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ON THE BEST ACCURACY ARGUMENTS FOR PROBABILISM

MICHAEL NIELSEN

Abstract. In a recent paper, Pettigrew (2021) reports a generalization of the celebrated
accuracy-dominance theorem due to Predd et al. (2009). But Pettigrew’s proof is incorrect.
I will explain the mistakes and provide a correct proof.

1. Introduction

Accuracy arguments for probabilism have three components: (1) a specification of the
properties that (in)accuracy measures must have; (2) a normative premise stating that a
credence function is irrational if it is accuracy-dominated; (3) a mathematical theorem show-
ing that every non-probabilistic credence function is accuracy-dominated by a probabilistic
one. The best accuracy arguments for probabilism, according to Pettigrew (2021), require
inaccuracy measures to be strictly proper, continuous, and additive, and they appeal to the
well known accuracy-dominance theorem of Predd et al. (2009). Pettigrew seeks to improve
these arguments by relaxing additivity and generalizing Predd et al.’s theorem. This project
is of great philosophical and mathematical interest. On the one hand, by relaxing additivity
one makes a stronger case for probabilism as a prinicple of rationality. On the other hand,
there is a rich body of mathematical work, going back to de Finetti (1974), that establishes
connections between probability and accuracy, and it is important to understand the most
general conditions under which these connections can be made.

In this note, I wish to do two things. First, I will show that Pettigrew’s proof of his theorem
is flawed in a number of ways. I will present counterexamples to some of his key claims.
Second, and more importantly, I will give a correct proof of the theorem that Pettigrew
reports (in fact, I will prove a slightly more general theorem). Although the theorem that
Pettigrew states is correct in the end, the tools needed to prove it are quite different from the
ones that Pettigrew uses. My hope is that with the correct tools in hand, others will generalize
even further. Without the right tools, the accuracy approach to justifying probabilism risks
running astray.

2. Preliminaries

As this is a technical note, I will be quick with the formal preliminaries. Further discussion
can be found in Pettigrew’s (2021) paper as well as his book (Pettigrew, 2016).

Let W be a finite set of worlds. A credence function c : 2W → [0, 1] is a function from
the powerset of W into the unit interval. Let C be the set of all credence functions. If
(cn) is a sequence of credence functions and c ∈ C, we write cn → c iff for all A ⊆ W the
sequence (cn(A)) of real numbers converges to c(A). Another way of putting this is that

we are viewing C = [0, 1]2
W

as a subset of |2W |-dimensional Euclidean space. A credence
function c is probabilistic iff it obeys the usual axioms of probability. Let P be the set of
all probabilistic credence functions. Since both P and C are closed and bounded, they are
compact.
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If w ∈W , then let

vω(A) =

{
1, w ∈ A
0, w /∈ A

for all A ⊆W . The (probabilistic) credence function vw is the omniscient or ideal one at the
world w.

An inaccuracy measure J : C ×W → [0,∞] is a function from pairs of credence functions
and worlds into the extended half-line. Intuitively, J (c, w) represents how inaccurate the
credence function c is in world w. If p ∈ P, let us write

J (c, p) =
∑
w∈W

J (c, w)p{w}.1 (1)

Then, J (c, p) is the expected inaccuracy of c according to p. Under this definition, we have
J (c, w) = J (c, vw) for all credence functions c and worlds w.

Pettigrew focusses on inaccuracy measures with the following properties.

Strict Propriety: An inaccuracy measure J is strictly proper iff J (p, p) < J (c, p) for
all p ∈ P and all c ∈ C \ {p}.

Continuity: An inaccuracy measure J is continuous iff for all p ∈ P and c, c1, c2, ... ∈
C the sequence (J (cn, p)) of extended-real numbers converges to J (c, p) whenever
cn → c.2

The Brier score is perhaps the most well known strictly proper and continuous inaccuracy
measure, but we won’t have need of it here. We will, however, make use of the enhanced log
score, defined by

L∗(c, w) =
∑
A⊆W

(−vw(A) log c(A) + c(A)), (2)

which is also strictly proper and continuous. It is worth pointing out now that if w ∈ A and
c(A) = 0, then −vw(A) log c(A) =∞. So, according to the enhanced log score, any credence
function that assigns zero credence to a non-empty set of worlds is infinitely inaccurate at
some worlds. The fact that inaccuracy measures can take the value ∞ plays an important
role in understanding the mistakes in Pettigrew’s proof.

The final definition we will need is

Accuracy-Dominance: Let c, c′ ∈ C, and let J be an inaccuracy measure. We say
that c accuracy-dominates c′ (according to J ) iff J (c, w) < J (c′, w) for all w ∈W .

As mentioned above, accuracy arguments for probabilism have a normative premise stating
that credence functions are irrational if they are accuracy-dominated. We won’t question that
premise here, as our focus is on the third component of accuracy arguments: the accuracy-
dominance theorems.

Here is the result that Pettigrew reports.

Theorem 1. Let J be a strictly proper and continuous inaccuracy measure. If c is a non-
probabilistic credence function, then there is a probabilistic credence function that accuracy-
dominates c according to J .

In other words, every non-probabilistic credence function is accuracy-dominated by a prob-
abilistic one. If we accept the accuracy argument’s normative premise, then we can use
Theorem 1 to infer that rationality forbids violations of the probability axioms.

1In order for this to make sense, we adopt the standard convention that ∞ · 0 = 0.
2This definition of continuity is equivalent to the one that Pettigrew uses: for all w ∈W and c, c1, c2, ... ∈ C

the sequence (J (cn, w)) of extended-real numbers converges to J (c, w) whenever cn → c.
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3. Pettigrew’s Proof

Theorem 1 is true, but Pettigrew’s proof of it is incorrect. In this section, I will explain
the mistakes and lay the groundwork for a correct proof. We assume throughout this section
that J is strictly proper and continuous.

The main technique for proving accuracy-dominance theorems involves analyzing the di-
vergences associated with inaccuracy measures. Given J , the associated divergence DJ :
C × P → [0,∞] is defined by

DJ (c, p) = J (c, p)− J (p, p). (3)

The equation in (3) is well defined—never of the form ∞−∞—because J is strictly proper,
and this implies that J (p, p) < ∞ for all p ∈ P. We can think of DJ as measuring the
distance between the p-expected inaccuracy of c and the minimal p-expected inaccuracy,
which is J (p, p) by strict propriety.

Now, let c ∈ C \ P be a non-probabilistic credence function. Then, DJ (c, ·) is a function
from the set of probability functions P into the extended half-line. The proof of Theorem
1 has two steps. Step 1: one argues that DJ (c, ·) can be minimized. That is, one argues
that there is some p∗ ∈ P such that DJ (c, p∗) ≤ DJ (c, p) for all p ∈ P. Step 2: one
shows that the minimizer p∗ of DJ (c, ·) can be used to construct a probability function that
accuracy-dominates c.

Pettigrew’s proof has mistakes in both steps. It will be easier to describe the mistake he
makes in the second step in the next section (Remark 1). In this section, we will focus on
the mistakes in the first step.

Why is it possible to minimize DJ (c, ·)? Pettigrew gives two arguments, both contained
in the proof of his Lemma 5. Here is the first argument:3 “Suppose c is not in P. Then, since
P is a closed convex set and since Lemma 4(iii) shows that DJ (c, ·) is strictly convex there
is a unique p∗ ∈ P that minimizes DJ (c, ·).”

There are two problems with this argument. (1) The assumptions in Theorem 1, namely
that J is strictly proper and continuous, do not imply that DJ (c, ·) is strictly convex (that
is, Pettigrew’s Lemma 4(iii) is false). (2) Even if DJ (c, ·) were strictly convex, this would
not imply the existence of a minimizer. In particular, it is not the case that every strictly
convex function on a closed convex set attains a minimum on that set.

I will demonstrate (1) and (2) in a moment. But first, let us take a look at the beginning of
Pettigrew’s second argument. He writes: “We now briefly sketch an alternative proof...that
is available if DJ (c, ·) is not only continuous...but also differentiable.”

The problem with this is: (3) The assumptions in Theorem 1 do not imply that DJ (c, ·)
is continuous and therefore don’t imply that DJ (c, ·) is differentiable.4 This is important
to realize because if DJ (c, ·) were continuous, then it would attain a minimum on P due to
the basic topological fact that continuous functions attain minima on compact sets. In other
words, if DJ (c, ·) were continuous, then Pettigrew’s argument would be easy to repair.5 As
we will soon see, proving Pettigrew’s theorem requires a bit more argumentation.

3I have changed the notation a bit here and in the next quotation. Pettigrew states Lemma 5 for any closed
convex subset of P, but we need only think about P itself.

4To be fair, Pettigrew does not seem to be claiming that DJ (c, ·) is differentiable in general, though he
does seem to think that the continuity of DJ (c, ·) is a consequences of his theorem’s assumptions.

5If J happens to be real-valued (e.g. the Brier score), and therefore bounded, then DJ is continuous, and
the easy repair of Pettigrew’s theorem works. The reader should note, however, that Pettigrew’s proof is still
incorrect for bounded J because of problem (2) mentioned above.
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Now let us establish the three claims made in response to Pettigrew’s arguments. Claims
(1) and (3) are established by the following counterexample.

Example 1. Of a credence function c and a strictly proper and continuous inaccuracy mea-
sure J such that DJ (c, ·) is neither continuous nor strictly convex.

Let W = {1, 2}, and let the inaccuracy measure be the enhanced log score L∗, defined in
(2). Let c be the probabilistic credence function defined by c{1} = 0. Then L∗(c, 1) =∞. Let
(pn) be the sequence of probability functions defined by pn{1} = n−1. Then, L∗(c, pn) = ∞
for all n, which implies DL∗(c, pn) =∞ for all n. But pn → c. So,

DL∗(c, pn)→∞ 6= 0 = DL∗(c, c)

shows that DL∗(c, ·) is not continuous.
To see that DL∗(c, ·) is not strictly convex, note that pn = n−1v1 + (1− n−1)c. But then,

DL∗(c, pn) =∞ ≥ n−1DL∗(c, v1) + (1− n−1)DL∗(c, c),

so DL∗(c, ·) is not strictly convex. 4

And claim (2) is established by the following counterexample.

Example 2. Of a closed convex set and a strictly convex function on that set that attains
no minimum.

Consider the function f : [0, 1]→ R defined by

f(x) =

{
(x− 1)2, x ∈ [0, 1)

1, x = 1.

The set [0, 1] is closed (indeed, compact) and convex, and f is strictly convex. But f does
not attain a minimum on [0, 1]. 4

The key points to take away from the examples are: (1) In general, a divergence is not
strictly convex in its second argument; (2) Strict convexity does not guarantee the existence
of minimizers; (3) In general, a divergence is not continuous in its second argument.6 We
now move on to providing an alternative proof of Theorem 1.

6The reader might find the following speculation about the source of Pettigrew’s mistakes helpful. I
conjecture that Pettigrew misread and subsequently misapplied an argument in Predd et al. The relevant
portion of Predd et al.’s proof reads (changing notation), “the function DJ (c, ·) is strictly convex, and hence
achieves a unique minimum at a point p” (p. 4789, in the proof of their Proposition 3). The context of this
remark is important, however. In the quoted passage, Predd et al. are working under the assumption that DJ
is a Bregman divergence, and this guarantees that DJ (c, ·) is strictly convex as well as continuous and real-
valued (see their Definition 6). As mentioned above, this implies that DJ (c, ·) attains a minimum on P because
P is compact. This argument has nothing to do with convexity but rather topology. What strict convexity
adds is the guarantee that minima are attained uniquely on convex sets: that is, a strictly convex function
attains a minimum at no more than one point in a convex set (although it might not attain a minimum at
any point in the set, as Example 2 shows). The most charitable reading of the quoted passage from Predd et
al. takes it as a point about uniqueness. It seems possible that Pettigrew has read this passage as expressing
an (incorrect) inference about minimization, which is why he writes (changing notation), “since P is a closed
convex set and since...DJ (c, ·) is strictly convex...there is a unique p in P that minimizes DJ (c, ·).” Again,
the strict convexity of DJ (c, ·) would imply that there is at most one p that minimizes P, but it doesn’t imply
that a minimizer exists.
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4. An Accuracy-Dominance Theorem

In fact, we will generalize Theorem 1 a bit by weakening both strict propriety and continu-
ity. I do not know whether the properties that I am about to introduce are more philosoph-
ically compelling than strict propriety and continuity. My aim here is simply to lay bare as
much as possible the mathematical arguments needed to support accuracy-based approaches
to justifying probabilism.

Quasi-Strict Propriety: An inaccuracy measure J is quasi-strictly proper iff J (p, p) ≤
J (c, p) for all p ∈ P and all c ∈ C, with strict inequality if c ∈ C \ P.

Continuity on P: An inaccuracy measure J is continuous on P iff for all p, q, q1, q2, ... ∈
P the sequence (J (qn, p)) of extended-real numbers converges to J (q, p) whenever
qn → q.

Unlike strict propriety, quasi-strict propriety allows for J (p, p) = J (q, p) provided q is
probabilistic. A strict inequality is required only for non-probabilistic credence functions.
Continuity on P differs from continuity by allowing the inaccuracy measure to be discontin-
uous on non-probabilistic credence functions.

Here is the result that we will prove.7

Theorem 2. Let J be a quasi-strictly proper inaccuracy measure that is continuous on P. If
c is a non-probabilistic credence function, then there is a probabilistic credence function that
accuracy-dominates c according to J .

Throughout the rest of this section, let J be a quasi-strictly proper inaccuracy measure
that is continuous on P, and let c ∈ C \ P. As outlined in the previous section, the proof of
Theorem 2 has two steps that involve analyzing the divergence DJ (c, ·). The first thing we
should note is that DJ continues to be well defined under quasi-strict propriety because we
still have J (p, p) <∞ for all p ∈ P.

Another consequence of quasi-strict propriety worth noting right away is that we can
assume without loss of generality that J (c, w) <∞ for some w ∈W . Otherwise any regular
probability—any probability such that p{w} > 0 for all w ∈ W—would accuracy-dominate
c. That’s because if p is regular, then J (p, p) <∞ implies J (p, w) <∞ for all w ∈W .

Recall the two steps of the proof. Step 1: show that DJ (c, ·) is minimized at some p∗ ∈ P.
Step 2: use p∗ to construct a probabilistic credence function that accuracy-dominates c. I
will dispense with Step 2 first, as this will allow us to see the final mistake in Pettigrew’s
proof. The proof of the following lemma is similar to arguments given by Pettigrew, but
special care has to be taken to handle cases where J (c, w) =∞.

Lemma 1. If DJ (c, ·) attains a minimum on P, then there is some probabilistic credence
function that accuracy-dominates c.

Proof. Let p∗ ∈ P minimize DJ (c, ·) on P. Since it is safe to assume that J (c, w) < ∞ for
some w ∈W , it follows that DJ (c, p∗) <∞ because

DJ (c, p∗) ≤ DJ (c, vw) = J (c, w)− J (vw, w) <∞.
This, in turn, implies that J (c, p∗) <∞.

Now let w ∈ W be arbitrary. If n ∈ N, let pn = n−1vw + (1 − n−1)p∗. Note that because
J (pn, pn) <∞ and

J (pn, pn) = n−1J (pn, w) + (1− n−1)J (pn, p
∗),

7Alex Pruss independently discovered a completely different proof of this result, using geometric techniques,
around the same time that I discovered the proof in this paper.
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we must have both J (pn, w) < ∞ and J (pn, p
∗) < ∞ for all n. Using the fact that p∗ is a

minimizer of DJ (c, ·), we have, for all n,

0 ≤ n
(
DJ (c, pn)−DJ (c, p∗)

)
= n

(
J (c, pn)− J (pn, pn)− J (c, p∗) + J (p∗, p∗)

)
= n

(
n−1J (c, w) + (1− n−1)J (c, p∗)− n−1J (pn, w)− (1− n−1)J (pn, p

∗)− J (c, p∗) + J (p∗, p∗)
)

=
(
J (c, w)− J (c, p∗)− J (pn, w) + J (pn, p

∗)
)

+ n
(
J (p∗, p∗)− J (pn, p

∗)
)

≤ J (c, w)− J (c, p∗)− J (pn, w) + J (pn, p
∗). (4)

where the final inequality uses quasi-strict propriety. Next, (4) rearranges to

J (pn, w) ≤ J (c, w)− J (c, p∗) + J (pn, p
∗), (5)

and pn → p∗ implies

J (p∗, w) ≤ J (c, w)−DJ (c, p∗). (6)

Quasi-strict propriety implies DJ (c, p∗) > 0. So from (6), we have J (p∗, w) < J (c, w)
for all w ∈ W such that J (c, w) < ∞. But if J (c, w) = ∞, then (6) implies only the weak
inequality J (p∗, w) ≤ J (c, w). To deal with this, we can choose any regular probability q and
let qn = n−1q + (1 − n−1)p∗. Then, qn → p∗. So by continuity, for large enough n, we have
J (qn, w) < J (c, w) whenever J (c, w) <∞. And we also have J (qn, w) < J (c, w) whenever
J (c, w) =∞, simply in virtue of the fact that the regularity of qn implies J (qn, w) <∞ for
all w ∈ W . Thus, for large enough n, qn accuracy-dominates c. This concludes the proof of
the lemma.8 �

Remark 1. Pettigrew’s final mistake concerns equation (6). He infers (in the proof of his
Theorem 1) directly from this equation and the fact that DJ (c, p∗) > 0 that J (p∗, w) <
J (c, w) for all w ∈W . But that doesn’t follow if J (c, w) =∞.

So much for Step 2. In order to conclude the proof of Theorem 2, we must now show that
DJ (c, ·) actually attains a minimum.

To do this, we will argue that DJ (c, ·) has a property that is weaker than continuity but
still strong enough to imply the existence of a minimizer on compact sets. Here is that
property.

Lower Semicontinuity: Let X be a topological space, and let f : X → [−∞,∞]. We
say that f is lower semicontinuous (lsc) iff for every r ∈ R the set {x ∈ X : f(x) ≤ r}
is closed.

Our aim is to argue that DJ (c, ·) is lsc, and use the following lemma to conclude.

Lemma 2. Let X be a compact topological space, and let f : X → [−∞,∞] be a lsc function.
Then, f attains a minimum on X.

Proof. Let A = f(X). If −∞ ∈ A, then the result is immediate, so assume this is not
the case. For all r ∈ A, let Fr = {x ∈ X : f(x) ≤ r}. If r ∈ R, then Fr is closed by
lower semicontinuity, and if r = ∞, then Fr = X is closed as well. If {r1, ..., rn} ⊆ A, then

8Predd et al. (2009) prove their theorem for bounded J first and then generalize to unbounded J with an
inductive argument. One nice feature of the proof in this paper is that it tackles the general, unbounded case
directly, and thereby simplifies Predd et al.’s approach a bit. However, readers of Predd et al. will recognize
that the argument at the end of the proof of Lemma 1 is similar to an argument that they use in the proof of
their unbounded case (p. 4790).
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i=1 Fri = Fmini ri is non-empty. Since X is compact, this implies that

⋂
r∈A Fr is non-empty.

But f attains a minimum at any point in
⋂
r∈A Fr.

9 �

We will need the following basic facts about lsc functions.

Lemma 3. Let X be a topological space, and let f : X → [−∞,∞]. (a) If f is real-valued
and lsc, and −f is also lsc, then f is continuous. (b) If (fα) is a family of lsc functions on
X and f(x) = supα fα(x) for all x ∈ X, then f is lsc.

Proof. We omit the proof of (a). For (b), see Lemma 2.41 in Aliprantis and Border (2006). �

Finally, it is worth isolating the following key fact as a separate lemma.

Lemma 4. Let f : P → R be the function defined by f(p) = J (p, p). Then, f is continuous
on P.

Proof. By Lemma 3(a), it suffices to show that both f and −f are lsc. Beginning with f , let
r ∈ R and let Fr = {p ∈ P : J (p, p) ≤ r}. Let (pn) be a sequence in Fr that converges to
p ∈ P. We aim to show that p ∈ Fr. Let A = {w ∈ W : J (p, w) < ∞}. Then, p(A) = 1 by
quasi-strict propriety, and by continuity on P

r ≥ J (pn, pn) ≥
∑
w∈A
J (pn, w)pn{w} →

∑
w∈A
J (p, w)p{w} = J (p, p)

This proves that p ∈ Fr. So f is lsc.
Next, begin by observing that quasi-strict propriety implies that f(p) = infc∈C J (c, p)

for all p ∈ P. We claim that the infimum can be taken over only those c ∈ C for which
J (c, ·) is real-valued. Let the set of such c be denoted by CR, and recall that if p is a
regular probability, then p ∈ CR. Now, any p ∈ P is the limit of a sequence (pn) of regular
probabilities. Continuity on P implies that J (pn, p)→ J (p, p). Thus, for all ε > 0, there is
some pn ∈ CR such that

inf
c∈CR
J (c, p) ≤ J (pn, p) ≤ J (p, p) + ε = inf

c∈C
J (c, p) + ε.

This proves the claim, i.e. f(p) = infc∈CR J (c, p) for all p ∈ P.
Now, if c ∈ CR, then the function J (c, ·) is continuous on P. Indeed, if pn → p, then

J (c, pn) =
∑
w∈W

J (c, w)pn{w} →
∑
w∈W

J (c, w)p{w} = J (p, p).

Then, by the duality

−f(p) = sup
c∈CR
−J (c, p)

we see that −f is the pointwise supremum of a family of continuous (and therefore lsc)
functions. It follows from Lemma 3(b) that −f is lsc, and the proof is complete. �

We can finally show that divergences are lsc in their second argument.

Lemma 5. The function DJ (c, ·) is lsc on P.

9This proof is an easy modification of the proof of Lemma 2.43 in Aliprantis and Border (2006), which is
stated for real-valued functions.
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Proof. Let r ∈ R be given and write Fr = {p ∈ P : DJ (c, p) ≤ r}. Let (pn) be a sequence in
Fr that converges to p ∈ P. Let A = {w ∈ W : J (c, w) <∞}. From pn ∈ Fr it follows that
pn(A) = 1, which implies p(A) = 1 because pn → p. Then, using Lemma 4, we have

r ≥ DJ (c, pn)

= J (c, pn)− J (pn, pn)

=
∑
w∈A
J (c, w)pn{w} − J (pn, pn)

→
∑
w∈A
J (c, w)p{w} − J (p, p)

= J (c, p)− J (p, p)

= DJ (c, p).

Thus, p ∈ Fr, and the lemma is proved. �

Let us conclude by summarizing how all of the pieces fit together.

Proof of Theorem 2. Step 1: DJ (c, ·) is lsc on P (Lemma 5) and therefore attains a minimum
on P (Lemma 2). Step 2: The existence of a minimizer implies that c is accuracy-dominated
by some probabilistic credence function (Lemma 1). �
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