons to Evidence

Kearns and Star claim that reasons for action, belief, and other attitudes can be
understood in terms of evidence. In particular, they believe a reason for action
is evidence that the act ought to be done, a reason for belief is evidence that
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the agent ought to have the belief, and a reason for any other attitude is just
evidence that the agent ought to have that attitude.

Kearns and Star’s view need not be committed to the Bayesian picture of
confirmation But they do believe that one of the best features of their theory
is that it provides an account of the weight of reasons in terms of the weight of
evidence.19

So let the Bayesian Kearns and Star Theory of Reasons be the theory that
reasons are evidence of ‘ought’s and that evidence is to be understood in terms
of Bayesian confirmation (i.e., in terms of the structure of a fully rational agents
confidences). This allows us to straightforwardly apply our work from §2 to give
an account of reasons for belief and action. If P is a reason for S to φ and Q is
a reason for S to φ (where φ may be an act or an attitude), the Kearns and Star
picture claims P is evidence that S ought to φ and Q is evidence that S ought
to φ. The Bayesian picture tells us that if PrS(Q | P ∧S ought to φ) = PrS(Q |
S ought to φ) and PrS(Q | P ∧¬S ought to φ) = PrS(Q | ¬S ought to φ), then
the strength of the accrual is the sum of the strengths of each individual reason
(the picture also tell us what the strength of the individual reasons are).

Thus, by combining Kearns and Star’s view and the Bayesian theory of
confirmation, we get a reduction of reasons that has a probabilistic structure.
This answers the twin challenges posed by cases of accrual.

One limitation of this approach is that it is not obvious whether Kearns and
Star’s theory is itself is compatible with the idea that what we ought to do is
explained by reasons—Kearns and Star appear to explain facts about reasons
in terms of prior facts about ‘ought’s and evidence. Thus, it may not fully
vindicate the explanatory ambitions of the idea that reasons explain what we
ought to do.20,21

3.2 The Structure of the Reduction and Other Reductive
Theories

Luckily, even if Kearns and Star’s approach does not get us everything that we
might want, it teaches us how to find other theories that might get us what we
want.22 The Bayesian Simple Theory of Reasons and the Bayesian Kearns and
Star Theory of Reasons teach us is that there are two important questions to
consider in order to develop a probabilistic analysis of reasons:

19Kearns and Star have written many other articles that touch on our topic in addition
to Kearns and Star 2009 (e.g., Kearns and Star 2008, Kearns and Star 2013). Kearns 2016
(especially his §2.2.1 and §3.2.5) explicitly discusses our topic and advocates the basic idea of
the view here (even if not all of the details).

20The account would be adequate for those who are merely seeking a theory of the system-
atic interaction among reasons in these cases.

21Of course, Kearns and Star’s view has also been subject to serious critical scrutiny. See,
for example, Brunero 2009, Brunero 2018: §14.2-14.4, Hawthorne and Magidor 2018: §5.4,
Schmidt 2017. I do not discuss these important objections here but instead focus on developing
the attractive feature of probabilistic approaches.

22I thank Derek Baker for the kernel of this idea.

13



Q1 : What does a probability function represent?23

Q2 : What “class of hypotheses” determines what our reasons are
and how do these hypotheses determine our reasons?24

The Bayesian Simple Theory of Reasons and the Bayesian Kearns and Star
Theory of Reasons agree on their answer to Q1 : probabilities are representa-
tions of the confidences of fully rational agents. This is what makes them both
Bayesian.

The theories differ, however, on their response to Q2. To get the feel of what
I have in mind by the “class of hypotheses”, consider what each theory would
make of, for example, the fact that

Pr(It will rain tomorrow |
The weather report indicates that it rain will rain tomorrow)

> Pr(It will rain tomorrow)

According to the Bayesian Simple Theory of Reasons this fact tells us that the
weather report is a reason to believe that it will rain tomorrow. According to the
Bayesian Kearns and Star Theory of Reasons, this fact does not immediately
tell us anything about our reasons. Instead, according to this theory, we must
consider

Pr(Y ou ought to believe it will rain tomorrow |
The weather report indicates that it will rain tomorrow)

> Pr(Y ou ought to believe it will rain tomorrow)

in order to determine what your reasons are.
Q2, then, is about which claims of the form Pr( · | E) > Pr(·) determine

what our reasons are. The Bayesian Simple Theory of Reasons takes any sub-
stitution for · to determine what our reasons are. And it takes these values to
be the contents of beliefs that E gives us a reason to have.25

On the other hand, The Bayesian Kearns and Star Theory of Reasons only
takes substitutions that express claims about what we ought to do determine
what our reasons are. And it takes the attitude or act that is “supported”26

23Of course, this question must be understood relative to our purpose of understanding of
reasons (similarly for evaluating answers to this question).

24Thank to a referee for helping me to see that second conjunct is also relevant.
25Example:

Pr(It will rain tomorrow |
The weather report indicates that it will rain tomorrow)

> Pr(It will rain tomorrow)

tell us there is a reason in support of believing that it will rain tomorrow.
26I use the language of an act or attitude “supported” by an ‘ought’-claim (rather than a

more precise term such as prejacent) as a fudge word to gloss over certain complexities related
to the logical form of ‘ought’.
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by this ‘ought’-claim to be what E gives us a reason to have.27 Thus, the two
theories answer Q2 differently.

Seeing this, gives us two ways of generalizing our picture. One way is to
answer Q1 differently. That is, we can give up on the Bayesianism shared by
both of these theories. Another way is to answer Q2 differently. So we have a
two-dimensional array of options for generalizing.

It is easy to see what some alternative answers to Q2 might be. We may
consider hypotheses involving normative notions other then ‘ought’. For exam-
ple, someone who is attracted to value-based views in normative theory might
answer Q2 by claiming only hypotheses about what is good or best are relevant
for determining our reasons. Other views immediately come to mind as well:
views that restrict the class of hypotheses to hypotheses about what is rational,
what is fitting, etc. We may also consider answers to Q2 that restrict attention
to hypotheses concerning non-normative notions such as what satisfies desire,
what causes pleasure, etc.

Each of these suggestions corresponds to a major tradition in moral philos-
ophy and, therefore, there are epicycles to consider. For instance, there are a
variety of desire-based or Humean views: some concern first-order desires, oth-
ers higher-order desires; some concern actual desires, others hypothetical desires
(either non-normatively or normatively characterized). Each of these views can
be thought of as determining an answer to Q2.28

So this structure is able to accommodate many different views. This suggests
that probabilistic reductions are ecumenical in a certain theoretically desirable
sense. That said, this reduction is not trivial. It places constraints on how each
of these views must be developed by committing them to a certain account of
the strength of reasons. We have seen how this account is desirable for the
purpose of giving a plausible theory of cases of accrual. But there may be other
kinds of cases for which it creates problems.

For example, in order to get plausible results in certain case Schroeder 2007
(a Humean) is committed to rejecting the idea that the strength of a reason pro-
vided by a desire is determined by how strong that desire is. This commitment

27Example:

Pr(Y ou ought to believe it will rain tomorrow |
The weather report indicates that it will rain tomorrow)

> Pr(Y ou ought to believe it will rain tomorrow)

tells us that there is a reason in support of believing that it will rain tomorrow.
28More broadly still, the theory, e.g., that the “class of hypotheses” concerns our first-order

desires can be developed in two different ways according to how these hypotheses determine
our reasons. Suppose for example:

Pr(Y ou desire to go to the store |
There is a sale at the store)

> Pr(Y ou desire to go to the store)

One way of developing the theory claims that this fact makes it the case that there is a reason
for you to go to the store. Another says that it makes it the case that there is reason for you
to desire to go to the store.
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may not be compatible with implementing his view in the present probabilistic
setting. Determining whether it is is beyond the scope of this paper, but the
answer is relevant to assessing the merits of the Humean view. Conversely, if
the Humean theory is otherwise sufficiently powerful but is implausible when
probabilistically regimented, this would cast doubt on the reduction proposed
here.

Let us turn now to Q1, the question of what a probability function repre-
sents. I have been adopting the Bayesian answer that probabilities are numerical
representations of the confidences of fully rational agents. This idea itself is un-
der specified. For instance, it does not tell us whether full rationality requires
merely satisfy the basic axioms or whether it requires further properties as well
(e.g., perhaps rational confidences must validate an appropriately formulated
principle of indifference).

What’s more, the idea that probabilities are numerical representations of
confidences is often used as a label for a number of distinct ideas; indeed, this is
how I have used it so far. Most famously, some believe that probabilities are one
of a pair of numerical representations (the other representation being a utility
function) of a rational agents preferences (see n. 12).

This view is distinct from the view that probabilities are numerical repre-
sentations of an agent’s confidences where confidences are understood to be a
substantive epistemic state.29 And it is distinct from other closely related views
on which probabilities are numerical representations of evidential support or
representations of plausibility relations.30

There are still other answers to Q1 that are more distant from these. There
are views which claim that probabilities are numerical representations of certain
logical or semantic features of propositions. There are views which claim prob-
abilities are numerical representations of frequencies or propensities. And there
are views which claim probabilities are numerical representations of the notion
of chance given by our best theories. All of these answers to Q1 are historically
prominent proposal about how to interpret probabilities.31 Many of them are
supported by arguments for their claim that probabilities are sensible numerical
representation of the whatever quantity or ordering the view focuses on.32

There are additionally various applications of probabilities. For example,
probabilities have been used to study the notion of promotion as part of an
analysis of reasons in terms of promoting ends or values. That said, this liter-
ature has a somewhat complex relationship with the ideas in this paper that I
discuss in a note.33 Probabilities have also been used to study notion of causa-

29See once again n. 12. See also Meachem and Weisberg 2011 for an important discussion
related to these points.

30See Williamson 2000: ch. 10 for an important discussion of the “evidential” interpretation
of probability. Discussion concerning the use of probabilities to represent plausibility centers
around Cox’s theorem (Cox 1946), see Jaynes 2003 for an important early discussion and
Colyvan 2004 for an important more recent discussion.

31Some of these interpretations may overlap with interpretation in the previous paragraph
(e.g., the frequency interpretation has connections to Cox’s theorem).

32See Hájek 2012 for a survey.
33Early discussion of this proposal include Finlay 2006 and Schroeder 2007 and more recent
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tion.34

Some of these applications are committed to reducing probabilities to ratio-
nal confidences of agents. But other are non-committal and perhaps suggest
that probabilities may be directly used to numerically represent promotion or
causation. Similar remarks may apply to other notions such as strength of ex-
planation or strength of motivation. This last class of example (promotion,
causation, motivation, and explanation) correspond to familiar ideas in ethics.
For example, consequentialism is concerned with promoting values.

Once again, we see that a variety of different views are compatible with
the probabilistic reduction of reasons. But, as before, we should not overstate
this point. Choices about which way to answer Q1 are not trivial. First,
it is not trivial to show that a certain mathematical function is a numerical
representation of some important thing in the world. We have strong (albeit

discussions include Coates 2013, Snedegar 2014, Sharadin 2015, Behrends and DiPaolo 2016,
and Lin 2018.

This literature focuses on analyses according to which, roughly, what it is for P to be a
reason to do X is for P to explain why doing X probabilistically promotes of some end (and the
discussion is primarily about how to understand this probabilistic promotion). By contrast,
the approached developed here does not make use of the the idea of a reason explaining a
probability fact. Instead, it concerns when the reason raises the probability of some claim
(e.g., doing X is good).

There are ways of bringing these approaches closer together. The main explicit proposal
that I am aware is floated by (but not strictly endorsed by) Evers 2013: §4. This approach
suggests providing a reason involves (among other things) the action together with background
information raising the probability of an end. Evers suggests including the reason in the
background information. Nonetheless, this approach does not quite fit the mold of this paper:
First, it require supplementation with a notion of utility that we are not making use of
here (though we do discuss this later in §4.2.2). Second, it appears to rely on a Bayesian
interpretation of the probability function rather that interpreting probability raising directly
in terms of promotion as suggested in the text.

But it is, in any case, worthwhile to consider probabilistic promotion approaches even if
they don’t fit the mold of our discussion here. What needs to be shown is that they can make
use of the confirmation-theoretic tools described above to give an account of accrual. The
difference between these approaches and the present approach makes it unclear whether and
how they can.

Another related literature concerns the conditions under which reasons for ends transmit
to reasons for means. Bedke 2013, Kolodny 2018, and Stegenga 2013 approach this question
within a probabilistic framework. These approaches too does not easily fit with our discussion
for many of the same reasons.

An important additional difference is that these approaches are primarily concerned with
when a particular reason gives rise to another reason and the strength of that reason. There
is no immediate account of how reasons combine. Bedke 2013 notes in his appendix that
complications arise once we take into account how multiple reasons combine. That said,
despite these differences, Stegenga 2013’s approach is especially closely related in spirit to
the approach discussed in this paper (due to his use of tools from confirmation theory and
probabilistic approaches to causation).

Thanks to the associate editor at Ethics for pushing me to provide greater guidance about
the relationship between the ideas in this paper and these two important topics.

34Probabilistic theories of causation come in two rough types: simple probability raising
approaches and causal modeling approaches. Important work in the first tradition includes
Suppes 1970, Cartwright 1979, and Skyrms 1980. Important work in the second tradition in-
cludes Spirtes, Glymour, and Scheines 2000 and Pearl 2009. See Hitchcock 2018 and Hitchcock
2019 for a contemporary survey.
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not indubitable) arguments that probabilities can numerically represent certain
things (e.g, preferences or frequencies). But for some of the proposals above we
do not yet have such rigorous arguments. So these arguments must be developed
in order to show that the proposal fully answers the first challenge posed by cases
of accrual.

Second, it may be that a probalistically regimented theory has consequences
for what reasons there are that cast doubt on a given reductive theory. Or
conversely, if most plausible reductive theories have implausible commitments
when regimented probabilistically, this may cast doubt on the reduction.

All of these issues require more detailed study than can be provided here.
But if these theories can make peace with a probabilistic reduction of reasons,
they will have a powerful account of cases of accrual. Since cases of accrual are
mundane, they, in my view, are part of the core set of cases any adequate theory
must account for. An important next step for one who accepts some particular
theory of reasons, then, is to consider in detail whether their preferred view is
plausible when probabilistically regimented.

4 Some Non-Reductive Theories

So far we have considered restrictions on the class of hypotheses (answers to
Q2 ) and interpretations of probabilities (answers to Q1 ). All of the ideas that
we have looked at are reductive in some way: Each analyzes what a reason is
in terms of some non-reasons-based interpretation of a what a probability is
(e.g., an interpretation in terms of rational confidences). Some are, in addition,
reductive because they rely on a prior notion of value, desire-satisfaction, or the
like.

Is it possible to use these probabilistic tools without reducing reasons to
confidences or anything else from the list of options for interpreting probabilities
that we have discussed?35 In this section, we explore (and show) how this is
possible for both reasons for belief and reasons for action. We begin with reasons
for belief.

4.1 Probabilities for Non-Reductive Theories of Reasons
for Belief

It helps to build up to things slowly. Recall the Bayesian Simple Theory of
Reasons. Where PrS is a representation of a rational agent S’s confidence, it
claims:

• What it is for P to be a reason for S to believe Q is for PrS(Q | P ) >
PrS(Q)

35I thank a referee and Jamie Dreier at Ethics for not being satisfied with the original
approach that I took to this question and pushing me to do better. Various other people also
suggested that I need to improve on my original approach. Of those, I recall Richard Bradley,
Ángel Pinillos, and Michael Titelbaum.
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• What it is for P to be a reason for S to believe Q of strength n is for
lS(Q,P ) = n

This view analyzes reasons for belief in terms of rational confidences.
That said, if we no longer commit to this theory’s claim about what prob-

abilities represent, the following related theses are something a non-reductivist
might hope to accept:

• P is a reason for S to believe Q iff PrS(Q | P ) > PrS(Q)

• P is a reason for S to believe Q of strength n iff lS(Q,P ) = n

Of course, the meaning of these claims is now unclear because we are no longer
entitled to the Bayesian understanding of the probability terms on the right
hand side of them.

We can make some progress toward clarifying the meaning of these claims
in a non-reductivist friendly way if we take the left hand side to give us an
understanding of the probability terms on the right hand side:

• What it is for PrS(Q | P ) > PrS(Q) is for P to be a reason for S to
believe Q

• What it is for lS(Q,P ) = n is for P to be a reason for S to believe Q of
strength n

And, indeed, this is the basic idea that I wish to propose on behalf of non-
reductivists—non-reductivists are entitled to the full suite of probabilistic tools
because probabilities can be analyzed in terms of reasons.36,37

36A different idea (suggested to me by Jiji Zhang) may be to take the strength of reasons
to determine conditional probabilities directly in a way that suggests the following claims:

• What it is for PrS(Q | P ) > τ is for P to be a reason for S to believe Q

• What it is for PrS(Q | P ) = τ is for P to not be a reason S to believe Q and not a
reason for S to believe ¬Q

• What it is for PrS(Q | P ) < τ is for P to be a reason S to believe ¬Q
where τ is some (perhaps contextually determined) threshold. The trouble with this idea
is that a reason for belief requires that P raise the probability of Q relative to its prior
probability rather than simply make the probability of Q higher than some threshold. The
difference between this threshold account and an account that requires probability raising
has been familiar at least since Carnap (see especially the “Preface to the Second Edition”
in Carnap 1962) distinguished between the “firmness” notion of confirmation (the threshold
account) and the “increased firmness” notion of confirmation (the probability raising account).

We can illustrate the importance of this point in different ways. Here is one: Suppose P
and Q are probabilistically independent. Plausibly in a case like this P does not provide a
reason to believe Q. But notice that, so long as τ is less than 1, there can always be cases
where PrS(Q | P ) = PrS(Q) > τ .

See Titelbaum forthcoming: ch. 6 (especially §2) for a discussion of the contemporary state
of play on this issue and for similar arguments.

37One complication is that this non-reductive approach is actually best thought of as a
direct analysis of something like what Scanlon 2014 calls relation R (cf. what Horty 2012
(especially 16-7 and 42-3) calls generalizations or defeasible principles). This is a non-reductive
relation between propositions that is supposed to be exactly like the reason-relation except
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Of course, we must say much more in order to show that this proposal works.
The remainder of §4.1 is dedicated to this task. That said, some readers may
prefer to take my word for it that the proposal can be made to work. These
readers are welcome to skip to the last two paragraphs before §4.2 for a summary
of what this account says about the two challenges posed by cases of accrual.

4.1.1 How the Proposal Needs to Be Developed

To start, the non-reductivist is entitled to take for granted various qualitative
claims such as P is (or is not) a reason for S to believe Q. Given this, they will be
able to determine the truth of inequalities of of the form PrS(Q | P ) > PrS(Q).
But there are many other claims about probabilities that they do not yet have an
analysis of. And these other claims about probabilities play a role in an account
of exactly how strong reasons are and in stating the independence conditions
under which reasons “add up”.

Suppose, then, that the non-reductivist also helps themselves to quantitative
claims like P is a reason for S to believe Q of strength n. This is a strong
substantive assumption. Indeed, the first challenge posed by cases of accrual
was to provide a justification for a numerical representation of strengths of
reasons. The assumption that we are considering simply posits that somehow
the non-reductivist has provided such a justification. Nonetheless, let us simply
grant this for now.

Even still, important questions remain. First, not all numerical represen-
tations will work. The non-reductivist needs a numerical representation that
matches lS . This is not trivial because lS is a function with specific properties,
the properties of a log of a ratio of two conditional probabilities. Moreover, it
is not open to the non-reductivist to overcome this difficulty by stipulating that
the numerical representation of the strength of reasons is lS as it is typically
defined. lS is typical defined in terms of probabilities. The non-reductivist, by
contrast, wishes to define probabilities in terms of reasons. So they require a
scheme for numerically representing the strengths of reasons that matches lS
but is defined without mentioning probabilities.

Second, even if we have such a numerical representation, we are not yet
entitled to say that we have an analysis of probabilities. This is because it is
not obvious that the values of lS suffice to determine a probability function. If
they are not sufficient, then even if we have a representation of the strength of
reasons that matches lS , we would still not have an analysis of the probability
function in terms of reasons.

As far as I know, these issues have not been discussed by confirmation theo-
rists.38 This is not especially surprising because confirmation theorists typically

that the thing that is the reason can fail to be true. I follow Scanlon in taking this to be
an instance of the non-reductive approach to reasons (and an analysis of what are typically
called reasons can be had by adding that the thing that is the reason is true). But this issue
deserves further investigation.

38Thanks to Kenny Easwaran, Branden Fitelson, and Michael Titelbaum for helping me
with the research that has made me more confident (though still not certain) that this question
had not been answered in the literature.
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take the notion of probability to be more basic than the notion of confirmation.
But in the context of developing a non-reductive account of reasons for belief,
this is not an option. So we must face up to these questions.

Thankfully, both of these questions can be answered: We can axiomatically
define a reasons weighing function without mentioning probability and prove
that this reasons weighing function matches lS . We can also use the reasons
weighing function to define another function and prove that this function is a
probability function—indeed, it is the very probability function involved in the
lS that matches our reasons weighing function.

The full development of these ideas is some what technical and, as of this
time, the proofs that I have are not compact. So I confine them to §A. But
what I wish to do next is sketch at least the basic approach. As mentioned
earlier, readers who would prefer to take my word for it may skip to the last
two paragraphs before §4.2.

4.1.2 Sketch of the Proposal

The approach is this: Bayesian Simple Theory of Reasons entails various claims
about the relations among the strengths of reasons. Instead of taking these
claims to be a consequence of accepting this reductive theory, the non-reductivist
will take these claims to be axioms in a non-reductive theory of reasons. Since
the reductivist is committed to these claims, they cannot directly object to the
non-reductivist’s axioms.39

More exactly, we will show that any reductivist who accepts the Log like-
lihood measure of confirmation, l, in a form that claims that l(Q,P ) tells us
how strong of a reason P is to believe Q will be committed to accepting the
claims that we take as axioms below. Of course, some reductivists might reject
this particular measure of confirmation. Though I believe that similar results
can be established for alternative measures, we do not have the space here to
discuss this issue.40 So though I will speak more loosely at times below, the key
idea of the approach is that the non-reductivist takes as axioms claims that are
endorsed by this particular group of reductivists.

Of course, the trick is to identify a set of axioms that suffice to get the non-
reductivist what they want. Let’s look at how we might do this. We begin by
simplify things a bit. Let us keep reference to the agent whose reasons we are
discussing implicit. So we now write Pr and l instead of PrS and lS . And let

39Of course, they might still object indirectly on the grounds of simplicity, elegance, etc.
Or, as I point out later, on the grounds that there is no qualitative structure that has been
shown to provide a basis for this numerical representation. This, as I emphasize later, is an
important unresolved challenge for the non-reductivist.

40More exactly, I believe, based on some work in progress, that similar results can be
established for the measures that exhibit the kind of conditional additivity discussed in §B. I
have not explored whether similar results can be shown for the measures that do not exhibit
this kind of conditional additivity. And of course, some reductivists answer Q2 so it is the
degree to which P confirms, e.g., the claim that you ought to believe Q that determines the
strength of reason P provides to believe Q. I do not see how to develop a non-reductivist
approach that mirrors these approaches.
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us assume that we are only considering probability functions that are regular in
the sense that if P is not a contradiction, then Pr(P ) 6= 0. This is an important
limitation but we will work within this more restricted setting in what follows.41

Next recall how l is defined:

l(H,E) = log

(
Pr(E | H)

Pr(E | ¬H)

)
This definition leaves implicit the fact that a log has a certain base. But for our
current purposes, we will need to be explicit about this:

lb(H,E) = logb

(
Pr(E | H)

Pr(E | ¬H)

)
Accordingly, the reasons weighing function to be defined will strictly speaking
be a function that is relativized to a base.42 So we will write this function as
rb. We will discuss only three of the axioms defining rb here. But this will be
enough to give a sense of the general approach.43,44

The axioms that we will discuss primarily concern only certain pairs of propo-
sitions, (H,E). Let us say a pair (H,E) is extreme just in case E entails H
or E entails ¬H. The first axiom concerns those pairs (H,E) where E is the
tautology, >, and (H,E) is not extreme. In this setting, it can be shown that:

lb(H,>) = logb(1) = 0

This just means that > is not a reason for believing H and not a reason against
believing H (in cases where (H,>) is not extreme).

Our strategy, then, tells us that the non-reductivist should take this claim
to be an axiom about reasons rather than a consequence of a reductive account:

No Reason: if (H,>) is not extreme,

rb(H,>) = logb(1) = 0

The next two axioms concerns cases where (H,E) is not extreme and E is not
the tautology. We say these are cases where (H,E) is not trivial.

41This limitation is discussed in a bit more detail in §A.2 and §A.4. But nothing in this
paper confronts the important philosophical issues about regularity (see Easwaran 2014 for
discussion).

42Note, however, that we can map measures that differ only in choice of base onto each
other using the “change of base” formula:

logb(a) =
logd(a)

logd(b)

43There are in total nine axioms that define rb. The footnotes mention some of the axioms
not discussed in the main text of §4.1.2

44The first axiom governing this function is about this base:

Base Propriety: b > 1

This claim (which is implicitly assumed by those who accept lb) ensures that as the term
inside the log grows so does lb.
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Indeed, we will focus on cases where (H,E) is not trivial and is such that H
entails E. It can be shown for such (H,E) that:

lb(H,E) > logb(1) = 0

This just means that if H entails E (and (H,E) is not trivial), then E is a
reason for believing H.

Our strategy, then, tells us that the non-reductivist should take this claim
to be an axiom about reasons rather than a consequence of a reductive account:

Entailed Reason: if (H,E) is not trivial and H entails E,

rb(H,E) > logb(1) = 0

Since we have said that rb(H,>) = logb(1) = 0, another way to think of this
idea is that it is saying when H entails E and (H,E) is not trivial, E is a better
reason to believe H than > is a reason to believe H.

The last axiom that we will discuss in §4.1.2 is more complex. Seeing how
we arrive at this more complex axiom will reveal a key idea involved in finding
the other more subtle axioms described in §A.1.

We begin by noting the following fact (Lemma 1.4.1 which I prove in §A.3.2)
about cases where (H,E) is not trivial and H entails E:

lb(H,E) = logb

(
Pr(¬E)

Pr(E ∧ ¬H)
+ 1

)
In the context of the previous claims, what this tell us is that the extent to
which E provides a better reason for H than > provides a reason for H is a

function of the ratio Pr(¬E)
Pr(E∧¬H) .

We can make use of this fact together with basic facts about the mathemat-
ical relations among ratios to discover other connections among reasons. For
example, as a

b grows larger, b
a grows smaller and vice-versa. So if we can find a

reason that is related to:
Pr(E ∧ ¬H)

Pr(¬E)

as rb(H,E) is related to
Pr(¬E)

Pr(E ∧ ¬H)

we will have discovered an interesting connection between two reason. And it
turns out, rb(H,¬E ∨H) is such a reason (in cases where (H,E) is not trivial
and H entails E). In particular, once we recall that blogb(x) = x, with a little
work it can be shown that:

lb(H,¬E ∨H) = logb

(
blb(H,E)

blb(H,E) − 1

)
What this describes is a particular negative correlation between two reasons.
And, indeed, the strength of the reason E provides to believe H is intuitively
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negatively correlated with the strength of the reason ¬E∨H provides to believe
H. In any case, whether immediately intuitively plausible or not, this is a
generalization entailed by the reductive approach.

So the strategy we are pursuing tell us to take this as an axiom:

Negatively Correlated Reasons: if (H,E) is not trivial and H entails
E,

rb(H,¬E ∨H) = logb

(
brb(H,E)

brb(H,E) − 1

)
Obviously, this axioms is more complicated and imposes stronger constraints on
what a reasons weighing function is like.45 But recall that the non-reductivist
has a standing defense of their axioms: the axioms are claims that reductivist
must accept. The reductivist and non-reductivist only differ about whether this
claim is taken to be axiomatic or to be a consequence of a reduction.

What I do in §A is develop a different notation for discussing cases where
(H,E) is non-trivial that lets us quickly discover further correlations among the
strengths of reasons.46 We then take the claims that describe these correlations
to be axioms.47 In addition to these axioms, we need one straightforward axiom
to cover the cases where (H,E) is extreme. Overall, the axioms vary in com-
plexity from very simple to even more complicated than Negatively Correlated
Reasons. But each one is, on reflection, plausible and, in any case, is a claim
that the non-reductivist’s opponent is committed to.

My hope is that this gives a sense of how the idea of defining a reasons
weighing function without mentioning probabilities can work. The precise and
complete statement of all the axioms that define a reasons weighing function,
rb, is given in Definition 1 in §A.1. Though I will not discuss the details here,
I also show there how to define (Definition 2) a function, frb , based on rb and
prove that it is a probability function.48 The main result, then, that we prove

45Those who read §A will notice that many of the axioms include the term −1 and +1. We
saw that for (H,E) that is not trivial and is such that H entails E, E is a reason to believe
H of strength n > rb(H,>) = logb(1). Conceptually then, these +1 and −1 terms function
to isolate the extent to which a given reason is better than the reason provided by > for H.
And the axioms work by relating the extent to which one reason is better than > with the
extent to which another reason is better than >.

46Accordingly, some of axioms and claims above are give in different notation.
47Negatively Correlated Reasons relies on the relationship between a

b
and b

a
. We discover

a further axiom (Positively Correlated Reasons) that claims there is a positive correlation
between reasons based on the fact that a

c
= a

b
b
c
. Another axiom (Aggregative Reasons) claims

there is a summation like correlation between reasons based on the fact that a1+a2+···+an
b

=
a1
b

+ a2
b

+ · · ·+ an
b

. A third axiom (Factored Reasons) claims there is a complex correlation
among reasons based on the fact that:

a
b
c
b

=
a
d

d
b

c
d′

d′
b

A fourth axiom (Complimentary Reasons) relies on a property of logs’s and ratios together,
namely that log(a

b
) = −log( b

a
).

48The basic idea, once again, makes use of the fact that the value of brb(H,E) for non-trivial
(H,E) such that H entails E is 1 plus the ratio of two probabilities. In turns out that we can
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in detail in §A is the following:

Theorem 1: For any reason weighing function, rb, (i) frb is a prob-
ability function and (ii) for any propositions H,E either

rb(H,E) = logb

(
frb(E | H)

frb(E | ¬H)

)
or rb(H,E) and logb

(
frb (E|H)

frb (E|¬H)

)
are both undefined.

This proof in turn contains the materials to show this second important result:

Theorem 2: For any regular probability function, Pr, there is a
reasons weighing function, rb, such that (i) for any proposition P ,
Pr(P ) = frb(P ) and (ii) for any propositions H,E, either

logb

(
Pr(E | H)

Pr(E | ¬H)

)
= rb(H,E)

or logb

(
Pr(E|H)
Pr(E|¬H)

)
and rb(H,E) are both undefined.

These results demonstrate how non-reductive theories of reasons can earn the
right to make use of probabilistic tools.

This allows the non-reductivist to answer the second challenge posed by cases
of accural—the challenge of showing that given a numerical representation of
the strengths of reasons, this representation allows us to distinguish cases where
reasons “add up” from cases where they don’t “add up” at all and everything in
between. That said, we have not fully responded to the first challenge because
we have simply assumed that the strength of reasons can be numerically rep-
resented. While we have seen why this particular numerical representation is
plausible and that reductivists cannot deny the claims that we take as axioms,
we have not provided a full justification for it. To do this, we must provide a set
of plausible qualitative axioms and show that the reasons weighing function is
a numerical representation of these qualitative features. While I am optimistic
that the relevant qualitative axioms can be discovered, this is a non-trivial task.

I conclude therefore that while non-reductive accounts of reasons for belief
answer the second challenge posed by cases of accrual, they have yet to an-
swer the first challenge. In this respect, Bayesian and some (but not all) other
reductive approaches to reasons have an advantage as of now.

4.2 Probabilities for Non-Reductive Theories of Reasons
for Action

Given our success in the case of reasons for belief, it is reasonable to hope that
an analogous approach to reasons for action will succeed. But there is obstacle
to this approach.

use brb(H,E)−1 to fix the ratios of the probabilities of all the maximally specific propositions.
Since the probability of the maximally specific propositions sums to 1, we can then take frb
to be that function which respects these ratios and sums to 1.
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4.2.1 Symmetry Properties of Reasons for Action and Confirmation

To see the obstacle, consider the following observation:

The Asymmetry of Reasons for Action: F can be reason for
action in favor of A without it being true that A is reason for action
in favor of F .

Examples make this clear. Plausibly, the fact that I promised to help Callie
move is a reason for me to help her move. Now consider the following question:
Does my helping Callie move provide a reason for action for the claim that
I promised to help her move? This question is perhaps simply incoherent so
cannot be answered. Or if it can be answered, the answer is ‘no’. This is what
The Asymmetry of Reasons for Action says.

Compare this to the following fact about confirmation:

The Symmetry of Confirmation: P confirms Q iff Q confirms
P

This result holds for every confirmation measure that we have discussed in this
paper because these measures satisfy the qualitative condition that P confirms
Q iff Pr(Q | P ) > Pr(Q).49

This tell us that the analog of the approach that we developed for reasons for
belief will not work for reasons for action. The approach for reasons for belief
claimed P being a reason to believe Q is structurally equivalent to P confirming
Q.50 So the analogous approach for reasons for action (claiming P being a reason

49To show this, it suffices prove that if Pr(Q | P ) > Pr(Q), then Pr(P | Q) > Pr(P ).
Bayes’ Theorem tells us that:

Pr(Q | P ) =
Pr(P | Q)Pr(Q)

Pr(P )

Thus, we can rewrite Pr(Q | P ) > Pr(Q) and reason as follows:

Pr(P | Q)Pr(Q)

Pr(P )
> Pr(Q)

Pr(P | Q)Pr(Q) > Pr(Q)Pr(P )

Pr(P | Q) > Pr(P )

50This suggest that reasons for belief obey:

The Symmetry of Reasons for Belief: P is a reason to believe Q iff Q is a
reason to believe P

While perhaps initially surprising, this is no more controversial than the same principle con-
cerning evidence.

Of course, one might worry that arguments such as those in n. 17 pull reasons for belief and
evidence apart in a way that will yield counterexamples to this principle for reasons for belief.
I do not believe those (putative) counterexamples yield a problem for the above symmetry
thesis. But I admit once the connection between reasons for belief and evidence is broken,
matters become more complicated. Thanks to the editor at Ethics for bringing this concern
to my attention.
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for action supporting A is structurally equivalent to P confirming A) cannot
work because of the difference in symmetry between these two notions.51,52

4.2.2 Sher’s Reduction of Probabilities and Utilities to Reasons for
Action

That said, there is an approach developed in the groundbreaking paper Sher
2019 that is promising for the non-reductivist.53 Sher’s account is not purely
probabilistic. Instead, it is structurally similar to decision theory in which one

51Reductive views like Bayesian Kearns and Star Theory of Reasons allow for the truth of
The Asymmetry of Reasons for Action. Suppose E is a not an ‘ought’-claim but confirms
some ‘ought’-claim. Bayesian Kearns and Star Theory of Reasons says that E is a reason.
This entails that the ‘ought’-claim confirms E. But this does not, on it own, tell us that
the ‘ought’-claim is a reason. Similar remarks apply about other reductive views with this
structure. That said, Eva Schmidt in an insightful paper (Schmidt 2017) shows that there are
special contexts where symmetry worries may recur.

52Since Pr(P | Q) > τ does not entail Pr(Q | P ) > τ it might seem that a threshold
approach like the one in n. 36 for reasons for action will avoid this problem. Unfortunately
a similar problem arises here due to the asymmetry of reasons for action. For example, for
suitable values of P , Q, and φ, the following can all be true:

1. P is a reason for S to φ

2. Q is not a reason for S to φ

3. φ-ing is not a reason supporting P or supporting ¬P
4. φ-ing is not a reason supporting supporting Q or supporting ¬Q
5. > is not a reason supporting P or supporting ¬P
6. > is not a reason supporting Q or supporting ¬Q

But the threshold approach entails that they are inconsistent.
To see this, notice that 1-6 amount to the following claims according to the threshold

approach:

1. PrS(S does φ | P ) > τ

2. PrS(S does φ | Q) ≤ τ
3. PrS(P | S does φ) = τ

4. PrS(Q | S does φ) = τ

5. PrS(P | >) = τ

6. PrS(Q | >) = τ

Bayes theorem applied to 1 and 2 gets us:

PrS(S does φ | P ) =
PrS(P | S does φ)PrS(S does φ)

PrS(P )
> τ

PrS(S does φ | Q) =
PrS(Q | S does φ)PrS(S does φ)

PrS(Q)
≤ τ

Since 3 and 4 tell us that PrS(P | S does φ) = PrS(Q | S does φ) = τ , all the terms in
these equations must have the same value except PrS(P ) and PrS(Q). Since the value of
the first equation is greater than the value of the second, it follows that PrS(P ) < PrS(Q).
But 5 an 6 tell us that PrS(P ) = PrS(P | >) = τ and that PrS(Q) = Pr(Q | >) = τ . So
PrS(P ) ≮ PrS(Q) which shows 1-6 are inconsistent according to the threshold analysis.

53Thanks to Itai Sher for correspondence that helped me to better understand this paper
and its merits (though I do not discuss it in nearly the detail it deserves here).
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has both a probability function and a utility function. Interestingly for the non-
reductivist, Sher shows one need not take the probability function and utility
function as basic and define the weight of reasons in terms of them. Instead, one
can take the weight of reasons for action to be basic and define a probability and
utility function. In this framework, one can give a precise account of accrual for
reasons for action. The model he gives and the theorem that he proves to show
this are well-worth detailed study. But I omit discussion of the proof and leave
the statement of Sher’s assumptions to a note in order to highlight some basic
conceptual points.54

Sher’s result is similar to the results that I have presented for reasons for
belief: It assumes from the start that reasons for action can be numerically
represented and shows that this representation is of the right sort to model the
dynamics of reasons “adding up”. So the two non-reductive approaches answer
the second challenge posed by cases of accrual. But they both fail to answer
the first challenge because they do not provide grounds (e.g., a set of plausible
qualitative axioms) that show this numerical representations is sensible. I am
optimistic about the prospects of finding qualitative axioms to ground these nu-
merical representations. But my optimism is not based on any concrete proposal
so this is an important open question for non-reductivists.

I close with two points. First, our non-reductive approaches give two distinct
pictures of reasons for belief and action rather than a single unified one. I do
not know whether this a serious cost. But I suspect it is not. Second, there are

54Sher assumes that we have a function w that maps actions and and propositions into the
real numbers. Sher imposes (in slightly different notation) the following constraints on this
function:

Simplification: For all pairs of disjoint reasons, R1 and R2,

wa(R1) 6= wa(R2)

No Information:
wa(>) = 0

Averaging: For all pairs of disjoint non-trivial reasons, R1 and R2

if wa(R1) < wa(R2), then wa(R1) < wa(R1 ∨R2) < wa(R2)

Chain Rule: For all reasons R, S, and T such that S is consistent, R entails S, and S entails
T ,

ρ
R|T
a = ρ

R|S
a ρ

S|T
a

where we define for any R and S such that R entails S and S is consistent

ρ
R|S
a =

wa(S)− wa(S −R)

wa(R)− wa(S −R)

Common Ratios: If wa(R) 6= 0 and wb(R) 6= 0, then

wa(R)

wa(¬R)
=

wb(R)

wb(¬R)

Sher proves the fascinating result that if w satisfies these conditions, one can define a
probability and utility function based on w such that when one acts for most reason one
maximizes the expectation given by this probability and utility function.
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some approaches to accrual that are more distant from the probabilistic ones
that have been our focus. I discuss them in two notes.55,56

5 Conclusion

The question that we have asked is whether and how reductive and non-reductive
theories can make use probabilistic tools to understand the accrual of reasons.

We saw that a variety of reductive theories (though not every reductive the-
ory) can make use of probabilistic tools both to provide a basis for the numerical
representation of the strengths of reasons and to model the different ways rea-
sons can “add up”. But we should not overstate what has been shown. Since
probabilities have precise features, this constrains how we can develop particu-
lar reductive theories. These constraints will make clear what predictions the
theories make. The result may be that some reductive views are more promis-
ing than others. Conversely, if most plausible reductive views look unappealing
when regimented in a probabilistic setting, this may cast doubt on the reduction
advocated here.

55 Let me briefly discuss some purely qualitative approaches. One approach claims that
the the relationship between individual reasons and their accrual is a brute one. It is hard
to know what to say in response to someone who adopts this kind of quietism. So I simply
report my feelings: Quietism about a phenomena may be reasonable if there is little evidence
that any going theory can explain it. It is much less reasonable, if there is evidence that a
variety of theories can give a detailed account of the phenomena in question. (Nair 2016: §6
makes a similar point but also follows the lead of Prakken 2005: §3 in observing that there are
certain generalizations about accrual that require explanation and the brute approach fails to
provide an explanation of these generalizations.)

Next a number of qualitative approaches in the default logic tradition (Reiter 1980) and
in the argumentation theory tradition (Dung 1995) have been developed to model accrual
(Delgrande and Schaub 2004, Gómez Lucero, Chesñevar, and Simari 2009, Gómez Lucero,
Chesñevar, and Simari 2013, Modgil and Bench-Capon 2010, Prakken 2005, Verheij 1995, and
Wassell 2014). These qualitative accounts do provide conditions under which, for example, the
accrual of the reasons provided by the movie and the restaurant is stronger than these reason
individually. But they are unable to tell us under what conditions the accrual is stronger than
the individual reasons to an extent that makes it so that there is more reason to cross the
bridge than to not cross the bridge.

Finally, there are approaches such as those inspired by (though not full endorsed by) Nair
2016 and Maguire and Snedegar 2021 that make use of the distinction between derivative/non-
derivative reasons (where this distinction is understood to be influenced by work of Korsgaard
1983 on goodness) or perhaps something akin to this distinction. And Johnson King 2019
discusses some related ideas as part of her solutions to problems for buck passing accounts of
goodness. While there are certain aspects of the ideas in §A of this paper that are suggestive
of such a distinction (see n. 61), nothing in the work of advocates of these views provides
enough detail about how this distinction is drawn to replicate the rich quantitative structure
that probabilities and utilities have. That said, Maguire and Snedegar 2021 and Johnson King
2019 have slightly different targets in mind so this criticism may not be a problem for their
core projects. Thanks to Barry Maguire and Justin Snedegar for discussion of this issue.

56Close to when this paper was accepted, I learned of Ralph Wedgwood’s recent work
(Wedgwood forthcoming) adapting Harsanyni’s theorem to give an account of the accrual of
reasons for action. I think this is a promising approach to explaining the accrual of reasons (it
also makes use of broadly decision-theoretic tools like Sher’s approach). But I do not believe
that it helps the non-reductivist about reasons because Wedgwood’s approach is naturally
understood as reducing reasons to values.
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We also saw that non-reductive views can make use of probabilistic or
decision-theoretic tools to model the variety of ways reasons can “add up”. They
do this, however, by assuming that the strength of reasons can be numerically
represented rather than by providing a basis for this numerical representation.
This is a remaining challenge for non-reductive approaches. I am optimistic
that with some additional work, a sensible basis—in the form of plausible quali-
tative axioms about the strengths of reasons—can be provided. But others may
disagree.

Finally, like particular versions of reductive theories, it remains to be seen ex-
actly what predictions particular non-reductive theories make when regimented
by the constraints required to make use of probabilistic or decision-theoretic
tools. It also remains to be seen whether those predictions are plausible. Con-
versely, if most plausible non-reductive theories look unappealing when regi-
mented in a way that allows them to make use of probabilities, this may cast
doubt on the approach advocated here.

However these matters turn out, we have seen that probabilistic frameworks
are surprisingly rich and ecumenical: They can provide a detailed treatment of
cases of accrual. They can accommodate a variety of reductive theories. And
they can be accommodated by a variety of non-reductive theories.

My hope is that these frameworks will be fruitful for those interested in
in confirmation theory, those interested in the systematic interaction among
reasons, and especially those interested in how reasons can explain what we
ought to do and believe.

A Probabilities Are Reducible to Reasons

In this appendix, we prove the results in §4.1.57 We assume that propositions are
elements of an algebra based on a partition U = {A1, A2, . . . , An} where the Ai’s
are the cells of the partition and n ≥ 3. So a proposition is a (possibly empty)
set of cells of the partition. We adopt some shorthand for designating particular
propositions: > = U,⊥ = ∅. If P,Q are propositions, we will use the following
notation when it is convenient: ¬P = > − P, P ∨ Q = P ∪ Q,P ∧ Q = P ∩ Q.
We will frequently omit the braces around propositions that are singletons so
we will write {Ai} as Ai. Finally we say P entails Q exactly if P ⊆ Q.

We begin by defining the reasons weighing function as a function on propo-
sitions from this background structure.

A.1 Definitions

It helps to start by introducing some terminology to describe certain pairs of
propositions:

57Thanks to Kenny Easwaran for comments on an initial sketch of these ideas. Thanks
to both Kenny Easwaran and Branden Fitelson for encouragement and for helping me to see
what issues need to be addressed. Unfortunately, many of these issues will have to be dealt
with elsewhere.
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(H,E) is extreme exactly if E entails H or E entails ¬H.

(H,E) is vacuous exactly if (H,E) is not extreme and E = >.

(H,E) is trivial exactly if (H,E) is extreme or vacuous.

(P,Q) is a non-trivial determiner exactly if P 6= ⊥, Q 6= ⊥, P ∨Q 6=
>, and P ∧Q = ⊥

The letters used in the first three definitions indicate that we are interested in
(H,E) as a pair where the first element is the hypothesis (the thing supported by
the reason) and the second element is the evidence (the reason). The letters used
in the fourth definition, by contrast, suggest that we are not primarily interested
in (P,Q) as a pair consisting of a hypothesis and evidence. Instead, these pairs
can be used to determine other pairs of propositions that are hypotheses and
evidence which have properties that are of interest to us. The following fact
explains this more precisely:

Notational Variants: If (H,E) is not trivial and H entails E, then there is
exactly one (P,Q) such that (P,Q) is a non-trivial determiner and H = ¬P∧¬Q
and E = ¬Q. And if (P,Q) is a non-trivial determiner, then (¬P ∧¬Q,¬Q) is
not trivial and ¬P ∧ ¬Q entails ¬Q.

The proof of this fact is left to a note.58 Notational Variants tells us, then,
about a particular way we can characterize (H,E)’s that are not trivial and

58We prove the two claims in Notational Variants seperately.

Notational Variants 1: If (H,E) is not trivial and H entails E, then there is exactly one
(P,Q) such that (P,Q) is a non-trivial determiner and H = ¬P ∧ ¬Q and E = ¬Q

Proof of Notational Variants 1. Suppose (H,E) is not trivial and H entails E. Since (H,E)
is not extreme, E does not entail H so H ⊂ E. Since (H,E) is not extreme E also does not
entail ¬H so H 6= ⊥ and ⊥ ⊂ H ⊂ E. Since (H,E) is not vacuous E 6= > so ⊥ ⊂ H ⊂ E ⊂ >.

Let us first establish that there is at least one (P,Q) such that (P,Q) is a non-trivial
determiner and H = ¬P ∧ ¬Q and E = ¬Q. We show this for the following particular choice
of P and Q:

Q = >− E = ¬E
P = E −H = E ∧ ¬H

This (P,Q) is a non-trivial determiner (which recall means that P 6= ⊥, Q 6= ⊥, P∨Q 6= >, and
P ∧Q = ⊥): First notice that since E 6= >, Q = ¬E 6= ⊥. Second, notice that H ⊂ E, P =
E−H 6= ⊥. Third, consider that P ∨Q = (E∧¬H)∨¬E = (¬E∨E)∧(¬E∨¬H) = ¬E∨¬H.
Since H entails E, ¬E entails ¬H so ¬E ∨ ¬H = ¬H. Since H 6= ⊥, P ∨ Q = ¬H 6= >.
Fourth and finally, notice that P ∧Q = (E ∧ ¬H) ∧ ¬E = ⊥.

And this (P,Q) is such that H = ¬P ∧ ¬Q and E = ¬Q. To begin, since Q = ¬E,

¬Q = ¬¬E = E

. Next since P = E ∧ ¬H,
¬P = ¬(E ∧ ¬H) = ¬E ∨H

Finally since H ⊂ E, we know H ∧ E = H therefore:

¬P ∧ ¬Q = (¬E ∨H) ∧ E = (E ∧ ¬E) ∨ (E ∧H) = E ∧H = H

Thus, there is at least one (P,Q) such that (P,Q) is a non-trivial determiner and H = ¬P∧¬Q
and E = ¬Q.
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such that H entails E. As we will see, this is useful for structuring some of the
proofs. It also turns out that the term rb (¬P ∧ ¬Q,¬Q) is closely related (in

the way described by (Lemma 1.4.1) below) to the term Pr(Q)
Pr(P ) . This notation

allows us easily keep track of this connection.
We now define a (class of) function(s) that is intended to represent the

strength of reasons.

Definition 1. A function from pairs of propositions from the algebra based on U
to the interval (−∞,∞), rb, is a reasons weighing function exactly if it satisfies
the following axioms:

Base Propriety: b > 1

Undefined Reasons: if (H,E) is extreme, rb(H,E) is undefined

No Reason: if (H,E) is vacuous,

rb(H,E) = log(1) = 0

Complimentary Reasons: if (H,E) is not extreme,

rb(¬H,E) = −rb(H,E)

Entailed Reason: if (H,E) is not trivial and H entails E,

rb(H,E) > logb(1) = 0

Negatively Correlated Reasons: if (P,Q) is a non-trivial determiner,

rb(¬P ∧ ¬Q,¬P ) = logb

(
brb(¬P∧¬Q,¬Q)

brb(¬P∧¬Q,¬Q) − 1

)
To complete the proof, we still must show that there is no more than one (P,Q) with these

two features. To show this, suppose for reductio that it is false. So there is some non-trivial
determiner (P ′, Q′) such that either P 6= P ′ or Q 6= Q′ and H = ¬P ∧ ¬Q = ¬P ′ ∧ ¬Q′ and
E = ¬Q = ¬Q′. It is immediate that Q = Q′. So P 6= P ′ and therefore there is an x such
that either x ∈ P, 6∈ P ′ or x 6∈ P,∈ P ′. Suppose x ∈ P, 6∈ P ′ and therefore x 6∈ ¬P,∈ ¬P ′.
Since x ∈ P , x 6∈ Q = Q′ and x ∈ ¬Q = ¬Q′. Therefore x 6∈ ¬P ∧ ¬Q but x ∈ ¬P ′ ∧ ¬Q′.
Thus H = ¬P ∧¬Q 6= ¬P ′∧¬Q′. Suppose then instead, x 6∈ P,∈ P ′. By analogous reasoning
we established x ∈ ¬P ∧¬Q but x 6∈ ¬P ′ ∧¬Q′. Thus (P,Q) are unique which completes the
proof of the left-to-right direction.

Notational Variants 2: If (P,Q) is a non-trivial determiner, then (¬P ∧ ¬Q,¬Q) is not
trivial and ¬P ∧ ¬Q entails ¬Q.

Proof of Notational Variants 2. Consider then (P,Q) that is a non-trivial determiner. (And
recall once again that for (P,Q) to be a non-trivial determiner is for the following to hold:
P 6= ⊥, Q 6= ⊥, P ∨Q 6= >, and P ∧Q = ⊥.) It is immediate the ¬P ∧ ¬Q entails ¬Q. Next
since P 6= ⊥, P 6⊆ ¬P ∧ ¬Q. Since P ∧Q = ⊥, P ⊂ ¬Q. Thus, ¬Q 6⊆ ¬P ∧ ¬Q, so ¬Q does
not entail ¬P ∧¬Q. Next notice that since ¬P ∧¬Q entails ¬Q, ¬Q entails ¬(¬P ∧¬Q) only
if ¬Q = ⊥. But since P ∨ Q 6= >, Q 6= > so ¬Q 6= ⊥. So ¬Q does not entails ¬(¬P ∧ ¬Q).
So (¬P ∧ ¬Q,¬Q) is not extreme. Since Q 6= ⊥, ¬Q 6= > so (¬P ∧ ¬Q,¬Q) is not vacuous.
So as desired (¬P ∧Q,¬Q) is not trivial and ¬P ∧Q entails ¬Q
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Positively Correlated Reasons: if (P,Q), (Q,R), and (P,R) are non-
trivial determiners,

rb(¬P ∧ ¬R,¬R) = logb

((
brb(¬Q∧¬R,¬R) − 1

)(
brb(¬P∧¬Q,¬Q) − 1

)
+ 1
)

Aggregative Reasons: if (P,Q) is non-trivial determiner,

rb (¬P ∧ ¬Q,¬Q) = logb

∑
Qi∈Q

brb(¬P∧¬Qi,¬Qi) − 1

+ 1


Factored Reasons: if (H,E) is not trivial, H does not entail E, and ¬H does
not entail E, then for any D,D′ such that (H,D) and (¬H,D′) are non-trivial
determiners,

rb(H,E) = logb

( (
brb(¬D∧¬(H∧E),¬(H∧E)) − 1

) (
brb(¬H∧¬D,¬D) − 1

)(
brb(¬D′∧¬(¬H∧E),¬(¬H∧E)) − 1

) (
brb(H∧¬D′,¬D′) − 1

))

The relationship between the axioms and Theorem 1 (restated below) will
emerge in the course of the proofs. But two points to note here. First, in light
of Notational Variants, Negatively Correlated Reasons–Aggregative Reasons are
axioms concerning cases where (H,E) is not trivial and H entails E. Second,
I will not explicitly mention Base Propriety. But it is relied on implicitly to
ensure the relevant log’s are defined and are the right kind increasing function
of their arguments.

Now we may define a second function:

Definition 2. A function from propositions from the algebra based U to the
interval (−∞,∞), frb , is the prior based on rb function exactly if it satisfies the
following axioms:59

Ratios of Cells: If U = {A1, A2, · · ·An} then,

1 = frb(A1) + frb(A2) + · · ·+ frb(An)

frb(A2) = (brb(¬A1∧¬A2,¬A2) − 1)frb(A1)

frb(A3) = (brb(¬A1∧¬A3,¬A3) − 1)frb(A1)

...

frb(An) = (brb(¬A1∧¬An,¬An) − 1)frb(A1)

Sum of Cells: For any proposition P ,

59It is possible to more explicitly albeit less intuitively define frb (Ai). We explicitly define:

frb (A1) =
1

1 + (brb(¬A1∧¬A2,¬A2) − 1) + (brb(¬A1∧¬A3,¬A3) − 1) + · · ·+ (brb(¬A1∧¬An,¬An) − 1)

For any other, Ai, frb (Ai) is this same fraction except replacing the 1 in the numerator with

brb(¬A1∧¬Ai,¬Ai) − 1.
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• if P = ∅, frb(P ) = 0

• if P 6= ∅, frb(P ) =
∑

Ai∈P frb(Ai)

Given a particular reasons weighing function rb, frb is uniquely determined.
Our main aim is to prove the following claim about these functions:

Theorem 1. For any reason weighing function, rb, (i) frb is a probability func-
tion and (ii) for any propositions H,E either

rb(H,E) = logb

(
frb(E | H)

frb(E | ¬H)

)
or rb(H,E) and logb

(
frb (E|H)

frb (E|¬H)

)
are both undefined.

This theorem shows that the reasons weighing function that we defined (i)
determines a probability function and (ii) is equivalent to the log likelihood
confirmation measure based on that probability function.

A.2 frb is a Probability Function

Here we show (i) in Theorem 1:

Proposition 1.1. frb is a probability function.

Proof of Proposition 1.1. It suffices to show that frb satisfies the following con-
ditions:

Non-Negativity: frb(P ) ≥ 0 for any proposition P

Normalization: frb(>) = 1

Finite Additivity: frb(P ∨Q) = frb(P ) + frb(Q) when P ∧Q = ⊥

Ratio: frb(P | Q) =
frb (P∧Q)

frb (Q) when frb(Q) 6= 0

Begin with Normalization. By Sum of Cells, frb(>) = frb(A1) + frb(A2) +
· · ·+frb(An). Next, by the first equation in Ratios of Cells, frb(A1)+frb(A2)+
· · ·+ frb(An) = 1, Thus, frb(>) = 1.

Next turn to Finite Additivity. Assume one of P or Q are empty. Without
loss of generality suppose it is P , then by Sum of Cells frb(P ) = 0 and P∨Q = Q.
Thus frb(P ∨ Q) = frb(Q) + 0 = frb(Q) + frb(P ) so Finite Additivity holds.
Suppose instead that P and Q are both non-empty and that P ∧ Q = ⊥ .
Let P = {AP1 , AP2 , . . . APn} and Q = {AQ1 , AQ2 , . . . AQn}. Since P ∧ Q = ⊥,
P ∨Q = {AP1 , AP2 , . . . APn , AQ1 , AQ2 , . . . AQn} where this specification doesn’t
list the same cell twice. By Sum of Cells, we know that:

frb(P ) = frb(AP1
) + frb(AP2

) + · · ·+ frb(APn
)

frb(Q) = frb(AQ1
) + frb(AQ2

) + · · ·+ frb(AQn
)

frb(P ∨Q) = frb(AP1
) + frb(AP2

) + · · ·+ frb(APn
)+

frb(AQ1
) + frb(AQ2

) + · · ·+ frb(AQn
)
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Thus, frb(P ∨Q) = frb(P ) + frb(Q).
Now turn to Non-Negativity. Every proposition, P , is a (possibly empty)

set of cells. Suppose P is empty, then Sum of Cells says frb(P ) = 0 so Non-
Negativity holds. Suppose P is non-empty so, by Sum of Cells, frb(P ) =∑

Ai∈P frb(Ai). If we can prove that frb(Ai) ≥ 0 for all Ai ∈ U , this will
suffice to establish Non-Negativity. To show frb(Ai) ≥ 0 for all Ai ∈ U , recall
Ratios of Cells:

1 = frb(A1) + frb(A2) + · · ·+ frb(An)

frb(A2) = (brb(¬A1∧¬A2,¬A2) − 1)frb(A1)

frb(A3) = (brb(¬A1∧¬A3,¬A3) − 1)frb(A1)

...

frb(An) = (brb(¬A1∧¬An,¬An) − 1)frb(A1)

We now reason by cases of the value of frb(A1).
Begin by supposing frb(A1) = 0. This entails that frb(A2) = 0 and similarly

for the other cells. This is incompatible with frb(A1)+frb(A2)+ · · ·+frb(An) =
1.

Suppose next then, that, frb(A1) < 0. Since ¬A1∧¬A2 entails ¬A2 and since
(¬A1∧¬A2,¬A2) is not trivial60, Entailed Reason says that rb (¬A1 ∧ ¬A2,¬A2) >
logb(1). Thus, brb(¬A1∧¬A2,¬A2) − 1 > 0. So frb(A2) is negative. Similarly for
the other cells. This is incompatible with frb(A1) +frb(A2) + · · ·+frb(An) = 1.

Thus, frb(A1) > 0. Since brb(¬A1∧¬A2,¬A2) − 1 > 0, frb(A2) > 0. Similarly
for the other cells. Thus, frb(Ai) > 0 for all Ai. So Non-Negativity holds.

Finally, we force Ratio by defining frb(P | Q) to be
frb (P∧Q)

frb (Q) when frb(Q) 6=
0.

We have in fact shown the stronger claim that frb is a regular probability
function in the sense that for any P 6= ⊥, frb(P ) 6= 0. We have shown this
because our proof established that for all Ai ∈ U , frb(Ai) > 0. Since (by Sum
of Cells) every proposition except ⊥ is the sum of the Ai’s, it follows that any
proposition that is not ⊥ is assigned a number greater than 0. I discuss this
fact a bit more in §A.4.

Having established that frb is a regular probability function, we will freely
make use of this below.61

60This is ensured by the fact that |U | ≥ 3.
61It is also worth noting in passing that this proof essentially shows that for U of n-elements,

n−1 values of rb suffice to determine a probability function. Similarly, the proof below shows
that if we fix n− 1 values of rb (for example, we could use the same n− 1 claims used for frb
and fix the values for Case 1 in the proof of Proposition 1.4), we can use the axioms to fix
the remaining values. This perhaps suggests that there may be n−1 “non-derivative” reasons
that determine the much larger total set of claims about reasons and probabilities. That said,
the result itself only tells us that there is an entailment from these n − 1 claims to all the
claims about reasons; it does not establish that there is a determination relation. Indeed, the
particular n− 1 claims we choose are somewhat arbitrary. What I suggested is that we make
use of n − 1 claims of the form rb (¬A1 ∧ ¬Ai,¬Ai) for i 6= 1. But how we enumerate the
partition is arbitrary so we could have started with a different set of n− 1 claims.
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A.3 rb = lfrb
Here we show (ii) of Theorem 1. We prove this in piecemeal fashion starting
with (H,E) that are trivial.62

A.3.1 Trivial (H,E)

Trivial (H,E) are either extreme or vacuous. Begin with the extreme case.

Proposition 1.2. For any H,E such that (H,E) is extreme, rb(H,E) and

logb

(
frb (E|H)

frb (E|¬H)

)
are both undefined.

Proof of Proposition 1.2. Since (H,E) is extreme, E entails H or E entails ¬H
In either of these cases, Undefined Reasons tells us that rb(H,E) is undefined.

To see that logb

(
frb (E|H)

frb (E|¬H)

)
is also undefined begin by supposing E entails H.

In this setting,

0 = frb(E ∧ ¬H) =
frb(E ∧ ¬H)

frb(¬H)
= frb(E | ¬H)

so logb

(
frb (E|H)

frb (E|¬H)

)
is undefined because the term inside the log involves division

by 0. Suppose instead E entails ¬H. In this setting,

0 = frb(E ∧H) =
frb(E ∧H)

frb(H)
= frb(E | H) =

frb(E | H)

frb(E | ¬H)

so logb

(
frb (E|H)

frb (E|¬H)

)
is undefined because log(0) is undefined.

Next we consider vacuous (H,E).

62The following diagram indicates the way in which we prove the result by considering an
exclusive and exhaustive collection of five cases:

(H,E)

Extreme

Proposition 1.2

Not Extreme

Vacuous

Proposition 1.3

Not Vacuous (Not Trivial)

H entails E

Proposition 1.4

H does not entail E

¬H entails E

Proposition 1.5

¬H does not entail E

Proposition 1.6
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Proposition 1.3. For any H,E such that (H,E) is vacuous

rb(H,E) = logb

(
frb(E | H)

frb(E | ¬H)

)
Proof of Proposition 1.3. Since (H,E) is vacuous, No Reason tells us that rb(H,E) =
0. Since (H,E) is vacuous, E = > and H 6= >,⊥.63 So frb(H) 6= 0, frb(¬H) 6=
0, E ∧H = H, and E ∧ ¬H = ¬H. Thus:

frb(E | H) =
frb(E ∧H)

frb(H)
=
frb(H)

frb(H)
= 1

and

frb(E | ¬H) =
frb(E ∧ ¬H)

frb(¬H)
=
frb(¬H)

frb(¬H)
= 1

Therefore as desired:

logb

(
frb(E | H)

frb(E | ¬H)

)
= logb

(
1

1

)
= logb(1) = 0

The cases that are not trivial (i.e, neither extreme nor vacuous) take more
work.

A.3.2 H non-trivially entails E

We begin with the cases where (H,E) is not trivial and H entails E. Given
Notational Variants, the result that we wish to establish is this:

Proposition 1.4. For any (P,Q) that is a non-trivial determiner,

rb (¬P ∧ ¬Q,¬Q) = logb

(
frb (¬Q | ¬P ∧ ¬Q)

frb (¬Q | ¬(¬P ∧ ¬Q))

)
It helps to begin with a lemma.

Lemma 1.4.1. For any (P,Q) that is a non-trivial determiner,

logb

(
frb(¬Q | ¬P ∧ ¬Q)

frb(¬Q | ¬(¬P ∧ ¬Q))

)
= logb

(
frb(Q)

frb(P )
+ 1

)
Proof of Lemma 1.4.1. Since ¬P ∧ ¬Q entails ¬Q, we know:

logb

(
frb(¬Q | ¬P ∧ ¬Q)

frb(¬Q | ¬(¬P ∧ ¬Q))

)
= logb

(
1

frb(¬Q | ¬(¬P ∧ ¬Q))

)
63If H = >, then E entails H so (H,E) is extreme and hence not vacuous. If H = ⊥, E

entails ¬H so (H,E) is extreme and hence not vacuous.
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The denominator of the term inside the log can be simplified (here the transition
to the third equality from the second relies (twice) on the assumption that
P ∧Q = ⊥):

frb(¬Q | ¬(¬P ∧ ¬Q)) =
frb(¬Q ∧ ¬(¬P ∧ ¬Q))

frb(¬(¬P ∧ ¬Q))

=
frb(¬Q ∧ (P ∨Q))

frb(P ∨Q)

=
frb(P )

frb(P ) + frb(Q)

We then reason with the whole term inside the log as follows:

frb (¬Q | ¬P ∧ ¬Q)

frb (¬Q | ¬(¬P ∧ ¬Q))
=

1
frb (P )

frb (P )+frb (Q)

=
frb(P ) + frb(Q)

frb(P )(
frb(¬Q | ¬P ∧ ¬Q)

frb(¬Q | ¬(¬P ∧ ¬Q)

)
frb(P )− frb(P ) = frb(Q)(

frb(¬Q | ¬P ∧ ¬Q)

frb(¬Q | ¬(¬P ∧ ¬Q))
− 1

)
frb(P ) = frb(Q)

frb(¬Q | ¬P ∧ ¬Q)

frb(¬Q | ¬(¬P ∧ ¬Q))
=
frb(Q)

frb(P )
+ 1

Thus:

logb

(
frb(¬Q | ¬P ∧ ¬Q)

frb(¬Q | ¬(¬P ∧ ¬Q))

)
= logb

(
frb(Q)

frb(P )
+ 1

)

We now turn to our main task.

Proof of Proposition 1.4. We can place any (P,Q) that is a non-trivial deter-
miners into one of six exclusive and exhaustive cases. We prove our result for
each one of these cases.64

Case 1: P = A1 and Q = Ai for i 6= 1. Given Definition 2 (and Ratios of
Cells in particular), we know:

frb(Ai) = (brb(¬A1∧¬Ai,¬Ai) − 1)frb(A1)

frb(Ai)

frb(A1)
+ 1 = brb(¬A1∧¬Ai,¬Ai)

Since rb (¬A1 ∧ ¬Ai,¬Ai) = logb
(
brb(¬A1∧¬Ai,¬Ai)

)
, we have:

rb (¬A1 ∧ ¬Ai,¬Ai) = logb

(
frb(Ai)

frb(A1)
+ 1

)
64The following diagram indicates the six exclusive an exhaustive cases involving non-trivial

determiners:
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So by Lemma 1.4.1, we have our desired result:

rb (¬A1 ∧ ¬Ai,¬Ai) = logb

(
frb(¬Ai | ¬A1 ∧ ¬Ai)

frb(¬Ai | ¬(¬A1 ∧ ¬Ai))

)
Case 2: P = Ai for i 6= 1 and Q = A1. Obviously Ai 6= ⊥, A1 6= ⊥,

and Ai ∧ A1 = ⊥. And, since |U | ≥ 3, Ai ∨ A1 6= >. (A1, Ai) is a non-trivial
determiner and therefore Negatively Correlated Reasons tells us that:

rb (¬Ai ∧ ¬A1,¬A1) = rb (¬A1 ∧ ¬Ai,¬A1) = logb

(
brb(¬A1∧¬Ai,¬Ai)

brb(¬A1∧¬Ai,¬Ai) − 1

)
We know from Case 1 that:

brb(¬A1∧¬Ai,¬Ai) =
frb(Ai)

frb(A1)
+ 1

So:

rb (¬Ai ∧ ¬A1,¬A1) = logb

 frb (Ai)

frb (A1)
+ 1

frb (Ai)

frb (A1)


The term inside the log then can be simplified as follows:

frb (Ai)

frb (A1)
+ 1

frb (Ai)

frb (A1)

=
frb(Ai)frb(A1)

frb(A1)frb(Ai)
+
frb(A1)

frb(Ai)
= 1 +

frb(A1)

frb(Ai)

So:

rb (¬Ai ∧ ¬A1,¬A1) = logb

(
1 +

frb(A1)

frb(Ai)

)
(P,Q)

|P | > 1, |Q| > 1

Case 6

|P | 6> 1 or |Q| 6> 1

|P | > 1, |Q| 6> 1

Case 5

|P | 6> 1

|P | 6> 1, |Q| > 1

Case 4

|P | 6> 1, |Q| 6> 1

P 6= A1, Q 6= A1

Case 3

P = A1 or Q = A1

P 6= A1, Q = A1

Case 2

P = A1, Q 6= A1

Case 1
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Thus, by Lemma 1.4.1, we have our desired result:

rb (¬Ai ∧ ¬A1,¬A1) = logb

(
frb(¬A1 | ¬Ai ∧ ¬A1)

frb(¬A1 | ¬(¬Ai ∧ ¬A1))

)
Case 3: P = Ai for i 6= 1 and Q = Aj for j 6= 1 and i 6= j. Obviously

Ai 6= ⊥, A1 6= ⊥, Aj 6= ⊥, Ai ∧ A1 = A1 ∧ Aj = Ai ∧ Aj = ⊥. And, since
|U | ≥ 3, Ai ∨A1 6= >, A1 ∨Aj 6= >, and Ai ∨Aj 6= >. So (A1, Aj) and (Ai, A1)
are non-trivial determiners and therefore Positively Correlated Reasons tells us
that:

rb (¬Ai ∧ ¬Aj ,¬Aj) = logb

((
brb(¬A1∧¬Aj ,¬Aj) − 1

)(
brb(¬Ai∧¬A1,¬A1) − 1

)
+ 1
)

We know from Case 1 that:

brb(¬A1∧¬Aj ,¬Aj) =
frb(Aj)

frb(A1)
+ 1

and from Case 2 that:

brb(¬Ai∧¬A1,¬A1) =
frb(A1)

frb(Ai)
+ 1

So:

rb (¬Ai ∧ ¬Aj ,¬Aj) = logb

((
frb(Aj)

frb(A1)

)(
frb(A1)

frb(Ai)

)
+ 1

)
= logb

(
frb(Aj)

frb(Ai)
+ 1

)
Thus, by Lemma 1.4.1, we have our desired result:

rb (¬Ai ∧ ¬Aj ,¬Aj) = logb

(
frb(¬Aj | ¬Ai ∧ ¬Aj)

frb(¬Aj | ¬(¬Ai ∧ ¬Aj))

)
Case 4: P = Aj and Q = {Q1, Q2, . . . , Qn} where |Q| > 1, P ∨Q 6= >, and

P ∧Q = ⊥. Given this, Aggregative Reasons applies and tells us:

rb (¬Aj ∧ ¬Q,¬Q) = logb

∑
Qi∈Q

brb(¬Aj∧¬Qi,¬Qi) − 1

+ 1


We know from Case 1–Case 3:

brb(¬Aj∧¬Qi,¬Qi) − 1 =

(
frb(Qi)

frb(Aj)
+ 1

)
− 1 =

frb(Qi)

frb(Aj)

So:∑
Qi∈Q

brb(¬Aj∧¬Qi,¬Qi) − 1 =
frb(Q1)

frb(Aj)
+
frb(Q2)

frb(Aj)
+ · · ·+ frb(Qn)

frb(Aj)
=

frb(Q)

frb(Aj)
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Therefore:

rb (¬Aj ∧ ¬Q,¬Q) = logb

∑
Qi∈Q

brb(¬Aj∧¬Qi,¬Qi) − 1

+ 1

 = logb

(
frb(Q)

frb(Aj)
+ 1

)

Thus, by Lemma 1.4.1, we have our desired result:

rb (¬Aj ∧ ¬Q,¬Q) = logb

(
frb(¬Q | ¬Aj ∧ ¬Q)

frb(¬Q | ¬(¬Aj ∧ ¬Q))

)
Case 5: P = {P1, P2, . . . , Pn} and Q = Aj where |P | > 1, P ∨ Q 6= >,

and P ∧Q = ⊥. The proof proceeds analogously to Case 2 but relying on the
results of Case 4.

Case 6: P = {AP1
, AP2

, . . . , APn
} and Q = {AQ1

, AQ2
, . . . , AQm

} where
|P | > 1, |Q| > 1, P ∨Q 6= >, and P ∧Q = ⊥. The proof proceeds analogously
to Case 3 but relying on the results of Case 4 and Case 5.

A.3.3 The Remaining Non-Trivial Cases

Now that we have establish Proposition 1.4, we can extend it to other cases.
Our first extension covers values of rb(H,E) when ¬H entails E:

Proposition 1.5. For any H,E such that (H,E) is non-trivial and ¬H entails
E

rb(H,E) = logb

(
frb(E | H)

frb(E | ¬H)

)
Proof of Proposition 1.5. We know from Complimentary Reasons:

rb(H,E) = −rb(¬H,E)

From Proposition 1.4 and the fact that ¬H non-trivially entails E65, we know:

rb(¬H,E) = logb

(
frb(E | ¬H)

frb(E | H)

)
So:

rb(H,E) = −logb
(
frb(E | ¬H)

frb(E | H)

)
Since log(a

b ) = −log( b
a ), we have our desired result:

rb(H,E) = logb

(
frb(E | H)

frb(E | ¬H)

)

65This relies on claim that if (H,E) is not trivial, then (¬H,E) is not trivial. Here’s a
proof: Since (H,E) is not trivial, E does not entail H, E does not entail ¬H, and E 6= >. It
follows from this that E does not entail ¬H, E does not entail ¬¬H, and E 6= >. So (¬H,E)
is not trivial.
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Our final cases is one where neither H nor ¬H entail E.

Proposition 1.6. For any H,E such that (H,E) is not trivial and H does not
entail E and ¬H does not entail E,

rb(H,E) = logb

(
frb(E | H)

frb(E | ¬H)

)
To establish this proposition, it helps to begin with the following Lemma.

Lemma 1.6.1. If (H,E) is not trivial and H does not entail E and ¬H does
not entail E, then there are D,D′ such that (H,D) and (¬H,D′) are non-trivial
determiners.

Proof of Lemma 1.6.1. Suppose (H,E) is not trivial and H does not entail E
and ¬H does not entail E. Thus, H 6= > and so there is a D 6= ⊥ such that
D ∧H = ⊥. But suppose for reductio there is no such D that is also such that
D∨H 6= >. For this to be the case, it must be that there is exactly one A∗ ∈ U
such that A∗ /∈ H.66 Since (H,E) is not trivial, E does not entail H. So there
is an Ei ∈ E such that Ei /∈ H. Thus, A∗ = Ei ⊆ E. Thus, A∗ entails E. But
A∗ = ¬H so this contradicts our assumption that ¬H does not entail E. Thus,
there must be a D 6= ⊥ such that D ∧H = ⊥ and D ∨H 6= >.

By analogous reasoning but relying on the fact that H does not entail E
(and that (H,E) is not trivial and hence (¬H,E) is not trivial), it follows that
there is a D′ 6= ⊥ such that D′ ∧ ¬H = ⊥ and D′ ∨ ¬H 6= >.

We now turn to the main proof.

Proof of Proposition 1.6. Consider then any H,E such that (H,E) is not trivial
and H does not entail E and ¬H does not entail E. We know by Lemma 1.6.1
that there are a D,D′ such that (H,D) and (¬H,D′) are non-trivial determin-
ers. So Factored Reasons tells us that:

rb(H,E) = logb

(
(brb(¬D∧¬(H∧E),¬(H∧E)) − 1)(brb(¬H∧¬D,¬D) − 1)

(brb(¬D′∧¬(¬H∧E),¬(¬H∧E)) − 1)(brb(H∧¬D′,¬D′) − 1)

)
Given that (H,D) is a non-trivial determiner, we know from Proposition 1.4:

rb (¬H ∧ ¬D,¬D) = logb

(
frb(D)

frb(H)
+ 1

)
Since it follows from H ∨ D 6= > that D ∨ (H ∧ E) 6= >, it follows from
(H ∧ E) = ⊥ that D ∧ (H ∧ E) = ⊥, and it follows (H,E) being not trivial
that H ∧ E 6= ⊥, we also know that (D,H ∧ E) is a non-trivial determiner. So
Proposition 1.4 tells us:

rb (¬D ∧ ¬(H ∧ E),¬(H ∧ E)) = logb

(
frb(H ∧ E)

frb(D)
+ 1

)
66If there is no such A∗, H = > which contradicts out assumption that (H,E) is not trivial.

If there is a A∗, A∗∗ ∈ U such that A∗ 6= A∗∗ and A∗, A∗∗ /∈ H, then A∗ is a D such that
D 6= ⊥, D ∧H = ⊥ and D ∨H 6= >.
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We can then simplify the numerator as follows:

(brb(¬D∧¬(H∧E),¬(H∧E)) − 1)(brb(¬H∧¬D,¬D) − 1) =

(
frb(H ∧ E)

frb(D)

)(
frb(D)

frb(H)

)
=
frb(H ∧ E)

frb(H)
= frb(E | H)

For analogous reasons, we also know from Proposition 1.4 that:

rb (¬D′ ∧ ¬(¬H ∧ E),¬(¬H ∩ E)) = logb

(
frb(¬H ∧ E)

frb(D′)
+ 1

)
rb (H ∧ ¬D′,¬D′) = logb

(
frb(D′)

frb(¬H)
+ 1

)
And therefore by similar reasoning the denominator can be simplified:

(brb(¬D
′∧¬(¬H∧E),¬(¬H∧E)) − 1)(brb(H∧¬D

′,¬D′) − 1) = frb(E | ¬H)

Thus we have our desired result:

rb(H,E) = logb

(
frb(E | H)

frb(E | ¬H)

)

A.4 Further Issues

Let us close by discussing a few related issues.
One issue worth discussing is whether roughly the converse of Theorem 1

holds:

For any probability function, Pr, there is a reasons weighing func-
tion, rb, such that (i) for any proposition P , Pr(P ) = frb(P ) and
(ii) for any propositions H,E, either

logb

(
Pr(E | H)

Pr(E | ¬H)

)
= rb(H,E)

or logb

(
Pr(E|H)
Pr(E|¬H)

)
and rb(H,E) are both undefined.

As it turns out, this claim does not quite hold. Instead the following weaker
claim holds:

Theorem 2. For any regular probability function, Pr, there is a reasons weigh-
ing function, rb, such that (i) for any proposition P , Pr(P ) = frb(P ) and (ii)
for any propositions H,E, either

logb

(
Pr(E | H)

Pr(E | ¬H)

)
= rb(H,E)

or logb

(
Pr(E|H)
Pr(E|¬H)

)
and rb(H,E) are both undefined.
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This is not surprising given that our proof of (i) of Theorem 1 showed that
the frb is a regular probability function (§A.2). I omit the proof of Theorem
2 because it relies primarily on techniques that we have already used. In a
supplement, I present the proof as well as provide more background.67 It is
an interesting question how to modify Definition 1 so that we can remove the
restriction to regular probability functions.68,69

There are a variety of other important issues that are worthy of more dis-
cussion than I can provide here. First, since the axiomatization and proofs in
this paper are rather inelegant, it would be good to search for a more elegant
version of our results. Second, it would be good to explore whether similar
results can be established for other confirmation measures and to compare the
different axioms defining these measures.70

But, as emphasized in the main text, the most pressing issue is to identify
a set of qualitative axioms to characterize when one reason is better than an-
other reason and prove that our quantitatively defined reasons weighing function
can be understood as a numerical representation of this underlying qualitative
structure.

B Some Other Confirmation Measures

In this appendix, I discuss three confirmations measures that have properties
analogous to l and comment on two other measures.

We begin with perhaps the most well-known measure:

Difference Measure: d(H,E) = Pr(H | E)− Pr(H)

Earman 1992, among others, advocates d. If we define d|E(H,E′) = Pr(H |
E ∧ E′)− Pr(H | E), it is known that:

67More exactly, the first five axioms correspond to well-known features of l. The remaining
axioms can be shown by using Lemma 1.4.1 and performing some cancelling of terms that
we have already seen in the proof of Theorem 1. For example to prove l satisfies Negatively
Correlated Reasons, one can begin by making use of Lemma 1.4.1, then expand the term
inside the log in the reverse of the way done in the proof of Case 2 of Proposition 1.4, and
then apply Lemma 1.4.1 once more in the other direction. Similar methods work for Positively
Correlated Reasons (relying on the proof of Case 3 of Proposition 1.4), Aggregative Reasons
(relying on the proof of Case 4 of Proposition 1.4), and Factored Reasons (relying on the
proof of Proposition 1.6).

68The first thing to do is to change Entailed Reason so that if (H,E) is not trivial and H
entails E, rb(H,E) ≥ 0 rather than strictly greater than 0. From here some other modifications
to the axioms and proofs are needed to accommodate cases where relevant values of rb are
undefined now because of certain propositions having probability 0.

69Our discussion is also limited to functions defined over an algebra of propositions gen-
erated from a finite partition. A good question is whether our results can be generalized to
other ways of representing propositions.

70We also have only defined an unconditional reasons weighing function but we might
wish to have a notion of such a function conditional on some proposition. This is easy to
do: rb|E is the reasons weighing function conditional E and defined so that for all (H,E′),

rb|E (H,E′) = rb(H,E ∩E′)− rb(H,E). An interesting question is how to proceed if we take

the notion of a conditional reasons weighing function as basic.
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Claim 2. d(H,E ∧ E′) = d(H,E) + d|E(H,E′)

Proof of Claim 2.

d(H,E) + d|E(H,E′) = Pr(H | E)− Pr(H) + Pr(H | E ∧ E′)− Pr(H | E)

= Pr(H | E ∧ E′)− Pr(H) = d(H,E ∧ E′)

Claim 2 has the following corollary:

Corollary 2.1. d(H,E ∧ E′) = d(H,E) + d(H,E′) if d(H,E′) = d|E(H,E′).

Next consider the following measure:

Log Ratio Measure: r(H,E) = log
(

Pr(H|E)
Pr(H)

)
Milne 1996, among others, advocates r. If we define r|E(H,E′) = log

(
Pr(H|E∧E′)

Pr(H|E)

)
,

it is known that:

Claim 3. r(H,E ∧ E′) = r(H,E) + r|E(H,E′)

Proof of Claim 3.

r(H,E) + r|E(H,E′) = log

(
Pr(H | E)

Pr(H)

)
+ log

(
Pr(H | E ∧ E′)
Pr(H | E)

)
= log

(
Pr(H | E)Pr(H | E ∧ E′)

Pr(H)Pr(H | E′)

)
= log

(
Pr(H | E ∧ E′)

Pr(H)

)
= r(H,E ∧ E′)

Claim 3 has the following corollary:

Corollary 3.1. r(H,E ∧ E′) = r(H,E) + r(H,E′) if r(H,E′) = r|E(H,E′).

The third measure for which we can establish similar results is the follow:

Z Measure: if Pr(H | E) ≥ Pr(H), then z(H,E) = Pr(H|E)−Pr(H)
1−Pr(H)

if Pr(H | E) < Pr(H), then z(H,E) = Pr(H|E)−Pr(H)
Pr(H)

Crupi, Tentori, and Gonzalez 2007 are the most prominent advocates of z. Un-
fortunately, I cannot provide the result for this measure that is exactly analogous
to the ones that I have provided for the other measures. But I can provide a
less general result. Let us say that E, E′, and E ∧ E′ point the same direction
with respect to H exactly if either Pr(H | E) ≥ Pr(H), Pr(H | E′) ≥ Pr(H),
and Pr(H | E ∧ E′) ≥ Pr(H) or if Pr(H | E) < Pr(H), Pr(H | E′) < Pr(H),
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and Pr(H | E ∧ E′) < Pr(H). Next let us define a term z/E(H,E′) slightly
differently than the other conditionalized measures that we have discussed:

z/E(H,E′) =
Pr(H | E ∧ E′)− Pr(H ∧ E)

α

where α = 1 − Pr(H) if Pr(H | E′) ≥ Pr(H) and where α = Pr(H) if
Pr(H | E′) < Pr(H). We can then show that:

Claim 4. z(H,E ∧E′) = z(H,E) + z/E(H,E′) if E, E′, and E ∧E′ point the
same direction with respect to H.

In the following proof, the assumption that the evidence points the same
direction ensures the α terms in the denominators are the same:

Proof of Claim 4.

z(H,E) + z/E(H,E′) =
Pr(H | E)− Pr(H)

α
+
Pr(H | E ∧ E′)− Pr(H | E)

α

=
Pr(H | E ∧ E′)− Pr(H)

α
= z(H,E ∧ E′)

Claim 4 has the following corollary:

Corollary 4.1. z(H,E ∧E′) = z(H,E) + z(H,E′) if E, E′, and E ∧E′ point
the same direction with respect to H and z(H,E′) = z/E(H,E′).

Thus, our results for z are more limited than those for other measures but
still useful.71

There are, however, certain measures for which I cannot provide any useful
results. Two prominent ones are the following:

Normalized Difference Measure: s(H,E) = Pr(H | E) −
Pr(H | ¬E)72

Carnap’s Measure: c(H,E) = Pr(E)(Pr(H ∧ E)− Pr(H))

Fitelson 2001 has shown that it does not generally hold that:

s(H,E ∧ E′) = s(H,E) + s|E(H,E′)

where s|E(H,E′) = Pr(H | E ∧ E′) − Pr(H | E ∧ ¬E′).73 I am not aware of
results about c of this sort, but there very well may be such results.

This does not fully settle the issue of whether there is a useful condition for
assessing issues related to additivity. There may be such conditions using some
kind of non-standard conditional measure like the one described for z. I do not
know whether such techniques will yield results for s or c.

71A recent note from Branden Fitelson (Fitelson forthcoming) provides a result that makes
this limitation vivid: according to z, it cannot both be that two pieces of evidence point
different direction and that they are independent of one another in a way that allows for the
kind of additive results that we have for the measures above.

72This measure is advocated by, among others, Joyce 1999 and Christensen 1999.
73See Eells and Fitelson 2000 for discussion of the arguments in Christensen 1999 and of

the properties of normalized measures more generally.
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(4), pp. 419–437.

Chang, Ruth, ed. (1997). Incommensurability, Incomparability, and Practical
Reason. Cambridge: Harvard University Press.

Christensen, David (1999). “Measuring Confirmation”. In: Journal of Philoso-
phy 96 (9), pp. 437–461.

Coates, D. Justin (2013). “An Actual-Sequence Theory of Promotion”. In: Jour-
nal of Ethics & Social Philosophy 7 (3).

Colyvan, Mark (2004). “The Philosophical Significance of Cox’s Theorem”. In:
International Journal of Approximate Reasoning 37 (1), pp. 71–85.

Cox, R.T. (1946). “Probability, Frequency, and Reasonable Expectation”. In:
American Journal of Physics 14 (1), pp. 1–13.

Crupi, Vincenzo, Katya Tentori, and Michel Gonzalez (2007). “On Bayesian
Measures of Evidential Support”. In: Philosophy of Science 74 (2), pp. 229–
252.

Dancy, Jonathan (2004). Ethics without Principles. Oxford: Oxford University
Press.

Delgrande, James and Torsten Schaub (2004). “Reasoning with Sets of Defaults
in Default Logic”. In: Computational Intelligence 20 (1), pp. 56–88.

Dung, Phan Minh (1995). “On the Acceptability of Arguments and Its Funda-
mental Role in Nonmonotonic Reasoning, Logic Programming, and n-Person
Games”. In: Artificial Intelligence 77 (2), pp. 321–357.

Earman, John (1992). Bayes or Bust. Cambridge: MIT Press.
Easwaran, Kenny (2014). “Regularity and Hyperreal Credence”. In: Philosoph-

ical Review 123 (1), pp. 1–41.
Eells, Ellery and Branden Fitelson (2000). “Measuring Confirmation and Evi-

dence”. In: The Journal of Philosophy 97 (12), pp. 663–672.

47



Evers, Daan (2013). “Weight for Stephen Finlay”. In: Philosophical Studies 163
(3), pp. 737–749.

Finlay, Stephen (2006). “The Reasons that Matter”. In: Australasian Journal
of Philosophy 84 (1), pp. 1–20.

— (2014). Confusion of Tongues. New York: Oxford University Press.
Fitelson, Branden (forthcoming). “A Problem for Confirmation Measure Z”. In:

Philosophy of Science.
— (1999). “The Plurality of Bayesian Measures of Confirmation and the Prob-

lem of Measure Sensitivity”. In: Philosophy of Science 66 (Proceedings),
S362–S378.

— (2001). “A Bayesian Account of Independent Evidence with Applications”.
In: Philosophy of Science 68 (S3), S123–S140.

Foley, Richard (1991). “Evidence and Reasons for Belief”. In: Analysis 51 (2),
pp. 98–102.

Gibbard, Allan (1986). “A Characterization of Decision Matrices that Yield
Instrumental Expected Utility”. In: Recent Developments in the Foundations
of Utility and Risk Theory. Ed. by Luciano Daboni, Aldo Montesano, and
Marji Lines. Dordrecht: D. Reidel, pp. 139–148.
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