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Abstract. Substructural logics and their application to logical and semantic paradoxes have been ex-
tensively studied. In the paper, we study theories of naïve consequence and truth based on a non-
re�exive logic. We start by investigating the semantics and the proof-theory of a system based on sche-
matic rules for object-linguistic consequence. We then develop a fully compositional theory of truth and
consequence in our non-re�exive framework.

1. Introduction

Interest in substructural logics and in their application to logical and semantic paradoxes has grown
considerably in recent years. Many recent works focus on non-transitive approaches to paradox
[Rip12, CÉRvR12, CÉRVR13, Rip13a, Rip13b, BRT15, Rip15, BRT16, BPS20], and non-contractive
approaches have also received considerable attention [Gri82, Pet00, Can03, Zar11, MP14, DRR18,
Fje19, Ros19]. By contrast, non-re�exive theories have been investigated less.1 Nevertheless, non-
re�exive theories are especially promising to model the interplay between naïve truth and conse-
quence [NR18]—in this respect, they are evenmore promising than their non-transitive rivals. How-
ever, a systematic study of the logic, the semantics, and the proof-theory of non-re�exive theories of
naïve truth and consequence is currently lacking, and so does a thorough philosophical analysis (and
defence).

The purpose of this paper is to �ll this lacuna, at least in part. First, we introduce the basics
of non-re�exive logic(s) and semantics, and their extensions with naïve consequence (and truth)
rules (§2-3). The two main sections of the paper are §4 and §5. In the former, we �rst build on the
work carried out in [Nic21] on logics of truth to investigate the proof-theory of non-re�exive logics of
consequence, with a special focus on cut-elimination proofs. In §5 we study the interaction between
truth and consequence in non-re�exive systems: this is achieved by providing a compositional theory
of truth and consequence, by establishing the adequacy of such a theorywith respect to the semantics
provided in §3, and by investigating its proof-theoretic properties.
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The present work is mainly a technical study, which aims to consolidate non-re�exive logics as
a viable basis to address semantic paradoxes, and to develop satisfactory theories of naïve seman-
tic notions. Its main �ndings are that (i) naive consequence rules can be added to a non-re�exive
logic while preserving an intuitive semantics and remarkable proof-theoretic properties (above all,
the eliminability of cut); (ii) it is possible to provide a fully compositional theory of truth over a
non-re�exive logic that admits naïve rules for truth and consequence and that axiomatizes a gener-
alization of a standard �xed-point construction for truth.

2. Logics of transparent truth and consequence

Letℒ be a �rst-order languagewith logical constants¬,∧,∀, andℒC ∶= ℒ∪{C} its expansionwith
a binary predicate C(x, y) intended to express object-linguistic consequence.2 Variables are denoted
with x, y, z,…, and terms with r, s, t,… . We assume that ℒ contains constants ⌜'⌝ for any formula
' of the language ℒC, and constants ⊤,⊥. The nature of the names ⌜'⌝ is not fully �xed by the
theory: as customary practice when dealing with logics of semantic concepts, one can assume that
the denotation of ⌜'⌝ in all models of the theory is ' itself [Kre88, Rip12]. Such extra-theoretic
assumptions will become redundant once a proper theory of syntax will be assumed in the �nal
sections of the paper.

Definition 1 (LPC). The system LPC in ℒC contains the following initial sequents and rules, where
Γ,∆,Θ,Λ… are �nite multisets of formulae of ℒC.

(ref−)
Γ, ' ⇒ ',∆

with ' ∈ AtFmlℒ

Γ ⇒ ∆, ' ',Γ ⇒ ∆
(cut)

Γ ⇒ ∆

(⊤) Γ ⇒ ⊤,∆ (⊥) Γ, ⊥ ⇒ ∆

Γ ⇒ ∆, '  ,Γ ⇒ ∆
(Cl)

Γ,C(⌜'⌝, ⌜ ⌝) ⇒ ∆

Γ, ' ⇒  ,∆
(Cr)

Γ ⇒ C(⌜'⌝, ⌜ ⌝),∆

Γ ⇒ ',∆
(¬l)

Γ,¬' ⇒ ∆

Γ, ' ⇒ ∆
(¬r)

Γ ⇒ ¬',∆

Γ, ',  ⇒ ∆
(∧l)

Γ, ' ∧  ⇒ ∆

Γ ⇒ ',∆ Γ ⇒  ,∆
(∧r)

Γ ⇒ ∆, ' ∧  

Γ,∀x', '(s) ⇒ ∆
(∀l)

Γ,∀x' ⇒ ∆

Γ ⇒ '(y),∆
(∀r) y ∉ FV(Γ,∆,∀x')

Γ ⇒ ∆,∀x'

remark 2.
(i) AtFmlℒ denotes the set of atomic formulae of ℒ, i.e. the language without the consequence

predicate, and FV(Γ) denotes the set of free variables of Γ.

(ii) We can de�ne a theory of full disquotational truth as a sub-theory of a de�nitional extension
of LPC obtained by de�ning Tr(x) as C(⌜⊤⌝, x).3

2We de�ne ∨,∃ in the usual way.
3Similarly, we can de�ne a theory of predication or ‘true of’ by generalizing the semantic rules to open formulae.
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(iii) The combination of the rules (Cl) and (Cr) with unrestricted initial sequents, even in the
absence of (¬r), results in inconsistency. This is essentially a version of Curry’s paradox that
has recently received some attention [BM13, NR18].4 Our predicate validates the principles
for “validity” introduced by Beall and Murzi. The intended reading of C(x, y) is “grounded
consequence” in the sense of [NR18]: this provides a model-theoretic interpretation for the
validity predicate, as well as a consistency (and non-triviality) proof for the rules of [BM13].
As explained in [NR18, §2.3], C(x, y) di�ers also from a formal provability predicate, in that
it does not generate a hierarchical concept of consequence – by Löb’s theorem, formal prov-
ability in arithmetic can in fact only validate naive principles for C(x, y) if one ascends to a
stronger system. We will elaborate more on this point in section 3.

(iv) As it happens in the standard G3 systems on which it is based, the formulation of LPC with
context-sharing rules is justi�ed by the admissibility of weakening and contraction in the
system, established below.

3. Fixed-point Semantics

The semantics for the logical rules of LPC is provided by a substructural (non-re�exive) logical con-
sequence relation de�ned over strong Kleene semantics (K3), i.e. the tolerant-strict consequence
relation (TS) de�ned in [CÉRvR12]. This semantics can then be incorporated into a simple �xed-
point construction (introduced in [NR18], and to be recalled in a moment), in order to interpret also
the consequence predicate of LPC. Let us start from the former. In the following, we take for granted
the notion of a strong Kleene (K3) evaluation – see for instance [DRP22].

Definition 3. Let v be a K3 evaluation function. The argument from Γ to ∆ is TS-valid (for Tolerant-
Strict), in symbols Γ ⊨ts ∆ if: for any K3 evaluation function v, if for every ' ∈ Γ, v(') = 1 or n, then
there is at least one  ∈ ∆ s.t. v( ) = 1.

A few basic features of TS are easily stated. Just like strong Kleene logic K3, TS does not have any
classical laws. In other words, no sequent of the form ⇒ ', for ' classically valid, is TS-valid. In
addition, and unlike K3, TS does not have any classical inferences, i.e. no classically valid sequent of
the form Γ ⇒ ∆ is TS-valid. This includes, of course, re�exivity: to see that the inference from ' to
' is not unrestrictedly TS-valid, just consider a K3-evaluation which assigns value n to '. However,
and again unlike K3, TS is closed under all the classically valid meta-inferences: every classically
valid sequent rule is also TS-valid. This means that, as a pure logic, TS contains no sequents, but this
is not so once one combines it with initial sequents, as we will do below.

As announced above, the consequence relation de�ned by TS can be easily combined with a
Kripke-style, �xed-point interpretation of the consequence predicate C(x, y) [Kri75]. That this is
generally possible is guaranteed by the fact that the TS evaluation scheme is monotone in the evalu-
ation ordering.5 For simplicity and de�niteness, we develop the model-theoretic construction in an
arithmetical setting, thus identifying ⊤ and ⊥with some arithmetical truth and falsity, respectively.6

Let then ℒℕ be the language of arithmetic and ℒC
ℕ
∶= ℒℕ ∪ {C}. We assume that the language of

4Of course a contradiction arises only in the presence of contraction: however contraction is admissible in LPT. See Lemma
12 below. For an alternative approach, based on a restriction of cut and of the side sequents in the validity rules, see [BRT16].
5See the Fixed-Model Theorem, [AF80, Fef84].
6It is possible, but somewhat tedious, to generalize the construction to a standard model of syntax theory, thus avoiding the
usual arithmetical interpretation of the coding scheme. We stick to the arithmetical framework for simplicity and legibility.
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arithmetic includes the signature {0, S,+,×} plus �nitely many symbols for primitive recursive func-
tions, which facilitates the development of formal syntax. For instance, it will contain symbols for
the syntactic operations:

s, t ↦ C(⌜s⌝, ⌜t⌝)(1)

n, r, s, t ↦ C(⌜r⌝, ⌜C(⌜r⌝,… ⌜C(⌜r⌝
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

n − 1-times

, ⌜C(⌜s⌝, ⌜t⌝)⌝)…⌝)(2)

The use of ℒℕ presupposes a more comprehensive formalization of the syntax of ℒC. The meaning
of the Gödel quotes is now �xed by a canonical Gödel numbering and a standard formalisation of
syntactic notions and operations. In what follows, we keep assuming a canonical coding of �nite
sets. A sequent is thus simply a pair of �nite sets. We write (Γ; ∆) for (the code of) the sequent
Γ ⇒ ∆. For simplicity, we identify syntactic objects and their codes.

The semantic clauses of the jump given in the next de�nition correspond to standard, classically
valid sequent rules – i.e. classical rules to introduce complex formulae to the left and to the right
of the sequent arrow – plus rules for the consequence predicate that internalize them. As remarked
above, the semantics for LPC is closed under a version of all classical sequent rules, so it’s no surprise
that a semantics for LPC follows the same patterns to interpret the logical vocabulary.

Definition 4 (C-jump [NR18]). Let (Γ; ∆) denote the Gödel code of the sequent Γ ⇒ ∆. For S ⊆ !, the
operator Ψ∶ P(!)→ P(!) is de�ned as follows:

n ∈ Ψ(S) ∶↔ n ∈ S, or

n = (Γ; j = k,∆) and ℕ ⊨ j = k, or

n = (Γ, j = k; ∆) and ℕ ⊭ j = k, or

n = (Γ; C(⌜'⌝, ⌜ ⌝),∆) and (Γ, '; ,∆) ∈ S, or

n = (Γ,C(⌜'⌝, ⌜ ⌝); ∆) and (Γ;',∆) ∈ S, (Γ,  ; ∆) ∈ S, or

n = (Γ,¬'; ∆) and (Γ;',∆) ∈ S, or

n = (Γ; ¬',∆) and (Γ, '; ∆) ∈ S, or

n = (Γ, ' ∧  ; ∆) and (Γ, ',  ; ∆) ∈ S, or

n = (Γ;' ∧  ,∆) and (Γ; ,∆) ∈ S, (Γ;',∆) ∈ S, or

n = (Γ,∀x'; ∆) and (Γ,∀x', '(m); ∆) ∈ S for somem, or

n = (Γ; ∀x',∆) and (Γ;'(m),∆) ∈ S for allm.

Iterations of Ψ can be de�ned as usual, by putting:7

Ψ�(S) = Ψ(
⋃

�<�

Ψ�(S)).

The operatorΨ is both increasing – i.e. S ⊆ Ψ(S) for any S –, andmonotonic: S0 ⊆ S1 entailsΨ(S0) ⊆
Ψ(S1). The latter property entails the existence of �xed points of Ψ, i.e. sets T s.t. Ψ(T) = T. A �xed
point T is said to be inconsistent if, for some sentence ', both (;') and (; ¬') are in T, and consistent
otherwise. We are mainly interested in the minimal of these �xed points ℐΨ ∶=

⋃

�∈Ord
Ψ�(∅). It

can be shown that the minimal �xed point is indeed consistent [NR18].

7For more details, see [Mos74], Chapter 1.
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The following lemma, proved in [NR18], shows that ℐΨ is a model of a naïve, self-applicable con-
sequence predicate.

Lemma 5 ([NR18, Lemma 9]).
(i) (Γ; ∆, ') ∈ ℐΨ and ( ,Γ; ∆) ∈ ℐΨ if and only if (C(⌜'⌝, ⌜ ⌝),Γ; ∆) ∈ ℐΨ;

(ii) (Γ, '; ,∆) ∈ ℐΨ if and only if (Γ; C(⌜'⌝, ⌜ ⌝),∆) ∈ ℐΨ.

Via the de�nition Tr(x) ∶↔ C(⌜0 = 0⌝, x) the minimal �xed point for self-referential truth from
[Kri75] essentially “lives” inside ℐΨ. In particular, one can restrict the construction above to empty
contexts, and the clauses for C(x, y) then obviously can be restricted to:

(; C(⌜0 = 0⌝, ⌜'⌝)) ∈ Ψ(S), if (;') ∈ S;

(C(⌜0 = 0⌝, ⌜'⌝); ) ∈ Ψ(S), if ('; ) ∈ S.

This restriction of the monotone operator Ψ above reaches then �xed points X in which

(;') ∈ X i� (; Tr⌜'⌝) ∈ X(3)

(; ¬') ∈ X i� (; ¬Tr⌜'⌝) ∈ X.(4)

Properties (3) and (4) correspond to the so-called “intersubstitutivity” of truth. For de�niteness, let’s
call J the set of truths of the minimal �xed point X0 so obtained, that is:

J ∶= {' | (;') ∈ X0}.

It’s clear that we can expressΨ(⋅) as a formula of the languageℒ2 of second-order arithmetic in such
a way that

Ψ(S) = {n | ℕ ⊨ F(x, X) [n, S]}

for F(x, X) arithmetical and X occurring only positively – i.e. not in the scope of an even number of
negation symbols – in it. Therefore

n ∈ ℐΨ ⇔ (∀X)
(
(∀x)(F(x, X)→ x ∈ X)→ n ∈ X

)
.

So ℐΨ ∈ Π1
1
. Moreover, by the relationships between J and ℐΨ outlined above, and by Π1

1
-hardness

of J,8 we have:

Corollary 6. ℐΨ isΠ1
1
-complete.

It is well-known thatΠ1
1
-sets have a natural presentation in terms of cut-free in�nitary derivability

[Acz77, Poh09]. The case we are considering is not an exception, and a suitable in�nitary calculus
LPC

∞ can be developed along the lines of the in�nitary system for non-re�exive truth developed
in [Nic21]. LPC∞ is obtained from LPC by (essentially): replacing the axioms for ⊥ and ⊤ with
corresponding rules for arithmetical truth and falsity, and replacing (∀r)with an!-rule.9 By adapting
the analysis in [Nic21], it can be shown that LPC∞ has nice proof-theoretical properties: weakening
and contraction are admissible preserving the (possibly in�nite) length of the derivation, its rules are
invertible, and (crucially) cut is eliminable in it.

In addition, it is possible to show that (possibly in�nitary) proofs in LPC∞ closely “match” the
construction of ℐΨ. More precisely: the ordinal stage of the inductive de�nition in which a sequent
Γ ⇒ ∆ enters in ℐΨ — i.e. its ordinal norm — can be associated to the lengths of cut-free proofs of

8See [Kri75, McG91].
9Two more technical amendments are omitting free variables, and generalizing Cl and Cr to arbitrary terms which code
formulae. See [Nic21] for details.
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Γ ⇒ ∆ in LPC∞. By a well-known result, this ordinal norm cannot exceed the �rst non-recursive
(countable) ordinal !CK

1
:10

(i) If there is a cut-free LPC∞-proof of length ≤ � < !CK
1

of the sequent Γ ⇒ ∆, then (Γ; ∆) ∈
ℐ�+1
Ψ

.

(ii) If (Γ; ∆) ∈ ℐ�
Ψ
, � < !CK

1
, then there there is a cut-free LPC∞-proof of length ≤ � + n < !CK

1

of Γ ⇒ ∆, for some n ∈ !.

If one restricts their attention to pairs of sentences, the above result entails the existence of a tight
correspondence between the extension of the consequence predicate in ℐΨ, and the consequence
ascriptions derivable in LPC∞. More speci�cally, for all ',  ∈ ℒC, the following are equivalent

(i) LPC∞ ⊢ ' ⇒  ;

(ii) LPC∞ ⊢ ⇒ C(⌜'⌝, ⌜ ⌝);

(iii) ('; ) ∈ ℐΨ.

4. Proof Theory of LPC

In this section we focus on the proof-theoretic properties of LPC. Our analysis culminates in the
full eliminability of cut in it. The key technical insight that makes cut fully eliminable—and that is
extensively investigated in [Nic21]—is a strong form of invertibility of the C-rules (Lemma 10).

The notions of length of a derivation is standardly de�ned [Sch77, TS03].11 Given a calculus with
rules that are at most �-branching, the length of a derivationD is the supremum of the lengths of its
direct sub-derivationsD
 increased by one:

d = sup{d
 + 1 | 
 < �}

Clearly, for LPC, � = 2 and the length of derivations is �nite. We will write ⊢LPC Γ ⇒ ∆ to indicate
that there is a derivation of the sequent Γ ⇒ ∆ in LPC, andD ⊢LPC ' to indicate thatD is a proof of
' in LPC.

In developing the proof theory of LPC, it is convenient to work in a system that is extensionally
equivalent to LPC, but that features an explicit labelling of formulae in sequents in a proof. Ex-
tensional equivalence means in this context that labelling does not allow one to obtain new proofs,
but only to keep track of existing ones. This machinery is left implicit in work on the restriction of
identity sequents [SH16, Fis18], but it’s required for a formally precise cut-elimination argument,
and in particular to de�ne the main measure of complexity – called C-complexity – for applica-
tions of the C-rules to formulae in derivations. For each proof D, we assume a labelling function
lD ∶ FormℒC

→ ! ⧵ {0, 1} applying to formulae in initial sequents. Labels then expand in a uniform
way depending on the rule employed. For instance, for di�erent rules con�gurations, we have:


k, 'l ⇒  m, �n


(1,k),⇒ C(⌜'⌝, ⌜ ⌝)(l,m), �(1,n)
,


k, 'l ⇒ �m


(1,k),⇒ ¬'(1,l), �(1,m)
,


k ⇒ 'l, �m 
n ⇒  p, �q


(k,n) ⇒ ' ∧  (l,p), �(m,q)
.

All other rules conform to one of these patterns, and are labelled in an analogous way. Full details of
the labelling machinery, including its extension to in�nitary rules, can be found in [Nic21]. Once we
know in principle that we can always employ labels to uniquely refer to formulae and their “history”

10See for instance, [Poh09, Thm. 6.6.4].
11Our notion of length amounts to what is called depth in [TS03].
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throughout a proof, we can choose to omit labels for the sake of readability. We will often choose to
do so.

In a nutshell, the C-complexity of a formula keeps track of the applications of the C-rules: initial
sequents and ℒ-formulae have complexity 0, and the only way to increase the C-complexity of a
formula is by introducing the consequence predicate.

Definition 7 (C-complexity). The ordinal C-complexity �(⋅) of a formula ' of ℒC in a derivationD
is de�ned inductively as follows:

(i) formulae of ℒ have C-complexity 0 in anyD;

(ii) IfD is just
Γ, ' ⇒ ',∆

with ' ∈ ℒ, then �( ) = �(') = 0 for all  ∈ Γ,∆. Similarly for (⊤), (⊥).

(iii) IfD ends with
Γ ⇒ ∆, '

¬',Γ ⇒ ∆

then �(') = �(¬') and the C-complexity of the formulae in Γ,∆ is unchanged. Similarly for
(¬r) and (∀r).

(iv) IfD ends with
Γ, ',  ⇒ ∆

' ∧  ,Γ ⇒ ∆

then �(' ∧  ) = max(�('), �( )) and the C-complexity of the formulae in Γ,∆ is unchanged.

(v) IfD ends with
Γ ⇒ ∆, ' Γ ⇒ ∆,  

Γ ⇒ ∆, ' ∧  

then �(' ∧  ) = max(�('), �( )) and the complexity of occurrences in side formulae is the
maximum of the corresponding occurrences of side formulae in premisses.

(vi) IfD ends with
Γ, ' ⇒  ,∆

Γ ⇒ C(⌜'⌝, ⌜ ⌝),∆

then �(C(⌜'⌝, ⌜ ⌝)) = max(�('), �( )) + 1 and the C-complexity of the formulae in Γ,∆ is
unchanged.

(vii) IfD ends with
Γ ⇒ ∆, '  ,Γ ⇒ ∆

Γ,C(⌜'⌝, ⌜ ⌝) ⇒ ∆

then �(C(⌜'⌝, ⌜ ⌝)) = max(�('), �( ))+1 and the complexity of occurrences in side formulae
is the maximum of the corresponding occurrences of side formulae in premisses.
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(viii) IfD ends with
Γ,∀x'k, '(t) ⇒ ∆

∀x'l,Γ ⇒ ∆

then �(∀x'l) = max(�(∀x'k), �('(t))) and the C-complexity of the formulae in Γ,∆ is un-
changed.

(ix) IfD ends with
Γ ⇒ ∆, ' ',Γ ⇒ ∆

Γ ⇒ ∆

then the complexity of occurrences in side formulae is the maximum of the corresponding oc-
currences of side formulae in premisses. In this case the complexity of the cut formula is the
maximum of its two active occurrences.

We start by observing that, in proofs of sequents containing ⊤ on the left, and ⊥ on the right, the
occurrences of such constants can be omitted. Both claims follow by a straightforward induction on
the length of the proof that preserves the C-complexity of the formulae in the contexts.

Lemma 8.
(i) If ⊢LPC ⊤,Γ ⇒ ∆, then ⊢LPC Γ ⇒ ∆ and the C-complexity of the formulae in the contexts is

unchanged.

(ii) If ⊢LPC Γ ⇒ ∆, ⊥, then ⊢LPC Γ ⇒ ∆ and the C-complexity of the formulae in the contexts is
unchanged.

In both claims, the length of the derivation is preserved.

Next, we turn to subsitution and weakening lemmata. Again, a proof by induction on the length
of derivations is required. In the proof of weakening, the formulation of (ref), (⊤), (⊥) with arbitrary
contexts is of course essential.

Lemma 9 (Substitution, Weakening).
(i) If Γ ⇒ ∆ is derivable in LPC, then Γ∗ ⇒ ∆∗ is LPC-derivable, where Γ∗, ∆∗ are obtained by

uniformly replacing in Γ, ∆, a variable x by a term t which is free for x and does not contain
variables employed in applications of (∀r) in the proof of Γ ⇒ ∆. Moreover, the C-complexity
of the formulae involved in the substitution and in the contexts does not change.

(ii) Weakening is �-admissible in LPC. That is, if we prove Γ ⇒ ∆, we can prove Γ ⇒ ',∆ (or
Γ, ' ⇒ ∆), so that �(') = 0.

In both claims, the length of the derivation is preserved.

The next lemma marks out the key property of LPC which makes it possible to generalize the
standard G3-strategy for the admissiblity of cut to the present setting. All rules of LPC, including
the rules for the consequence predicate, are invertible in a strong sense that preserves, and in the
appropriate cases reduces, the C-complexity of formulae.

Lemma 10 (�-invertibility of LPC-rules).
(i) IfD ⊢LPC Γ,C(⌜'⌝, ⌜ ⌝) ⇒ ∆, then there areD′ ⊢LPC Γ ⇒ ∆, ' andD′′ ⊢LPC  ,Γ ⇒ ∆ with

�('), �( ) = �(C(⌜'⌝, ⌜ ⌝)), if �(C(⌜'⌝, ⌜ ⌝)) = 0, or
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�('), �( ) < �(C(⌜'⌝, ⌜ ⌝)), if �(C(⌜'⌝, ⌜ ⌝)) > 0,

and in which the C-complexity of the side formulae does not increase.

(ii) IfD ⊢LPC Γ ⇒ C(⌜'⌝, ⌜ ⌝),∆, then there is aD′ ⊢LPC Γ, ' ⇒  ,∆ with

�('), �( ) = �(C(⌜'⌝, ⌜ ⌝)), if �(C(⌜'⌝, ⌜ ⌝)) = 0, or

�('), �( ) < �(C(⌜'⌝, ⌜ ⌝)), if �(C(⌜'⌝, ⌜ ⌝)) > 0,

and in which the C-complexity of the side formulae is no greater than their �-maximal occur-
rence in the premisses.

(iii) IfD ⊢LPC Γ,¬' ⇒ ∆, there there is aD′ ⊢LPC Γ ⇒ ',∆ with �(') ≤ �(¬') and in which the
C-complexity of the side formulae does not increase.

(iv) IfD ⊢LPC Γ ⇒,¬',∆, there there is aD′ ⊢LPC Γ, ' ⇒ ∆ with �(') ≤ �(¬') and in which the
C-complexity of the side formulae does not increase.

(v) IfD ⊢LPC Γ, ' ∧  ⇒ ∆, then there is aD′ ⊢LPC Γ, ',  ⇒ ∆ with �('), �( ) ≤ �(' ∧  ) and
in which the C-complexity of the side formulae does not increase.

(vi) If D ⊢LPC Γ ⇒ ' ∧  ,∆, then there are D′ ⊢LPC Γ ⇒ ∆, ' and D′′ ⊢LPC Γ ⇒ ∆,  with
�('), �( ) ≤ �(' ∧  ) and in which the C-complexity of the side formulae is no greater than
their �-maximal occurrence in the premisses.

(vii) IfD ⊢LPC Γ ⇒ ∆,∀x', then there isD′ ⊢LPC Γ ⇒ ∆, '(y), for any y not free in Γ,∆,∀x', with
�('(y)) ≤ �(∀x') and in which the C-complexity of the side formulae does not increase.

Crucially, the invertibility of the rules preserves the length of the proof.

Proof. We proceed by induction on the length of the proof D but only show (i). The other cases are
similar or easier. For (vii), one essentially employs the substitution lemma (Lemma 9(i)).

If Γ,C(⌜'⌝, ⌜ ⌝) ⇒ ∆ is an initial sequent, then it is for the form Γ0, �,C(⌜'⌝, ⌜ ⌝) ⇒ �,∆0, or
Γ ∶= Γ0, ⊥, or∆ ∶= ∆, ⊥. In all such cases the claim is trivially obtained since Γ ⇒ ∆, ' and  ,Γ ⇒ ∆

are also initial sequents.
IfΓ,C(⌜'⌝, ⌜ ⌝) ⇒ ∆ isnot an axiom, there are two cases to consider. The�rst inwhichC(⌜'⌝, ⌜ ⌝)

is principal in the last inference ofD, the second inwhich it is not. In the former case, �(C(⌜'⌝, ⌜ ⌝)) >
0, and the claim follows immediately by de�nition of C-complexity in the case of an application of
(Cl). In the latter case, suppose thatD ends with

D0

C(⌜'⌝, ⌜ ⌝)k0 ,Γ0 ⇒ ∆0

D1

C(⌜'⌝, ⌜ ⌝)k1 ,Γ1 ⇒ ∆1 (r)
C(⌜'⌝, ⌜ ⌝)k2 ,Γ ⇒ ∆

(we treat the case of an arbitrary binary rule, the case of unary rules is simpler). The induction
hypothesis applied toD0 andD1 yields derivations

D00 ⊢LPC Γ0 ⇒ ∆0, '
k00 D01 ⊢LPC  

k01 ,Γ0 ⇒ ∆0

D10 ⊢LPC Γ1 ⇒ ∆1, '
k10 D11 ⊢LPC  

k11 ,Γ1 ⇒ ∆1

such that, in both cases, �('), �( ) = �(C(⌜'⌝, ⌜ ⌝)), if �(C(⌜'⌝, ⌜ ⌝)) = 0, and �('), �( ) <

�(C(⌜'⌝, ⌜ ⌝)), otherwise. Therefore the required derivations are obtained by applications of (r)
toD00 andD11, andD10 andD01, respectively. qed.
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remark 11. In the presence of (ref), the inversion strategy considered above will not go through.
For instance, the derivability of a sequent of the form Γ,C(⌜'⌝, ⌜ ⌝) ⇒ C(⌜'⌝, ⌜ ⌝),∆ does not guar-
antee, for instance, the derivability of a sequent Γ, ' ⇒  ,∆ with �(') ≤ �(C(⌜'⌝, ⌜ ⌝)). This fact is
crucial for the next lemma, in which contraction is shown to be �-admissible.

Lemma 12 (�-admissibility of contraction).

(i) IfD ⊢LPC Γ, '
k0 , 'k1 ⇒ ∆, then there is aD′ ⊢LPC Γ, ' ⇒ ∆ with �(') ≤ max(�('k0), �('k1))

and in which the C-complexity of the side formulae does not increase.

(ii) IfD ⊢LPC Γ ⇒ 'k0 , 'k1 ,∆, then there is aD′ ⊢LPC Γ ⇒ ',∆ with �(') ≤ max(�('k0), �('k1))

and in which the C-complexity of the side formulae does not increase.

Crucially, in both claims the length of the original derivation is preserved.

Proof. The proof is by induction on the length ofD. One proves (i) and (ii) simultaneously.
The case of initial sequents follows immediately by the de�nition of C-complexity. The sub-case

of the induction step in which neither 'k0 nor 'k1 is principal in the last inference is immediate by
induction hypothesis.

What remains is the case in which Γ, 'k0 , 'k1 ⇒ ∆ or Γ ⇒ 'k0 , 'k1 ,∆ are not initial sequents, and
one of'k0 or'k1 is principal in the last inference. We treat the crucial cases inwhich' isC(⌜'⌝, ⌜ ⌝).

For (i), if C(⌜'⌝, ⌜ ⌝)k0 is principal in the last inference, thenD is of the form:
D0

Γ,C(⌜'⌝, ⌜ ⌝)k10 ⇒ ∆, 'k00

D1

 k01 ,Γ,C(⌜'⌝, ⌜ ⌝)k11 ⇒ ∆
(Cl)

Γ,C(⌜'⌝, ⌜ ⌝)k0 ,C(⌜'⌝, ⌜ ⌝)k1 ⇒ ∆

such that �('k00), �( k01) < �(C(⌜'⌝, ⌜ ⌝)k0).
We can then apply the inversion Lemma toD0 to obtain a

D′
0
⊢LPC Γ ⇒ ∆, '

k′
00 , 'l

with

�('l) = �(C(⌜'⌝, ⌜ ⌝)k10) if �(C(⌜'⌝, ⌜ ⌝)k10) = 0

�('l) < �(C(⌜'⌝, ⌜ ⌝)k10) if �(C(⌜'⌝, ⌜ ⌝)k10) ≠ 0

Similarly, inversion applied toD1 yields

D′
1
⊢LPC  

m,  
k′
01 ,Γ ⇒ ∆

with

�( m) = �(C(⌜'⌝, ⌜ ⌝)k10) if �(C(⌜'⌝, ⌜ ⌝)k10) = 0

�( m) < �(C(⌜'⌝, ⌜ ⌝)k10) if �(C(⌜'⌝, ⌜ ⌝)k10) ≠ 0

By induction hypothesis, we obtain:

D′′
0
⊢LPC Γ ⇒ ',∆

D′′
1
⊢LPC  ,Γ ⇒ ∆

An application of (Cl) yields the desired

D′ ⊢LPC Γ,C(⌜'⌝, ⌜ ⌝) ⇒ ∆



Systems for non-re�exive consequence 11

with the required C-complexity

�(C(⌜'⌝, ⌜ ⌝)) = max(�('), �( )) + 1

≤ max(�(C(⌜'⌝, ⌜ ⌝)k0 , �(C(⌜'⌝, ⌜ ⌝)k1))

For (ii), if C(⌜'⌝, ⌜ ⌝)k0 is principal in the last inference, thenD is of the form:
D0

Γ, 'k00 ⇒  k01 ,C(⌜'⌝, ⌜ ⌝)k10 ,∆

Γ ⇒ C(⌜'⌝, ⌜ ⌝)k0 ,C(⌜'⌝, ⌜ ⌝)k1 ,∆

Inversion applied toD0 yields a proofD′
0
ending with

Γ, 'l0 , '
k′
00 ⇒  

k′
01 ,  l1 ,∆

By two applications of the induction hypothesis, we obtain a proofD′′
0
of

Γ, ' ⇒  ,∆

with

�(') ≤ max(�('
k′
00), �('l0)) (=∶ �)

�( ) ≤ max(�( 
k′
01), �( l1)) (=∶ �)

Therefore, by (Cr), one obtains a derivation of Γ ⇒ C(⌜'⌝, ⌜ ⌝),∆ with

�(C(⌜'⌝, ⌜ ⌝)) = max(�, �) + 1 ≤ max(�(C(⌜'⌝, ⌜ ⌝)k0), �(C(⌜'⌝, ⌜ ⌝)k1)).

It is worth noticing that the formulation of (∀l) and its associatedC-complexity renders the case of
(i) in which one of the '’s is principal in the last inference and of the form ∀x' straightforward. qed.

We can �nally state and prove the cut-elimination lemma for LPC. We start with the reduction
lemma.

Lemma 13 (Reduction). IfD0 is a cut-free proof of Γ ⇒ ∆, 'k in LPC, andD1 is a cut-free LPC-proof
of 'l,Γ ⇒ ∆, then there is a cut-free proofD of Γ ⇒ ∆ in which the C-complexity of the side formulae is
no greater than their �-maximal occurrence in the premisses.

Proof. The proof is by a main induction on �(') = max(�('l), �('k)), with side inductions on the
logical complexity of ' and on the sum d0 + d1 of the lengths of D0 and D1. We consider the main
cases.

Case 1. One ofD0,D1 is an initial sequent, sayD0. If ' is not principal, then Γ ⇒ ∆ is already an
initial sequent. If ' is principal in it, then we can distinguish two cases. IfD0 ⊢ Γ0, ' ⇒ 'k,∆, then
we can apply Lemma 12 to D1 to obtain a derivation of Γ ⇒ ∆ whose formulae have the required
C-complexity. IfD0 ⊢ Γ ⇒ ⊤k,∆, thenD1 ⊢ ⊤l,Γ ⇒ ∆. By lemma 8(i), Γ ⇒ ∆ is derivable with the
expected C-complexity.

Case 2. The cut formula is not principal in one of the premises, say D1. For instance the last
inference of D1 is an application of (Cl). Then, with Γ ∶= C(⌜'⌝, ⌜ ⌝),Γ0, the derivation D ends
with:
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D0

C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆, �

D10

�,Γ0 ⇒ ∆, '

D11

�,  ,Γ0 ⇒ ∆

�,C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆

C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆

By the weakening lemma, D can be transformed into a derivation D′ whose last inference is an
application of (Cl), whose premises are

D′
0

C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆, ', �

D′
10

�,C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆, '

C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆, '

and
D′
0

 ,C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆, �

D′
11

�,  ,C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆

 ,C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆

Therefore D′ ⊢ C(⌜'⌝, ⌜ ⌝),C(⌜'⌝, ⌜ ⌝),Γ0 ⇒ ∆. The upper cuts in D′ can be eliminated by side
induction hypothesis, since d′

0
+ d′

11
, d′

0
+ d′

10
< d0 + d1. Moreover, since the weakened formulae

can have lowest possible C-complexity, an application of the contraction lemma to the transformed
derivation yields the claim. The other cases in which the cut formula is not principal are easier.

Case 3. The cut formula is principal in the last inference of D0 and D1. The case in which the
cut formula is C(⌜'⌝, ⌜ ⌝) is particularly easy, by main induction hypothesis, because the cut can
be pushed upwards and applied to the ancestors of the cut formula, which have strictly smaller C-
complexity. The case in which the cut formula is principal and of the form ∀x' is treated standardly
as well but one has �rst to get rid of the universal quanti�er in the premise of (∀l). This involves an
essential application of the substitution lemma [TS03, §4.1]. qed.

remark 14. Although our proof of lemma 13 above relies heavily on lemma 12, the role of �-
admissibility of contraction can be circumscribed to the role it plays in Case 1 – that is, the case
in which one of the premisses is an axiom and the cut formula is principal.

In Case 2, and in the speci�c sub-case treated above, one can apply the inversion lemma toD0 to
obtain LPC-proofs D′

00
⊢ Γ0 ⇒ ∆, ', � and D′

01
⊢  ,Γ0 ⇒ ∆, �. These can then be combined with

D10 and D11 respectively, and then (Cl) applied to the results of the shorter cuts. Such template,
with inversion playing the fundamental role, can be applied to all other sub-cases of Case 2 except of
course (∀l). In such case,D has the form:

D00

Γ0, '(s),∀x' ⇒ ∆, �

Γ0,∀x' ⇒ ∆, �

D1

�,Γ0,∀x' ⇒ ∆

Γ0,∀x' ⇒ ∆

In such case, one can therefore weaken D1, apply cut to such weakened derivation and D00, and
then apply (∀l).

By repeated applications of the Reduction Lemma, we can then obtain:

Corollary 15. The rule (cut) is eliminable in LPC.
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Since the cut-elimination proof above displays standard bounds for the reduction, Corollary 15 can
be formalized in I∆0+superexp, where I∆0 is the subsystem of PA featuring only bounded induction,
and

superexp ∶= ∀x∃y(2xx = y),

with 2x
0
= x, 2x

y+1
= 2

2xy .
The strategy leading to the cut-elimination theorem above clearly generalizes to the case of the

theory obtained by replacing the C-rules with the rules (Tr-l) and (Tr-r). One simply has to replace
the C-complexity with a truth complexity measure (cf. section 5 below). Similarly, one can apply the
strategy to a theory of naïve abstraction (or property predication) based on rules of the form

Γ ⇒ ∆, '(t)
∈r

Γ ⇒ ∆, t ∈ {x | '}

'(t),Γ ⇒ ∆
∈l

t ∈ {x | '},Γ ⇒ ∆

where instead of a naming device one assumes a term-forming abstraction operator {⋅ | ⋅}—e.g. along
the lines of the one employed for a contraction-free set theory in [Can03]. ∈-complexity is then
de�ned in the obvious way: given a derivationD ending with ∈l, the ∈-complexity of t ∈ {x | '} is
de�ned as the ∈-complexity of '(t) plus one. On can then follow the template of De�nition 7. All
results above then carry over with only minimal modi�cations.

5. A compositional theory of non-reflexive truth and consequence

In their [HH06], Halbach and Horsten develop a formal system, called PKF (for Partial Kripke-
Feferman), which axiomatizes Kripke’s �xed point models over Peano Arihtmetic (PA) in strong
Kleene logic. PKF constitutes the basis of any theory of truth that extends Kripke’s theory with extra-
resources – e.g. a new conditional [Fie08, Lei18]. In this section, we develop a twin-theory of PKF,
which we call RKF, whose logic is based – somewhat unsurprisingly – on a restriction of (ref). PKF
and RKF are twins in the sense that for X a �xed point model for the language ℒTr obtained in the
manner suggested in section 3,

(ℕ, X) ⊨k3 PKF i� (ℕ, X) ⊨ts RKF

This obviously entails that RKF is also a theory of naïve truth, and in fact an axiomatisation of
Kripke’s theory of truth in partial (substructural) logic. Actually, RKF is still richer: it is also a theory
of naïve consequence, whereas PKF cannot be. In fact, just as a naïve truth predicate can be de�ned
from the naïve consequence predicate of LPC, so can a predicate for naïve consequence (obeying the
rules (Cl) and (Cr)) be de�ned from the naïve truth predicate of RKF (the naïveté of the latter, in
turn, follows from the compositional rules of RKF). De�nition 16, Lemma 20, and Corollary 21 will
establish this claim more precisely. By contrast, since PKF is a fully structural theory, the presence
of naïve consequence rules would immediately entail triviality by an internalized version of Curry’s
paradox—the V-Curry paradox by [BM13].

In addition to the vicinity of RKF to well-known theories with restricted operational rules, RKF
displays some important theoretical virtues. First, it admits a nice semantics (via the simple, induc-
tive construction reviewed in section 3) which is matched by the axiomatic theory. More speci�cally,
RKF enjoys an adequacy result with respect to the �xed points of the inductive construction (Propo-
sition 22). Adequacy results have been defended as a theoretical virtue for theories of truth, e.g.
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by [FHKS15]. Moreover, non-re�exive approaches of the kind we discuss here admit a full inter-
de�nability of naïve validity and naïve truth (via the conditional), and both notions enjoy fully sym-
metric rules (Lemma 20 and Corollary 21). Here, we leave open the question of which approach is
ultimately preferable as an environment to formalize naïve semantic notions. This work is aimed at
producing new results concerning non-re�exive theories, in order to better assess their prospects as
formal approaches to naïve semantic notions.

As anticipated above, in order to formulate RKF, it is more convenient to take the truth predicate
as primitive. Let ℒTr be the language given by adding a fresh unary predicate Tr to the language of
arithmetic, i.e. ℒℕ ∪ {Tr}. In this language, we can de�ne the consequence predicate via a combi-
nation of truth and conditional, putting C(x, y) ∶↔ (Tr(x) → Tr(y)), i.e. ¬(Tr(x) ∧ ¬Tr(y)). Due
to the fact that the logic TS has all the classical meta-inferences, and thus the conditional can be
introduced and eliminated just as the consequence predicate, one can easily de�ne truth in terms of
consequence and the other way around.

One last piece of notation, following [Fef91]. Let num(x) be the function symbol representing the
primitive recursive function that sends each number to its numeral. Given a formula '(v), we write
⌜'(ẋ)⌝ for the result of formally substituting the variable v for the numeral ofx in' (see e.g. [Smo77]).
Moreover, x(y∕v) stands for the result of formally substituting y for the (code of) the variable v in x
(we follow the conventions in [Hal14])

Definition 16 (RKF). The theory RKF in ℒTr has the following components:
(i) The logical component of LPC, that is the initial sequents and rules of LPC except (Cl) and (Cr)

(ii) The initial sequents Γ ⇒ ∆, ' for ' a basic axiom of PA, including identity axioms:

Γ ⇒ ∆, t = t; Γ, P(r), r = s ⇒ ∆, P(s) for P an atom of ℒTr.

(iii) All instances of the induction schema for all formulae '(v) of ℒTr:
Γ ⇒ '(0),∆ Γ, '(x) ⇒ '(x + 1),∆

Γ ⇒ ∀x',∆

with x not free in Γ,∆,∀x'.
(iv) The following truth rules:

Γ ⇒ P(x1,… , xn),∆(Trat1)
Γ ⇒ Tr(⌜P(ẋ1,… , ẋn)⌝),∆

Γ, P(x1,… , xn) ⇒ ∆
(Trat2)

Γ,Tr(⌜P(ẋ1,… , ẋn)⌝) ⇒ ∆

P(x1,… , xn) an atom of ℒℕ

Γ ⇒ Tr(x),∆
(Tr1)

Γ ⇒ Tr⌜Tr(ẋ)⌝,∆

Γ,Tr(x) ⇒ ∆
(Tr2)

Γ,Tr⌜Tr(ẋ)⌝ ⇒ ∆

Γ ⇒ ¬Tr(x),∆
(Tr¬1)

Γ ⇒ Tr(¬. x),∆
Γ,¬Tr(x) ⇒ ∆

(Tr¬2)
Γ,Tr(¬. x) ⇒ ∆

Γ ⇒ Tr(x),∆ Γ ⇒ Tr(y),∆
(Tr∧1)

Γ ⇒ Tr(x∧. y),∆
Γ,Tr(x),Tr(y) ⇒ ∆

(Tr∧2)
Γ,Tr(x∧. y) ⇒ ∆

Γ ⇒ Tr(x(ẏ∕v)),∆
(Tr∀1)

Γ ⇒ Tr(∀. vx),∆
y ‘not free’ (see remark) in Γ,∆,Tr(∀. vx)

Γ,Tr(x(t∕v)) ⇒ ∆
(Tr∀2)

Γ,Tr(∀. vx) ⇒ ∆
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A few comments on the de�nition:

remark 17.
(i) Syntactic functions operating on codes of ℒTr-expressions will be presented in simpli�ed

form for the sake of readability. For instance the operation e1, e2 ↦ e1 = e2 represented
in RKF by means of a function id(x, y), is abbreviated as (x = y). Similarly for the other
syntactic operations employed in the de�nition.

(ii) TheTr-rules for connectives and quanti�ers are presented in simpli�ed forms, with variables
intended to range over sentences and terms, according to the form of the rules. For instance,
(Tr∧1) is short for:

Γ, SentℒTr(x) ⇒ Tr(x),∆ Γ, SentℒTr(y) ⇒ Tr(y),∆

Γ, SentℒTr(and(x, y)) ⇒ Tr(and(x, y)),∆

where ‘and(⋅, ⋅)’ represents the operation e1, e2 ↦ e1 ∧ e2.
Finally, the non-abbreviated form of (Tr∀1) reads:

Γ, SentℒTr(∀. vx) ⇒ Tr(x(ẏ∕v)),∆

Γ, SentℒTr(∀. vx) ⇒ Tr(∀. vx),∆

The consistency of RKFwill be a corollary of Proposition 22, whose proof requires a few preliminary
results that have also independent interest.

The following lemma, which follows from a simple external induction on the length of', indicates
a form of recapture: RKF (and extensions thereof) features full initial sequents for the languageℒℕ.

Lemma 18. RKF proves ' ⇒ ' for ' ∈ ℒℕ.

Next, observe that weakening is length-preserving admissible in RKF, and inferences in RKF are
“grounded”, in the sense speci�ed in the following lemma.

Lemma 19 (Length-preserving admissibility ofWeakening). If there is anRKF-derivationD of length
n of Γ ⇒ ∆, then for any multisets Γ′ ⊇ Γ and ∆′ ⊇ ∆, there is an RKF-derivation D′ of length n of
Γ′ ⇒ ∆′.

We can now show that the naïve rules to introduce the truth predicate to the left and to the right
of the sequent arrow are derivable in RKF.

Lemma 20. Every instance of the naïve truth rules is derivable in RKF:

Γ ⇒ '(x1,… , xn),∆(Trr)
Γ ⇒ Tr(⌜'(ẋ1,… , ẋn)⌝),∆

Γ, '(x1,… , xn) ⇒ ∆
(Trl)

Γ,Tr(⌜'(ẋ1,… , ẋn)⌝) ⇒ ∆

Proof. We prove the admissibility of both Trr and Trl by simultaneous induction, with the main
induction on the logical complexity of ' and secondary induction on the length of the derivations.
We do only some cases, and only for the rule Trr, for the sake of brevity. Call D the derivation of
Γ ⇒ ',∆ in the premiss of Trr.

Case 1. Suppose ' has logical complexity 0. Therefore, it is atomic. There are two cases.
Case 1.1. ' is an atomic formula ofℒℕ. In this case, the rule Trat1 provides the desired conclusion:

⋮

Γ ⇒ P(x1,… , xn),∆(Trat1)
Γ ⇒ Tr(⌜P(ẋ1,… , ẋn)⌝),∆
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Case 1.2. ' is of the form Tr(x). In this case, the rule Tr1 provides the desired conclusion:

⋮

Γ ⇒ Tr(x),∆
(Tr1)

Γ ⇒ Tr⌜Tr(ẋ)⌝,∆

Case 2. ' has logical complexity n + 1. There are 3 main cases.
Case 2.1. ' is a negation ¬ . We omit this case (it is similar to, and easier than, the others).
Case 2.2. ' is a conjunction  ∧ �. There are two sub-cases.
Case 2.2.1.  ∧ � is principal inD. Then, the last rule applied to  ∧ � inD is ∧r, andD has this

form:
D0

Γ ⇒  ,∆

D1

Γ ⇒ �,∆
(∧r)

Γ ⇒  ∧ �,∆

By the main induction hypothesis, there is a derivation D∗
0
of Γ ⇒ Tr(⌜ ⌝),∆ from Γ ⇒  ,∆, and a

derivationD∗
1
of Γ ⇒ Tr(⌜�⌝),∆ from Γ ⇒ �,∆. Then, we reason as follows:

D∗
0

Γ ⇒ Tr(⌜ ⌝),∆

D∗
1

Γ ⇒ Tr(⌜�⌝),∆
(Tr∧1)

Γ ⇒ Tr(⌜ ∧ �⌝),∆

Case 2.2.2.  ∧ � is not principal inD. Therefore, some other rule r is the last one inD. Suppose
r has two premises (the case with one premiss is analogous). Therefore,D has this form:

D0

Γ0 ⇒  ∧ �,∆0

D1

Γ1 ⇒  ∧ �,∆1(r)
Γ ⇒  ∧ �,∆

By the secondary induction hypothesis, there is a derivationD∗
0
of Γ0 ⇒ Tr(⌜ ∧ �⌝),∆0 from Γ0 ⇒

 ∧ �,∆0, and a derivation D∗
0
of Γ1 ⇒ Tr(⌜ ∧ �⌝),∆1 from Γ1 ⇒  ∧ �,∆1. Then, we reason as

follows:
D∗
0

Γ0 ⇒ Tr(⌜ ∧ �⌝),∆0

D1

Γ1 ⇒ Tr(⌜ ∧ �⌝),∆1(r)
Γ ⇒ Tr(⌜ ∧ �⌝),∆

Case 2.3. ' is a universally quanti�ed formula ∀x . There are three sub-cases.
Case 2.3.1. ∀x is principal inD. There are two sub-cases.
Case 2.3.1.1. The last rule applied to ∀x inD is ∀r. Therefore,D has the following form:

D0

Γ ⇒  (y),∆
(∀r)

Γ ⇒ ∀x ,∆

where y ∉ FV(Γ,∆,∀x ). By the main induction hypothesis, there is a derivation D∗
0
of Γ ⇒

Tr(⌜ (ẏ)⌝),∆ from Γ ⇒  (y),∆. We then reason as follows:

D∗
0

Γ ⇒ Tr(⌜ (ẏ)⌝),∆
(∀r)

Γ ⇒ ∀xTr(⌜ (ẋ)⌝),∆
(Tr∀1)

Γ ⇒ Tr(⌜∀x ⌝),∆
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noticing that our assumption entails that y ∉ FV(Γ,∆,∀xTr(⌜ (ẋ)⌝)) as well.
Case 2.3.1.2. The last rule applied to ∀x inD is ind. Therefore,D has the following form:

D0

Γ ⇒  (0),∆

D1

Γ,  (x) ⇒  (x + 1),∆
(ind)

Γ ⇒ ∀x ,∆

By the main induction hypothesis, there is a derivation D∗
0
of Γ ⇒ Tr(⌜ (0)⌝),∆ from Γ ⇒  (0),∆.

Moreover, by the secondary induction hypothesis, there is a derivationD∗
1
of Γ,Tr(⌜ (ẋ)⌝) ⇒  (x +

1),∆ from Γ,  (x) ⇒  (x + 1),∆, and by the main induction hypothesis, there is also a derivation
D∗∗
1

of Γ,Tr(⌜ (ẋ)⌝) ⇒ Tr(⌜ (ẋ + 1)⌝),∆ from the latter (i.e. from Γ,Tr(⌜ (ẋ)⌝) ⇒  (x + 1),∆). We
then reason as follows:

D0

Γ ⇒ Tr(⌜ (0)⌝),∆

D∗∗
1

Γ,Tr(⌜ (ẋ)⌝) ⇒ Tr(⌜ (ẋ + 1)⌝),∆
(ind)

Γ ⇒ ∀xTr(⌜ (ẋ)⌝,∆
(Tr∀1)

Γ ⇒ Tr(⌜∀x ⌝),∆

Case 2.3.2. ∀x is not principal in D. Therefore, some other rule r is the last one in D. Suppose
r has one premiss (the case with two premises is, as always, analogous). D has the following form:

D0

Γ0 ⇒ ∀x ,∆0(r)
Γ ⇒ ∀x ,∆

By the secondary induction hypothesis, there is a derivation D∗
0
of Γ0 ⇒ Tr(⌜∀x ⌝),∆0 from Γ0 ⇒

∀x ,∆0. We then we can simply apply the rule r.
qed.

The above Lemma also shows that, via the de�nition of C(x, y) as Tr(x)→ Tr(y), RKF unrestrict-
edly validates the naïve rules for consequence.

Corollary 21. Every instance of the naïve consequence rules is derivable in RKF:

Γ ⇒ ∆, '  ,Γ ⇒ ∆
(Cl)

Γ,C(⌜'⌝, ⌜ ⌝) ⇒ ∆

Γ, ' ⇒  ,∆
(Cr)

Γ ⇒ C(⌜'⌝, ⌜ ⌝),∆

Proof. For Cl:

Γ ⇒ ',∆
(Trr)

Γ ⇒ Tr(⌜'⌝),∆

Γ,  ⇒ ∆
(Trl)

Γ,Tr(⌜ ⌝) ⇒ ∆
(¬r)

Γ ⇒ ¬Tr(⌜ ⌝),∆
(∧r)

Γ ⇒ Tr(⌜'⌝) ∧ ¬Tr(⌜ ⌝),∆
(¬l)

Γ,¬(Tr(⌜'⌝) ∧ ¬Tr(⌜ ⌝)) ⇒ ∆

For Cr:
Γ, ' ⇒  ,∆

(Trl)
Γ,Tr(⌜'⌝) ⇒  ,∆

(Trr)
Γ,Tr(⌜'⌝) ⇒ Tr(⌜ ⌝),∆

(¬l)
Γ,Tr(⌜'⌝),¬Tr(⌜ ⌝) ⇒ ∆

(∧l)
Γ,Tr(⌜'⌝) ∧ ¬Tr(⌜ ⌝) ⇒ ∆

(¬r)
Γ ⇒ ¬(Tr(⌜'⌝) ∧ ¬Tr(⌜ ⌝)),∆
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Since C(⌜'⌝, ⌜ ⌝) is de�ned as ¬(Tr(⌜'⌝) ∧ ¬Tr(⌜ ⌝)), this establishes the claim. qed.

Finally, thanks to the above Corollary, RKF can be shown to be adequate with respect to the se-
mantics articulated in section 3.

Proposition 22 (Adequacy). For every multisets Γ,∆ of formulae of ℒC and every S ⊆ ! × !:

⟨ℕ, S⟩ ⊨ts RKF if and only if Ψ(S) = S, and S is consistent

Proof sketch. The right-to-left direction is immediate: a quick inspection shows that if S is a consis-
tent �xed point of Ψ, then ⟨ℕ, S⟩ TS-satis�es all the axiom and rules of RKF. For the left-to-right
direction, notice that if ⟨ℕ, S⟩ ⊨ts RKF, then the set of (codes of) sentences in S is consistent and
closed under all the logical clauses of the operator Ψ (for otherwise ⟨ℕ, S⟩ would not TS-satisfy the
logical rules of RKF) and, by Corollary 21, also under the naïve consequence-theoretic clauses of Ψ.
Therefore, Ψ(S) = S. qed.

We now turn to the proof-theoretic analysis of RKF. We will establish an upper-bound for RKF-
provability. We show that RKF can be embedded in the theory PKF – �rst proposed by [HH06]. We
assume a sequent calculus formulation of K3 with identity (see, e.g., [NS21, Appendix A]).

Definition 23 (PKF). The system PKF extends �rst-orderK3 formulated inℒTr with the basic axioms
of PA as initial sequents, the induction principle

Γ, A(x) ⇒ A(x + 1),∆
IND(ℒTr)

Γ, A(0) ⇒ A(t),∆

for A(v) ∈ ℒTr (and x not free in Γ,∆, A(0) and the following initial sequents:

Γ,Tr(⌜P(ẋ1,… , ẋn)⌝) ⇒ P(x1,… , xn),∆(PKF1)

Γ, P(x1,… , xn) ⇒ Tr(⌜P(ẋ1,… , ẋn)⌝),∆(PKF2)

Γ, SentℒTr(x),¬Trx ⇒ Tr¬. x,∆(PKF3)

Γ, SentℒTr(x),Tr¬. x ⇒ ¬Trx,∆(PKF4)

Γ, SentℒTr(x∧. y),Tr(x∧. y) ⇒ Trx ∧ Try,∆(PKF5)

Γ, SentℒTr(x∧. y),Trx ∧ Try ⇒ Tr(x∧. y),∆(PKF6)

Γ, SentℒTr(∀. vx),Tr(∀. vx) ⇒ ∀yTrx(ẏ∕v),∆(PKF7)

Γ, SentℒTr(∀. vx),∀yTrx(ẏ∕v) ⇒ Tr(∀. vx),∆(PKF8)

Γ,Tr(x) ⇒ Tr⌜Tr(ẋ)⌝,∆(PKF9)

Γ,Tr⌜Tr(ẋ)⌝ ⇒ Tr(x),∆(PKF10)

Notational abbreviations have been applied as in the de�nition of RKF.

The idea of the reduction is as follows: since the sequent arrow of RKF is modelled after the
material conditional of K3, we can translate the provability of a sequent as provability of the cor-
responding material conditional, plus the condition that the sentences in the conclusion are fully
classical in PKF.

Lemma 24. If RKF ⊢ Γ ⇒ ∆, then PKF ⊢ ⇒ ¬
⋀
Γ,

⋁
∆, where

⋀
∅ ∶= ⊤, and

⋁
∅ ∶= ⊥.
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Proof. The proof is by induction on the length of the derivation in RKF.
For the base case: if Γ ⇒ ∆ is an initial sequent in RKF, then ' ∈ ∆may be either t = t or a basic

axiom of PA. In both cases, PKF ⇒ '; the claim then follows by logic. If there is a ' ∈ ℒℕ ∩ Γ ∩ ∆,
then again⇒ ',¬' is derivable in PKF, and the claim is obtained again by logic.

For the induction step, each rule must be considered. We report the key cases of induction, where
an additional lemma is required, and of the logical rules of negation, where it shown how the shift of
the principal formulae between antecedent and consequent of the sequent in the rules is dealt with
within PKF.

If Γ ⇒ ∆,∀x' results from an application of induction, then one has by induction hypothesis (and
inversion for ∨-rules) that the following sequents are provable in PKF:

⇒ ¬
⋀

Γ, '(0),
⋁

∆(5)

⇒ ¬
⋀

Γ,¬'(x), '(x + 1),
⋁

∆(6)

By induction on the length of the proof in PKF one can show that the following rule is admissible in
PKF:

(7) ⇒  ,¬', �

' ⇒  , �

The rule (7) applied to (6) yields

'(x) ⇒ ¬
⋀

Γ, '(x + 1),
⋁

∆(8)

The sequent (8), together with (5), gives

(9) ⇒ ¬
⋀

Γ,∀x',
⋁

∆

by the induction rule of PKF.
For the logical negation rules, let’s consider (¬l). The case of (¬r) is analogous. One has (again

by employing the inversion properties of ∨-rules):

(10) ⇒ ¬
⋀

Γ, ',
⋁

∆.

We would like to obtain

(11) ⇒ ¬(
⋀

Γ ∧ ¬'),
⋁

∆.

However, (10) and (11) are interderivable in PKF by pure logic. qed.

Since PKF proves⇒ ' ∨ ¬' for ' ∈ ℒℕ, we have the desidered corollary:

Corollary 25. For ' ∈ ℒℕ, if RKF ⊢ ⇒ ', then PKF ⊢ ⇒ '.

The study of the proof-theoretic lower bound for RKF appears to be more involved. Assuming
a standard notation for ordinals < "0, one would hope to de�ne in RKF the truth predicates of the
theory of rami�ed truth up to the ordinal !! (RT<!! ) – see [Hal14, §9.1] for a de�nition. If one
succeeded, then it would follow that any arithmetical theorem of PKF is also a theorem of RKF: this
is because RT<!! is an upper bound for the arithmetical theorems of PKF. This strategy would be
realized if one could show that the rule

Γ,∀� ≺ � A(�) ⇒ A(�),∆
TIℒTr(�) ∶= Γ ⇒ ∀� ≺ �A(�),∆
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is admissible in RKF for each � < !!. Since each � < !! has the form !k, one may try to mimic the
classical proof and prove the claim by �rst establishing

Γ,∀� ≺ � A(�) ⇒ ∀� ≺ � + !k A(�),∆

via an external induction on k. Troubles already appear in the base step of this induction. In fact,
the main assumption

Γ,∀� ≺ � A(�) ⇒ A(�),∆

on the progressiveness of A does not su�ce to conclude

Γ,∀� ≺ � A(�) ⇒ ∀� ≺ � + 1A(�),∆

because of the potential failure of

∀� ≺ � A(�) ⇒ ∀� ≺ �A(�).

We therefore list the claim as an open, although we conjecture a positive answer to it:

Open problem 26. RKF de�nes the truth predicates of RT<!! . That is, there is a relative interpreta-
tion of RT<!! in RKF that leaves the arithmetical vocabulary unchanged. Therefore, all arithmetical
theorems of RT<!! are theorems of RKF.

6. Further Work

Much work remains to be done on non-re�exive systems and their applications. Just to mention a
few: fully compositional, non-re�exive theories of consequence should be formulated and studied (by
analogy with the compositional, non-re�exive theory of truth presented in section 5). Moreover, the
relations between non-re�exive and other non-classical systems (paracomplete, paraconsistent, non-
contractive, and non-transitive) should be fully investigated. For instance, the non-re�exive logic TS
is known to be dual to the non-transitive logic ST, in a precise technical sense:12 therefore, TS-based
theories could be dual, in the same sense, to ST-based theories. Another nonclassical system in the
vicinity of RKFmay involve logical constants interpreted by means of other truth functions such as
the ones of Weak-Kleene logic.
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