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Abstract

The framework of Solomonoff prediction assigns prior probability to hypothe-

ses inversely proportional to their Kolmogorov complexity. There are two well-

known problems. First, the Solomonoff prior is relative to a choice of Universal

Turing machine. Second, the Solomonoff prior is not computable. However, there

are responses to both problems. Different Solomonoff priors converge with more

and more data. Further, there are computable approximations to the Solomonoff

prior. I argue that there is a tension between these two responses. This is because

computable approximations to Solomonoff prediction do not always converge.
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1 Introduction

We are often interested in how to make predictions on the basis of observed data. This

question is at the heart of scientific inference and statistics. It is also important for

the project of building artificial intelligence which can make inferences from observed

data and act accordingly. Thus, there are many good reasons to be concerned about

the right framework for predictive inference.

One way to tackle this question is the Bayesian approach, which uses a prior prob-

ability distribution over all relevant hypotheses and then updates this prior by condi-

tionalization on the observed data (Earman 1992). The resulting posterior distribution

can be used to make predictions and guide action. The Bayesian approach gives us

a unified framework to think about predictive inference and has been successfully ap-

plied across many fields, from astronomy to finance. However, the Bayesian approach

requires us to start with a prior probability distribution over all relevant hypotheses.

How should we select such a prior probability distribution? This is the problem of the

priors.

A natural response to the problem of the priors is to say that we should assign

higher prior probability to simpler hypotheses. This idea is often known as ‘Ockham’s

razor’ and seems intuitively appealing to many people. However, how do we measure

the simplicity of hypotheses? A possible answer to this question is provided by the

framework of Solomonoff prediction, which formalizes the simplicity of hypotheses using

tools from algorithmic information theory (Solomonoff 1964; Hutter 2007; Sterkenburg

2016; Li and Vitányi 2019). The Solomonoff prior assigns higher probability to hy-

potheses which are simpler in this sense. Since the Solomonoff prior is defined for a

very broad range of hypotheses, it provides a very general response to the problem of

the priors. Moreover, proponents of Solomonoff prediction argue that the Solomonoff

prior is an ‘objective’ and ‘universal’ prior. Thus, the framework of Solomonoff pre-

diction potentially sheds light on the foundations of scientific inference, the problem

of induction and our prospects for building ‘Universal Artificial Intelligence’ (Hutter

2004).

There are two well-known problems for Solomonoff prediction. First, the Solomonoff

prior is relative to a choice of Universal Turing machine, which means that different

choices of Universal Turing machine lead to different priors and different predictions.

It is natural to worry that this undermines the ambition of Solomonoff prediction to
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provide an ‘objective’ and ‘universal’ prior. Second, the Solomonoff prior is not com-

putable, which means that no scientist or AI system could actually use the Solomonoff

prior to make predictions.

There are well-known responses to both objections. While it is true that the

Solomonoff prior is relative to a choice of Universal Turing machine, it can be shown

that different Solomonoff priors converge with more and more data (in a sense which

will be made precise below). Further, while the Solomonoff prior is not computable,

there are computable approximations to it.

I argue that there is a deep tension between these two responses. This is be-

cause different computable approximations to Solomonoff prediction do not always

converge. Therefore, if we care about universal convergence, computable approxima-

tions to Solomonoff prediction do not give us what we want. Thus, proponents of

Solomonoff prediction face a pressing dilemma. Either they have to give up univer-

sal convergence, which leads to problems of language dependence and subjectivity. Or

they have to accept that Solomonoff prediction is essentially uncomputable and so can-

not be of any help to guide the inferences of human and artificial agents. Therefore,

Solomonoff prediction does not solve the problem of finding a universal prior probabil-

ity distribution which can be used as a foundation for scientific inference and artificial

intelligence.

2 Solomonoff Prediction

I start by giving a brief introduction to Solomonoff prediction (Solomonoff 1964; Hutter

2007; Sterkenburg 2016; Li and Vitányi 2019).1

Suppose you are given this initial segment of a binary string:

00000000...

Given this initial segment, what is your prediction for the next bit?

In a Bayesian framework, we can answer this question by consulting a prior proba-

bility measure over the set of all binary strings. To make this answer precise, we first

need to introduce some notation. Let B∞ be the set of all infinite binary strings and

B∗ be the set of all finite binary strings. If x ∈ B∗ and y ∈ B∗ ∪ B∞, we write xy to

1For more discussion, see Ortner and Leitgeb 2009; Rathmanner and Hutter 2011; Vallinder 2012;
Fulop and Chater 2013; Icard 2017; Sterkenburg 2018.
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denote the concatenation of x and y, the (finite or infinite) binary string which starts

with x and continues with y. We say that x is a (proper) prefix of y if y = xz for some

string z (and z is not the empty string).

At first, we focus on a particular kind of set of infinite binary strings:

Definition 1. For every x ∈ B∗, the cylinder Γx ⊆ B∞ is defined by Γx = {xω : ω ∈
B∞} (Li and Vitányi 2019, 265).

Intuitively, a cylinder is a set of binary strings which begin with the same string

and then diverge. For example, Γ1 = {1ω : ω ∈ B∞} is the set of all binary strings

which begin with 1. We write ε for the empty string. Therefore, Γε is the set of all

binary strings which begin with the empty string, which is just the set of all binary

strings. We write C for the set of all cylinders.

With this framework in place, we can define a probability measure as follows. First,

we define:

Definition 2. A pre-measure is a function p : C→ [0, 1] such that

1. p(Γε) = 1,

2. p(Γx) = p(Γx0) + p(Γx1) for all x ∈ B∗.

Intuitively, a pre-measure assigns probabilities to all cylinder sets. Once we have

defined probabilities for all cylinder sets, we can extend our assignment of probabilities

to more complicated sets. Let F be the result of closing C under complementation and

countable union. Thus, F is a σ-algebra. By Carathéodory’s Extension theorem, every

pre-measure p : C→ [0, 1] determines a unique probability measure p : F→ [0, 1] which

satisfies the standard Kolmogorov axioms.2 In light of this, we will abuse notation in

what follows and sometimes refer to a pre-measure p : C → [0, 1] as a probability

measure. If x ∈ B∗, we will often write p(x) to abbreviate p(Γx).

Now the basic idea of Solomonoff prediction is that we should assign higher prior

probability to simpler binary strings. However, what do we mean by ‘simplicity’ or

‘complexity’? We can formalize the complexity of a string as its Kolmogorov complex-

ity : the length of the shortest program in some universal programming language which

outputs that string. We can model a universal programming language as a monotone

2Sterkenburg (2018, 64) sketches a more detailed version of this argument. A similar application
of Carathéodory’s Extension theorem is discussed by Earman (1992, 61).
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Universal Turing machine U (Li and Vitányi 2019, 303). A monotone Universal Turing

Machine has a one-way read-only input tape and a one-way write-only output tape.

The input tape contains a binary string which is the program to be executed, and

the output tape contains a binary string which is the output. The Turing machine

must further be universal, which means that it can emulate any computable function.

Finally, to say that the Turing machine is monotone means that the output tape is

write-only, so the machine cannot edit its previous outputs.3

Then, we define the Solomonoff prior, which assigns prior ‘probability’ to binary

strings inversely proportional to their Kolmogorov complexity. For every finite binary

string b ∈ B∗, we have:

λU(b) =
∑
ρ∈DU,b

2−`(ρ), (1)

where DU,b is the set of minimal programs which lead U to output a string starting

with b and `(ρ) is the length of program ρ. To say that DU,b is the set of minimal

programs which lead U to output a string starting with b means that (i) upon reading

any program in DU,b, U will output a string starting with b and (ii) no proper prefix of

any program in DU,b leads U to output a string starting with b.4 As a rough heuristic,

we can think of λU(b) as the ‘probability’ of producing the string b by feeding random

bits to the Universal Turing Machine U on its input tape. (As we will see in a moment,

the Solomonoff prior is not a probability measure, so this is not quite correct.)

As a simple example, consider a binary string which consists in a very long sequence

of zeros:

000000000...

Here DU,b is the set of minimal programs which output a very long sequence of zeros.

In Python, one of these might be the following program ρ:5

while True:

print(0)

In this example, `(ρ) is the Kolmogorov complexity of our string since it is the length

3The focus on monotone machines is to ensure, via Kraft’s inequality, that the sum in (1) is less
than or equal to one (Li and Vitányi 2019, 275). See also Definition 2 in Wood, Sunehag, and Hutter
2013.

4See Li and Vitányi 2019, 307, Sterkenburg 2016, 466, Definition 5 in Wood, Sunehag, and Hutter
2013.

5Both here and below, I do not claim that these are actually minimal programs but merely use
them as simple toy examples.
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of one of the minimal programs which outputs our string. To find the Solomonoff prior

of our string, we start by computing 2−`(ρ). However, there might be more than one

minimal program which outputs our string. To take this into account, we take the

sum over all such minimal programs, resulting in formula (1). As this example shows,

there are two assumptions build into this framework. First, strings which are produced

by simpler programs should get a higher prior probability. Second, strings which are

produced by more programs should get a higher prior probability.

Each Solomonoff prior λU(·) induces a Solomonoff predictor, which we can write as

follows for every x ∈ B∗:

λU(x1 | x) =
λU(x1)

λU(x)
, λU(x0 | x) = 1− λU(x1 | x). (2)

Intuitively, λU(x1 | x) tells us the probability that the next bit is 1 given that

we observed a string starting with x. So if we fix a Universal Turing machine U , this

answers our earlier question what we should predict about the next bit after seeing some

initial sequence. The hope is that we can encode all real-world inference problems as

problems about predicting the next bit of a binary sequence. If this is possible, we can

use the Solomonoff predictor to predict any kind of real-word event: the probability

that the sun will rise tomorrow, the probability that the stock market will go up next

month and so on.6

As suggested above, the Solomonoff prior is not a pre-measure on C. In particular,

we only have

1. λU(ε) ≤ 1,

2. λU(x) ≥ λU(x0) + λU(x1)

for x ∈ B∗. However, sometimes these inequalities will be strict (Wood, Sunehag, and

Hutter 2013, Lemma 15). Therefore, the Solomonoff prior is only a semi-measure,

which we can think of as a ‘defective’ probability measure. This is a problem, because

there are good reasons to think that rationality requires adherence to the axioms of

probability. There are dutch book arguments, going back to de Finetti (1937), which

6In any concrete application, our predictions will depend not only on the Solomonoff prior, but
also on how we encode a given real-world inference problem as a binary sequence. There are many
different ways to represent (say) the state of the stock market as a binary sequence. Thus, there is a
worry about language dependence here. However, I will bracket this worry, as it turns out that there
is another more direct worry about language dependence, to be discussed in section (3) below.
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show that probabilistically incoherent credences lead agents to accept a sequence of bets

which are jointly guaranteed to yield a sure loss. Further, there are accuracy dominance

arguments which show that probabilistically incoherent credences are guaranteed to

be less accurate than some probabilistically coherent credences.7 Therefore, from a

Bayesian point of view, the Solomonoff prior is arguably a non-starter if it does not

satisfy the axioms of probability. Call this the semi-measure problem.

To fix this problem, we can define the normalized Solomonoff prior ΛU as follows

(Li and Vitányi 2019, 308). We have ΛU(ε) = 1 and for every x ∈ B∗, we recursively

define:

ΛU(x1) = ΛU(x)

(
λU(x1)

λU(x0) + λU(x1)

)
,ΛU(x0) = 1− ΛU(x1). (3)

ΛU is a pre-measure on C and so determines a unique probability measure on F.8

Alternatively, we can interpret the (unnormalized) Solomonoff prior λU as a prob-

ability measure on the set of infinite and finite binary strings (Sterkenburg 2019, 641).

From this perspective, cases in which λU(x) > λU(x0) + λU(x1) represent a situation

in which λU assigns positive probability to the possibility that the binary string ends

after the initial segment x.

Does it matter which of these strategies we pick? It turns out that there is an inter-

esting connection between normalization and the approximation reply to be discussed

below. In particular, normalizing the Solomonoff prior makes it harder to maintain the

approximation reply. But the point of this paper is that there is a tension between the

approximation reply and the convergence reply, and this tension will arise no matter

how we deal with the semi-measure problem. Therefore, my main argument is not

much affected by this choice

3 Relativity and Convergence

We have defined the Solomonoff prior with reference to a Universal Turing machine U .

Since there are infinitely many Universal Turing machines, there are infinitely many

7Standard accuracy arguments are formulated in a setting with a finite algebra of events (Predd
et al. 2009; Pettigrew 2016). However, there are extensions of these arguments to infinite algebras
(Kelley forthcoming).

8There are different ways to normalize λU which is a potential source of subjectivity and arbitrari-
ness. I will not pursue this line of criticism here. Li and Vitányi (2019, Section 4.7) provide a great
historical overview of the different approaches to the semi-measure problem by Solomonoff, Levin and
others
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Solomonoff priors. Furthermore, these priors will often disagree in their verdicts. How

much of a problem is this? Let us take a closer look.

Consider our example above. Suppose you are given the initial segment of a binary

string:

0000000000...

Given this initial segment, what is your prediction for the next bit?

You might hope that Solomonoff prediction can vindicate the intuitive verdict that

the next bit is likely to be a zero. There is an intuitive sense in which a string consisting

entirely of zeros is ‘simple’, and you might hope that our formal framework captures

this intuition, because the shortest program which outputs a string of all zeros is shorter

than the shortest program which outputs a string of ten zeros followed by ones.

In Python, for example, one of the shortest programs to output a string of all zeros

might be the following:

while True:

print(0)

In contrast, one of the shortest programs to output a string of ten zeros followed by

ones might be the following more complicated program:

i = 0

while True:

while i <= 9:

print(0)

i = i + 1

print(1)

Thus, it seems reasonable to expect that our Solomonoff predictor should assign a high

probability to the next bit being zero.

If you find this kind of reasoning compelling, you might also hope that Solomonoff

prediction helps us to handle the ‘New Riddle of Induction’ and tells us why, after ob-

serving a number of green emeralds, we should predict that the next emerald is green

rather than grue (either green and already observed, or blue and not yet observed)

(Goodman 1955).9 Both the hypothesis that all emeralds are green and that all emer-

alds are grue fit our data equally well, but perhaps the all-green hypothesis is simpler

and so should get a higher prior probability.10

9See Elgin 1997 for a collection of classic papers on the ‘New Riddle of Induction’.
10A similar line of argument is suggested by Vallinder (2012, 42).
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However, such hopes are quickly disappointed. This is because different Universal

Turing machines differ in how they measure the Kolmogorov complexity of strings.

Relative to a ‘natural’ Universal Turing machine, a string with all zeros is simpler than

a string with some zeros first and ones after. However, relative to a ‘gruesome’ Universal

Turing Machine, a string with some zeros first and ones afterwards is simpler. If we

think about the issue in terms of programming languages, this is quite obvious—it all

depends on which operations in our programming language are taken to be primitive.

Thus, different Solomonoff priors will license different predictions: Some will predict

that a sequence of zeros will continue with a zero, others will predict that a sequence

of zeros will continue with a one. Thus, if we use one of the Solomonoff priors, there

is no guarantee whatsoever that, after observing a long sequence of zeros, we assign a

high probability to the next bit being zero.

The argument just sketched is a variant on the familiar point that simplicity is lan-

guage dependent. Therefore, different choices of language (Universal Turing machine)

will lead to different priors.11 Without a principled reason for why a ‘natural’ Univer-

sal Turing machine should be preferred over a ‘gruesome’ Universal Turing machine,

the framework of Solomonoff prediction does not give us any reason for why, given an

initial sequence of zeros, we should predict that the next bit is a zero rather than a

one. Therefore, it does not look like the framework of Solomonoff prediction is any

help in distinguishing ‘normal’ and ‘gruesome’ inductive behavior. As a consequence,

it does not look like the framework of Solomonoff prediction gives a satisfying solution

to the problem of the priors.

However, proponents of Solomonoff predictions can respond to this argument. Ac-

cording to them, the relativity of the Solomonoff prior to a choice of Universal Turing

machine is not too worrying, because one can prove that all Solomonoff priors even-

tually converge towards the same verdicts given more and more data. Thus, while

different choices of Universal Turing Machine lead to different predictions in the short

run, these differences ‘wash out’ eventually. So while there is an element of subjectivity

in the choice of Universal Turing machine, this subjective element disappears in the

limit. Call this the convergence reply.12

11Readers familiar with Goodman (1955) will recognize that a version of this argument was leveled
by Goodman against the idea that ‘green’ is more simple than ‘grue’—it all depends on your choice
of primitives.

12This reply is discussed by Rathmanner and Hutter (2011, 1133), Vallinder (2012, 32) and Sterken-
burg (2016, 473).
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Why is it true that different Solomonoff priors converge in their verdicts? To show

this, we can invoke a standard convergence result from Bayesian statistics. To get this

result on the table, we first need to introduce a bit more notation. Let p and p′ be two

probability measures on F. We define:

Definition 3. p is absolutely continuous with respect to p′ if for all A ∈ F,

p(A) > 0 =⇒ p′(A) > 0.

We now need a way of measuring the difference between two probability functions.

Let p and p′ be two probability functions on F. We define:

Definition 4. The total variational distance between p and p′ is

supA∈F | p(A)− p′(A) | .

Intuitively, the total variational distance between two probability functions defined on

the same domain is the ‘maximal disagreement’ between them. We are interested in

what happens after learning more and more data. To capture this, we define:

Definition 5. En : B∞ → C is the function which, given an infinite binary string

b ∈ B∞, outputs the cylinder set of strings which agree with b in the first n places.

Intuitively, En is a random variable which tells us the first n digits of the string we are

observing.13 We further define:

Definition 6. A probability function p : F→ [0, 1] is open-minded if p(Γx) > 0 for all

x ∈ B∗.

This captures the class of probability functions which do not rule out any finite initial

sequence by assigning probability zero to it.

We want to talk about arbitrary probability functions p : F → [0, 1], so we write

∆(F) for the set of all probability functions on F. Now we define:

Definition 7. For any open-minded probability function p : F → [0, 1], p(· | En) :

B∞ → ∆(F) is the function which outputs p(· | En(b)) for each b ∈ B∞.

13One can prove the Bayesian convergence result in a considerably more general setting, working
with an abstract probability space and modeling evidence as sequence of increasingly fine-grained finite
partitions (or sub σ-algebras). However, it is sufficient for our purposes to work with the measurable
space 〈B∞,F〉 introduced earlier.
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So p(· | En) is the result of conditionalizing p(·) on the first n digits of the observed

sequence. To make sure that p(· | En) is always well-defined, we restrict our attention

to open-minded probability functions.

Now we can invoke the following well-known result in Bayesian statistics (Blackwell

and Dubin 1962):14

Theorem 1. Let p and p′ be two open-minded probability functions on F such that p

is absolutely continuous with respect to p′. Then, we have

lim
n→∞

supA∈F | p(A | En)− p′(A | En) |= 0,

p-almost surely. Therefore, p-almost surely, the total variational distance between p

and p′ goes to zero as n→∞.

Let me briefly comment on this result. First, to say that the equality holds ‘p-almost

surely’ means that it holds for all binary sequences except perhaps a set to which p

assigns probability zero. Second, as a direct corollary, if p is absolutely continuous with

respect to p′ and vice versa—so p and p′ agree on which events have prior probability

zero—then p and p′ will also agree that, almost surely, their maximal disagreement will

converge to zero as they observe more and more data. This captures a natural sense

of what it means for p and p′ to converge in their verdicts.

With this result in place, the (almost sure) asymptotic equivalence of all Solomonoff

priors follows straightforwardly.15 Let λU and λU ′ be two Solomonoff priors defined

relative to two Universal Turing Machines U and U ′. Now λU ′ is absolutely continuous

with respect to λU because λU dominates λU ′ , which means that there is a constant c,

depending on U and U ′, such that for all x ∈ B∗, we have λU(x) ≥ cλU ′(x) (Sterkenburg

2018, 71-2). This is because the shortest programs producing a given string relative

to two different Universal Turing machines cannot differ by more than a constant, as

stated by the Invariance Theorem (Li and Vitányi 2019, 105). Since λU and λU ′ were

arbitrary, it follows that all Solomonoff priors are absolutely continuous with respect

to each other.

14This and related results are discussed extensively by Earman 1992, Huttegger 2015, Nielsen and
Stewart 2018, Nielsen and Stewart 2019.

15For the purpose of stating the convergence result, I will assume that the Solomonoff priors are
normalized to be probability measures on F. It is possible to obtain convergence result with the weaker
assumption that Solomonoff priors are semi-measures, but there are difficulties in interpreting these
results (Sterkenburg 2018, 200)—so to simplify our discussion, I’ll stick with probability measures.
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Furthermore, each Solomonoff prior is open-minded. This is because it assigns pos-

itive probability to all computable sequences and every finite sequence is computable.

(In the worst case, we can just hard-code the sequence into our program.) Therefore,

by theorem 1, we have

lim
n→∞

supA∈F | λU(A | En)− λU ′(A | En) |= 0,

almost surely, so λU and λU ′ converge towards the same verdicts. Thus, all the infinitely

many Solomonoff priors are (almost surely) asymptotically equivalent.16

As another consequence, we can show that any Solomonoff prior converges (almost

surely) to optimal predictions on any sequence which is generated by some computable

stochastic process (Sterkenburg 2016, 467). This means that we can think about the

Solomonoff prior as a ‘universal pattern detector’ which makes asymptotically optimal

predictions on the minimal assumption that the data we are observing is generated by

some computable process.

There is much more to say about the convergence reply. In particular, worries

about subjectivity in the short run remain unaffected by long-run convergence results

of the kind explained above (Elga 2016, 314). We still have no argument for why, after

observing a finite number of green emeralds, it is more reasonable to predict that the

next emerald is green rather than grue. However, I am happy to grant for the sake

of argument that long-run convergence endows Solomonoff prediction with some kind

of desirable objectivity. The focus of my argument is how the emphasis on long-run

convergence interacts with another problematic feature of Solomonoff prediction: the

fact that none of the Solomonoff priors are themselves computable.

4 Computability and Approximation

There is a second problem for Solomonoff prediction: None of the infinitely many

Solomonoff priors are computable. This means that there is no possible algorithm

which will tell us, after finitely many steps, what the Solomonoff prior of a particular

binary sequence is—even if we have fixed a choice of Universal Turing machine.

16The ‘almost sure’ qualification matters: it is not true that different Solomonoff priors are asymp-
totically equivalent on all sequences, as shown by Sterkenburg (2018, 95) drawing on Hutter and
Muchnik (2007). However, this is generally true of Bayesian convergence theorems and no partic-
ular problem affecting Solomonoff prediction. For this reason, I will continue to say that different
Solomonoff priors are ‘asymptotically equivalent’ and sometimes drop the qualifier ‘almost surely’.
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Let us first define what it means for a pre-measure p : C→ [0, 1] to be computable,

following Li and Vitányi (2019, 36):

Definition 8. p : C→ [0, 1] is computable if there exists a computable function g(x, k) :

C× N→ Q such that for any Γx ∈ C and k ∈ N,

| p(Γx)− g(Γx, k) |< 1

k
.

This means that a pre-measure p : C→ [0, 1] is computable if there is an algorithm

which we can use to approximate p(Γx) to any desired degree of precision for any

cylinder set Γx ∈ C.

Then, we have the following:

Theorem 2. For any Universal Turing Machine U , λU is not computable (Li and

Vitányi 2019, 303).

Leike and Hutter (2018) discuss further results on the computability of Solomonoff

prediction and related frameworks.

Since it seems plausible that we can only use computable inductive methods, this

looks like a big problem. It is impossible for anyone to actually use Solomonoff pre-

diction for inference or decision making. The lack of computability also seems to

undermine the intended application of Solomonoff prediction as a foundation for arti-

ficial intelligence, since it is impossible to build an AI system which uses Solomonoff

prediction. One might worry that for this reason, Solomonoff prediction is completely

useless as a practical guide for assigning prior probabilities. Further, the lack of com-

putability might cut even deeper. It is unclear whether it is even possible for us, or

any AI agent we might build, to ‘adopt’ one of the uncomputable Solomonoff priors. I

will return to this issue below.

Again, proponents of Solomonoff prediction can respond to this argument. While

it is true that Solomonoff prediction is not computable, it is semi-computable, which

means that there are algorithms which get closer to λU(x) at each step. This means

that there are algorithms which approximate the Solomonoff prior in some sense. Call

this the approximation reply.17

To see how such approximations could work, let me first explain in a bit more

detail why the Solomonoff prior is not computable. Recall that the Solomonoff prior

17This reply is discussed by Solomonoff (1964, 11) and Solomonoff (2009, 8-9).
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of a binary string b is inversely proportional to the Kolmogorov complexity of b: the

length of the shortest program which outputs b, given some Universal Turing Machine.

However, Kolmogorov complexity is not computable.18 There is no possible algorithm

which, given an arbitrary binary string, outputs the Kolmogorov complexity of that

string. As a consequence, the Solomonoff prior is not computable.

However, while Kolmogorov complexity is not computable, there are computable

approximations to it. To simplify drastically, we can approximate the Kolmogorov

complexity of a given string by stopping the search for the shortest program which

outputs that string after a fixed time and consider the shortest program so far which

outputs the string. Call this bounded Kolmogorov complexity.19 We can define a prior

which assigns probability inversely proportional to bounded Kolmogorov complexity.

As we let the search time go to infinity, we recover the original Kolmogorov complexity

of our string.20

Given such approximations, one might hope that Solomonoff prediction is still a

useful constraint on priors. It provides an ideal for the prior probabilities of a compu-

tationally unbounded reasoner, and in practice, we should do our best to approximate

this ideal using our finite computational resources. This attitude is expressed, for ex-

ample, when Solomonoff (1997, 83) writes that “despite its incomputability, algorithmic

probability can serve as a kind of ‘gold standard’ for induction systems”.

As before, there is much more to say about this argument, which raises interesting

questions about ‘ideal theorizing’ and the value of approximation.21 However, I am

happy to grant for the sake of argument that there may be something valuable about

an ideal theory which can never be implemented but only approximated.

There are some messy details which I’m ignoring here. First, it turns out that the

Solomonoff predictor is not even semi-computable (Sterkenburg 2019, 651). Further-

more, the normalized Solomonoff prior is not even semi-computable (Leike and Hutter

2018). Both only satisfy the weaker requirement of limit computability : there is an

algorithm which will converge to the correct probability value in the limit, but is not

guaranteed to get closer at each step. These messy details make it harder to maintain

18Chaitin, Arslanov, and Calude (1995) provide a direct proof of this fact by reducing the problem
of computing Kolmogorov complexity to the Halting problem.

19See Li and Vitányi 2019, Chapter 7 for a rich discussion.
20Veness et al. (2011) provide a concrete approximation to Solomonoff prediction. Also see Schmid-

huber 2002.
21See Staffel 2019; Carr forthcoming for recent discussions of ‘ideal’ vs. ‘non-ideal’ theorizing in

epistemology and the value of approximation.
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the convergence reply, because they make it harder to see how we could have any sensi-

ble method for approximating Solomonoff prediction. However, the point I will discuss

next is an additional problem even if these messy details can somehow be cleaned up.

5 A Dilemma

When pressed on the relativity of the Solomonoff prior to a Universal Turing machine, it

is natural to appeal to asymptotic convergence. When pressed on the uncomputability

of the Solomonoff prior, it is natural to appeal to computable approximations. However,

there is a deep tension between the convergence reply and the approximation reply.

The tension arises for the following reason. Suppose we accept the approximation

reply. We hold that while Solomonoff prediction is not computable, we can use some

computable approximation of Solomonoff prediction to guide our inductive reasoning

and construct AI systems. However, this response undercuts the convergence reply

because, for reasons I will explain in a moment, different computable approximations

to Solomonoff prediction are not necessarily asymptotically equivalent. Therefore, we

can no longer respond to the worry about language dependence by invoking long-run

convergence.

To see why different computable approximations to Solomonoff prediction are not

guaranteed to converge, recall first that different Solomonoff priors do converge because

they are absolutely continuous with respect to each other. Now consider some com-

putable approximation to Solomonoff prediction. There are different ways to spell out

what it means to ‘approximate’ the Solomonoff prior, but for my argument, the details

of how we think about our ‘approximation strategy’ will be largely irrelevant. As ex-

plained above, there are considerable difficulties in whether we can make sense of such

an approximation strategy for the Solomonoff predictor and normalized Solomonoff

prior, since they are only limit computable. I will sidestep these difficulties by treating

the approximation strategy as a black box—what matters is just that our computable

approximation to the Solomonoff prior is some computable probability measure.

Why should it be a probability measure, as opposed to a semi-measure? For stan-

dard Bayesian reasons: to avoid dutch books and accuracy dominance. Why should

it be computable? Because the whole point of the approximation reply is that we can

actually use the approximation to make inferences and guide decisions. So we should

better be able to compute, in a finite time, what the probability of a given event is.
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Otherwise, the approximation reply seems like a non-starter.

So let us consider some approximation to Solomonoff prediction, which is some

computable probability measure. I claim that this computable approximation must

assign probability zero to some computable sequence. This is because every computable

probability measure assigns probability zero to some computable sequence:

Theorem 3. Let p : F → [0, 1] be a computable probability measure. Then, there is

some computable b ∈ B∞ such that p(b) = 0.

This result is originally due to Putnam (1963), who gives a beautiful ‘diagonal

argument’ for it.22 Consider some computable prior p. Here is how to construct a

‘diagonal sequence’ D for our prior p, where Di denotes the i-th bit of D and En

denotes the first n bits of D:

D1 = 0

Dn+1 =

{
1 if p(1 | En) < 1

2

0 if p(1 | En) ≥ 1
2

We arbitrarily start our sequence with a zero. To determine the next digit, we first

check what our prior p predicts after observing a zero. Then, we do the opposite. We

iterate this procedure infinitely many times, and our binary sequence D is finished.

Since we have assumed that p is computable, D must be computable as well.

Now why must p assign probability zero to D? Because by construction, p(Dn+1 |
En) can never go above 1

2
. Therefore, even though the sequence we are observing is

generated by a deterministic computable process, our computable prior cannot predict

the next bit better than random guessing. However, if p(D) were greater than zero,

then p(Dn+1 | En) would eventually climb above 1
2
, which contradicts our assumption.

Sterkenburg (2019) discusses the relationship between Solomonoff prediction and

Putnam’s diagonal argument and concludes that “Putnam’s argument stands” (Sterken-

burg 2019, 653). In particular, Putnam’s argument provides an alternative way to prove

that the Solomonoff prior is not computable.23 My argument here is different, since my

point is that we can use Putnam’s argument to highlight a deep tension between the

22For a wide-ranging discussion of Putnam’s argument, see Earman 1992, Chapter 9. In statistics,
a similar result is due to Oakes (1985), which is explicitly connected to Putnam’s argument by Dawid
(1985). See also Schervish 1985.

23Further, Sterkenburg (2019, 651) points out that we can use Putnam’s argument to show that the
Solomonoff predictor is not semi-computable but only limit-computable.
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approximation reply and the convergence reply. While the tension between the approx-

imation reply and the convergence reply is a relatively straightforward consequence of

Putnam’s diagonal argument, this particular point has not received any attention in

the debate surrounding Solomonoff prediction. I conjecture that this is because the

convergence reply and the approximation reply are often discussed separately, while

not enough attention is paid to how they interact with each other. The convergence

reply inhabits the realm of ‘ideal theorizing’, where we don’t really care about con-

straints of computability, while the approximation reply tries to connect ideal theory

to the real world. However, it is important to pay close attention to how these different

features of our theory interact. With this paper, I hope to take some steps to remedy

this ‘cognitive fragmentation’.

After clarifying what this paper aims to accomplish, let’s get into the argument.

Suppose we use a computable approximation to Solomonoff prediction. The key point

is that we face a choice between different approximations which are not guaranteed to

be asymptotically equivalent.

Consider two different computable priors p and p′ which approximate Solomonoff

prediction in some sense. Note that this could mean two different things: it could mean

that we fix a given Solomonoff prior λU and use two different ‘approximation strategies’.

Alternatively, it could mean that we fix an ‘approximation strategy’ and apply it to two

different Solomonoff priors λU and λU ′ based on different Universal Turing Machines.

The second possibility is closely related to the kind of language dependence discussed

earlier—we might face the choice between a ‘natural’ and a ‘gruesome’ Universal Turing

Machine. The first possibility seems a bit different, it is best characterized as a kind

of ‘approximation dependence’. My argument will work with either of these options.

So we have two computable approximations p and p′. This means, as I have ar-

gued above, that both p and p′ are computable probability measures. By Putnam’s

argument, both p and p′ assign probability zero to some computable sequences. Call

these sequences D and D′. Note, first, that both p and p′ rule out some computable

hypotheses and so seem to make substantive assumptions about the world beyond com-

putability. For those who hold that Solomonoff prediction gives us an ‘universal pattern

detector’ which can find any computable pattern, this is already a problem, because

the approximations p and p′ cannot find every computable pattern. This is a first

hint that the asymptotic properties which make Solomonoff prediction great are not

preserved in computable approximations to Solomonoff prediction.
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Now the key point for my argument is that, if p and p′ are different, then D and D′

might be different as well. So p might assign a positive probability to D′. Conversely,

p′ might assign a positive probability to D. The crucial observation is that while each

prior p is forced to assign probability zero to its ‘own’ diagonal sequence D on pain of

inconsistency, no inconsistency arises when some prior p assigns positive probability to

the diagonal sequence D′ for some other prior p′.24

In the case just discussed, p and p′ fail to be absolutely continuous with respect to

each other, since they differ in what events are assigned probability zero. Therefore,

it is not guaranteed that p and p′ are (almost surely) asymptotically equivalent. They

might yield different verdicts forever. This means that if there is a subjective element

in the choice between p and p′, this subjective element is not guaranteed to ‘wash out’

in the long run.

To bring this out more clearly, we can draw on a recent result by Nielsen and Stewart

(2018). They relax the assumption of absolute continuity and study what happens to

Bayesian convergence results in this more general setting. What they show is the

following: If prior p is not absolutely continuous with respect to prior p′, then p must

assign some positive probability to the event that p and p′ polarize, which means that

the total variational distance between them converges to 1 as they learn an increasing

sequence of shared evidence.25 So if two priors fail to be absolutely continuous with

respect to each other, they must assign positive probability to the event that learning

shared evidence drives them towards maximal disagreement.

I have argued above that two computable approximations of the Solomonoff prior

might fail to be absolutely continuous with respect to each other. In combination with

the result by Nielsen and Stewart (2018), this means that two computable approxima-

tions of the Solomonoff prior might assign positive probability to polarization in the

limit: further evidence drives them towards maximal disagreement. This gives us a

clear sense in which, when we consider computable approximations to the Solomonoff

prior, subjectivity is not guaranteed to ‘wash out’ as we observe more evidence. This,

in turn, means that the choice between our two approximations introduces a signifi-

cant subjective element which is not guaranteed to wash out, but might, with positive

24Here is a simple example. Let p′ be generated by the uniform measure which assigns probability
2−n to each binary sequence of length n. Applying Putnam’s construction, the diagonal sequence
D′ for this prior is the sequence s0 consisting of all zeros. However, we can easily find another
(computable) prior p which assigns positive probability to s0, just let p({s0}) = 1.

25See their theorem 3, which generalizes the classic merging-of-opinion results due to Blackwell and
Dubin (1962).
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probability, persist indefinitely. This looks like bad news for the convergence reply.

Let me add an important clarification. My argument shows that for two com-

putable approximations p and p′ of the Solomonoff prior, it is not guaranteed that

that p and p′ will converge without making further assumptions. We might add addi-

tional requirements on ‘acceptable approximations’ which rule out such cases by forc-

ing all computable approximations to the Solomonoff prior to be absolutely continuous

with respect to each other. However, any such strategy faces a deep problem. Since

each computable prior must assign probability zero to some computable sequence, this

would mean that our set of approximations to the Solomonoff prior rules out some

computable sequences a priori. However, this looks incompatible with the motivation

behind Solomonoff prediction. The Solomonoff prior is supposed to be a ‘universal pat-

tern detector’ which can learn any computable pattern. So the price for forcing asymp-

totic agreement among different approximations to the Solomonoff prior would be to

make substantive assumptions beyond computability, which is exactly what Solomonoff

prediction was designed to avoid.

So there is a deep tension between the convergence reply and the approximation

reply. If we accept the approximation reply, this means that we should use some

computable approximation to the Solomonoff prior to guide our inductive reasoning.

However, the move to computable approximations undercuts the convergence reply,

since different computable approximations are not necessarily asymptotically equiva-

lent. They might, with positive probability, yield different verdicts forever, and never

converge to the same predictions. Therefore, we can no longer dismiss the worry about

language dependence by invoking long-run convergence. For example, if two different

approximations arise from two different Universal Turing Machines, the difference be-

tween ‘natural’ and ‘gruesome’ Universal Turing Machines is not guaranteed to wash

out in the long run, but might stay with us forever. So we better come up with some

good reasons for why we should use a ‘natural’ rather than a ‘gruesome’ Universal

Turing machine.26 More generally, we have to face the problem of subjectivity in the

choice of Universal Turing machine head-on and cannot downplay the significance of

this choice by invoking asymptotic convergence. In fact, the situation is even more

bleak: Even if we find convincing arguments for why some Universal Turing Machine is

the ‘correct’ or ‘natural’ one, we might still face the choice between different ‘approxi-

26See, for example, Rathmanner and Hutter (2011, 1113), who (inconclusively) explore the issue of
whether some Universal Turing Machines might be more ‘natural’ than others.
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mation strategies’ which introduce a persistent subjective element. So when we consider

computable approximations to Solomonoff prediction, both language dependence and

approximation dependence introduce subjective elements which are not guaranteed to

wash out.

Suppose, on the other hand, that we are convinced by the convergence reply. In this

case, we think that what makes Solomonoff prediction great is that different choices

of Universal Turing machine lead to priors which are (almost surely) asymptotically

equivalent and which assign positive probability to all computable sequences. However,

in this case we have to embrace that Solomonoff prediction is essentially uncomputable.

This is because there is no computable prior which assigns positive probability to all

computable sequences. So the emphasis on convergence undercuts the approximation

reply. From this perspective, what makes Solomonoff prediction great is its asymptotic

behavior. However, no computable approximation to Solomonoff prediction preserves

this great asymptotic behavior. Therefore, it is not clear why there is any point in using

a computable approximation to Solomonoff prediction to guide our inductive inferences

or as a foundation for AI.

You might object to my argument as follows: ‘Suppose I adopt the Solomonoff prior.

In response to the charge that it’s not objective, I invoke convergence. In response to

the charge that the Solomonoff prior is not computable, I invoke approximation. In

response to the charge that these computable approximations need not themselves

converge, I simply deny that there’s any problem. The computable approximations are

not my probabilities, they are just useful computational tools that I can use to calculate

and report my (approximate) probabilities.’27

Let me reply to this objection by making clear what the target of my argument is.

I grant that if one can really ‘adopt’ one of the Solomonoff priors and use computable

approximations merely as a tool to report one’s probabilities, this gets around the prob-

lem. But is it really possible for us, or an AI agent we build, to adopt an incomputable

probability function as a prior? This depends on what makes it the case that an agent

has a particular prior, which is a difficult question I cannot fully discuss here. But

it seems plausible that any physically implemented agent can only represent and act

according to a computable prior. Therefore, it is unclear whether we can really ‘adopt’

an uncomputable prior. The same reasoning holds for any AI system which we might

construct. The best we can do is to adopt some approximation to the Solomonoff prior,

27Thanks to an anonymous referee for pressing this objection.
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and my point is that we face some difficult choices in choosing such an approximation.

6 Convergence for Subjective Bayesians

Let me finish by briefly discussing how my argument relates to broader questions in

Bayesian epistemology. As we have seen in the beginning, one of the big questions for

Bayesians is how to choose a prior—the problem of the priors. Solomonoff prediction

is an attempt to solve this problem by specifying a ‘universal’ prior. But, as I have

argued, this ambition ultimately fails, because we lose guaranteed convergence if we

use computable approximations to the Solomonoff prior.

One might wonder whether this argument poses problems for Bayesian convergence

arguments more generally. Bayesians often argue that the choice of prior is not very

significant, because given ‘mild’ assumptions, different priors converge as more data is

observed.28 However, the key assumption is absolute continuity: different priors must

assign positive probability to the same events. And Putnam’s argument shows that

every computable prior must assign probability zero to some computable hypothesis.

Taken together, this suggests that we can only hope for convergence if we agree on

substantive assumptions about the world—beyond computability. So the scope of

Bayesian convergence arguments is more limited than one might have hoped.29

This should not come as a surprise to subjective Bayesians who hold that the choice

of prior embodies substantive assumptions which reflect the personal beliefs of an

agent. Consider, for example, the following passage in Savage (1972) defending a

‘personalistic’ (subjective Bayesian) view of probability: “The criteria incorporated in

the personalistic view do not guarantee agreement on all questions among all honest

and freely communicating people, even in principle. That incompleteness, if one will

call it such, does not distress me, for I think that at least some of the disagreement

we see around us is due neither to dishonesty, to errors in reasoning, nor to friction in

communication [...]” (Savage 1972, 67-8).

If you agree that the choice of prior embodies a subjective element, then the fact that

we cannot guarantee convergence without shared substantive assumptions should not

come as a shock. So my argument does not raise new problems for subjective Bayesians.

28See, for example, the classic discussion in Earman 1992, Chapter 6.
29This is also the conclusion of Nielsen and Stewart (2018), who argue that Bayesian rationality is

compatible with persistent disagreement after learning shared evidence.
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However, it raises problems for any attempt to define a ‘universal’ or ‘objective’ prior

which does not embody substantive assumptions about the world.

7 Conclusion

Proponents of Solomonoff prediction face a dilemma. They cannot simultaneously re-

spond to worries about language dependence by invoking asymptotic convergence while

responding to worries about uncomputability by invoking computable approximations.

This is because, for very general reasons, no computable approximation to Solomonoff

prediction has the same asymptotic behavior as the Solomonoff priors.

In the absence of principled criteria for choosing a Universal Turing machine, it

looks like Solomonoff prediction is either subject to thorny problems of subjectivity

and language dependence, or else essentially uncomputable and therefore useless as a

guide to scientific inference and the design of optimal artificial agents.
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