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As a response to the semantic and logical paradoxes, theorists often reject some
principles of classical logic. However, classical logic is entangled with mathematics,
and giving up mathematics is too high a price to pay, even for nonclassical theorists.
The so-called recapture theorems come to the rescue. When reasoning with concepts
such as truth/class membership/property instantiation,1 if ones is interested in con-
sequences of the theory that only contain mathematical vocabulary, nothing is lost by
reasoning in the nonclassical framework. It is shown below that this claim is highly
misleading, if not simply false. Under natural assumptions, recapture claims are in-
correct.

1. Recapture

We restrict our attention to recapture claims involving the so-called Strong Kleene
logic (K3) originating in Kleene (1952). Minor modifications to the claims and proofs
below yield failures of recapture for the closely related logics of First-Degree Entail-
ment FDE and Logic of Paradox LP.

Informal versions of the recapture idea take various forms in the literature – see
for instance (Field, 2008, p.101), or (Hjortland, 2017, 652). A nice and formally precise
presentation of recapture claims is contained in Beall (2013). He proves in particular
that

(recapture) If Γ �CL Δ, then e(Δ) ∪ Γ �K3 Δ,

where:

• Γ and Δ are sets of formulae of a first-order language, so that �CL and �K3 are,
respectively, the standard first-order consequence relations for classical logic
and Strong Kleene;
• e(Δ) is the “completeness set” for Δ, i.e. the set of formulae of form

∀®D(%®D ∨ ¬%®D)
1These are examples of concepts that are taken to satisfy naive rules such as the naive truth schema and
naive comprehension, and that therefore are compatible with a solution to paradox cast in the logics
considered below. Other notions of similar kind can be added to the list.
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for all atomic formulae %®B in Δ (with ®C := C1, . . . , C<).

Recapture seems to tell us that, after all, there is no deep difference between clas-
sical logic and K3 when it comes to specific consequences of an accepted set of as-
sumptions Γ, and in particular those consequences whose primitive concepts satisfy
excluded middle. Mathematical concepts are taken to belong to this category. There-
fore, it would appear that no mathematics is lost when moving from classical logic to
K3.

2. Failures of Recapture

Beall shows that recapture obtains when Γ is taken to be a set of formulae closed
under purely logical rules. We now show that a natural reformulation recapture,
arguably more faithful to its application to the paradoxes, is bound to fail. For sim-
plicity, we reason about a unary truth predicateTr , but other notions such as property
application or class membership would work as well.

Let’s start with the language of arithmeticLℕ,2 playing the role of our background
language featuring basic operations needed for syntax and self-reference. Let also
LTr := Lℕ ∪ {Tr}. Since nonclassical theories of truth in K3 can be properly for-
mulated only by means of rules of inference, we formulate our theories in sequent
calculi. PA− denotes the finite set containing sequents of form⇒ �, for � a recursive
equation for the primitive symbols ofLℕ, and the initial sequents for identity:

⇒ B = B, A = B, �(A) ⇒ �(B),

for A, B terms ofLℕ and �(D) ∈ LTr . These initial sequents guarantee that formulae
of Lℕ behave classically, i.e. they satisfy excluded middle. PA is obtained by adding
to PA− the induction rule

Γ, �(F) ⇒ �(F + 1),Δ
Γ, �(0) ⇒ �(B),Δ

for �(D) ∈ LTr andΓ,Δ finite sets of formulae ofLTr . This completes the description
of the non-logical component of our background theory of syntax.

The purely logical systems we consider are standard sequent calculi for classical
logic CL and K3 – a sequent calculus for K3 can be found for instance in (Nicolai
and Stern, 2021, Appendix A). The principles characterizing truth will be the initial
sequents

�(F) ⇒ Trp�( ¤F)q, Trp�( ¤F)q ⇒ �(F),(pos-t)

2For definiteness, we can takeLℕ to be specified by the signature {0, 1,×,+}.
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for �(D) positive, that is where the truth predicate does not occur in the scope of
an even number of negation signs. For the truth rules, a canonical formalization
of syntax is assumed: the expression p�( ¤F)q stands for the result of substituting,
within the code p�(D)q of �(D), the variable pDq for the numeral of F. The rules are
obviously sound (and therefore consistent) with respect to the Kripkean semantics
from Kripke (1975). This is the case independently of whether one choose a classical
or K3-based axiomatization of fixed-point semantics. The syntactic restriction on
negation is motivated by the need to find uncontroversial principles that are sound
both in classical and nonclassical logic.

The classical system resulting from the combination of PA and positive disquota-
tion sequents is Halbach’s theory of uniform positive disquotation PUTB (Halbach,
2014, Ch. 19.3). To properly state our results, it’s convenient to employ the label PUTB
for the arithmetical and truth sequents, and change only the underlying logical deriv-
ability relation. When writing PUTB `( �, we mean that the sequent⇒ � is deriv-
able from the arithmetical and truth rules of PUTB together with the logical rules
of (. We will also write PUTB( to refer to the combination of the arithmetical and
truth rules of PUTB with the logical system (. The expression Con(PUTB() stands
for the canonical consistency statement for the appropriate system.

Proposition 1. PUTB `CL Con(PUTBK3), but

e(Con(PUTBK3)) ∪ PUTB 0K3 Con(PUTBK3).

Proof. The claim after ‘but’ follows from Gödel’s Second Incompleteness Theorem,
since Con(PUTBK3) is a purely arithmetical sentence, and therefore

PUTB `K3 e(Con(PUTBK3)).

Therefore, if the claim after ‘but’ held, PUTBK3 would prove its own consistency.
SincePUTBK3 clearly satisfies the conditions for Gödel’s second incompleteness the-
orem, this is impossible.

For the former claim, we appeal to well-known results in the study of Kripke-
Feferman truth (Halbach and Horsten, 2006; Cantini, 1989; Feferman, 1991). The sys-
tem PUTBK3 is a sub-system of the system PKF from Halbach and Horsten (2006)
formulated over the logic K3 (in fact, PKF features unrestricted truth rules, not only
for positive formulae). The proof theoretic analysis of PKF tells us that PUTBK3 can-
not prove more Lℕ-sentences than ramified analysis iterated up to any ordinal U <

ll or, equivalently, iterations of the Turing Jump up to any U < ll (a.k.a. Π0
1-CA

<ll ).
By contrast, PUTBCL is much stronger. It proves the same arithmetical sentences

as ramified analysis iterated up to any ordinal U < Y0 or, equivalenty, as Π0
1-CA

<Y0
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(or the system KF from Feferman (1991)). This means that there is a countable infin-
ity of arithmetical statements, including a transfinite hierarchy of consistency state-
ments, that are derivable in PUTBCL but not in PUTBK3. In partcular, PUTB `CL
Con(PUTBK3). qed

Let us now briefly relate Proposition 1 to recapture. First, Proposition 1 is a
claim about provability. However, the adequacy of the logics CL and K3 guaran-
tees its equivalence with a claim about logical consequence. Secondly, and crucially,
as stated Proposition 1 is not a direct counterexample to recapture, but a counterex-
ample to a natural extension of it. In particular, PUTB is not only a set of formulae,
but a collection of formulae, sequents, and rules. However, one should note that if
the K3-theorist did not allow sequents and rules in the collection of their accepted
assumptions, they would not even be able to formulate sound principles for truth and
syntax: identity principles, induction, and truth rules, if formulated with a material
K3 conditional, will be unsound if not directly inconsistent.

3. Discussion

Proposition 1 tells us that the nonclassical theorist cannot rely on a general for-
mulation of recapture: recapture fails once one fixes specific principles for syntax
and truth. We discuss a few strategies that the K3-theorist may employ to react to
these failures.

One may try to reject the counterexamples by rejecting t-pos. Perhaps the weak-
ness of K3 derives from the artificiality of the syntactic restriction on negation in
the definition of PUTB. One would then need to reformulate recapture by spec-
ifying that the set Γ of assumptions (inferences or formulae) needs to be not only
sound, but also (philosophically) complete with respect to the K3-theorist’s desider-
ata. For instance, one may want to require fully disquotational sequents of form
Tr p�( ¤F)q ⇔ �(F) for all �(D) ∈ LTr . This would not work. If one replaces t-pos
in PUTBwith their unrestricted version, we would still obtain a failure of recapture.
The closure of the unrestricted truth sequents under CL yields an inconsistent sys-
tem, which proves, among other things, 0 = 1. By contrast, the closure of unrestricted
truth sequents underK3 is again a sub-theory ofPKF, and therefore consistent: 0 = 1
cannot be a theorem.

A more plausible reaction is to embrace such failures, but notice that the recap-
ture claim would hold – even for extensions of pure logic with truth and syntax – if
all vocabulary involved in a proof behaved classically. This is equivalent to requir-
ing, in the setting above, that only syntactic/arithmetical principles are employed in
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a proof. Perhaps what we should learn from recapture results is simply that log-
ics such a K3 require the addition of excluded middle across the board to collapse
into classical logic? But in what sense this is “recapture”? And what is this telling us
about our theories of paradox-breeding concepts? The advocate of classical logic is
interested precisely in the entanglement of such concepts and purely mathematical
concepts. Williamson (2018) cast doubt on the possibility of systematically distin-
guishing between mathematical and non-mathematical vocabulary, especially if one
wants to preserve the role of applied mathematics in science. The truth predicate,
for instance, is commonly used for mathematical purposes: to formulate more suc-
cinctly some theories in predicative analysis (Feferman, 1991), or to formulate natural
representation systems for constructive ordinals (Beklemishev and Pakhomov, 2019).
Other authors focus on the role of non-logical schemata such as induction, which
is commonly applied outside pure mathematics (McGee, 2006; Halbach and Nicolai,
2018): inductive reasoning is crippled when one moves from CL to K3. The exam-
ples above suggest in fact that the task of distinguishing classical and nonclassical
concepts is an all-or-nothing enterprise: as soon as some interaction is allowed, the-
orems of standard mathematics that are available classical theories quickly disappear
in nonclassical ones. And there’s no way of recapturing them in logics such as K3.3
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