
Lógica modal para relaciones entre conjuntos 

 

Resumen 

En este artículo, presentamos un sistema de lógica modal que permite representar relaciones entre 
conjuntos o clases de individuos definidos por una propiedad específica. Introducimos dos opera-
dores modales, [a] y <a>, que se utilizan respectivamente para expresar "para todo A" y "existe un 
A". Tanto la sintaxis como la semántica del sistema tienen dos niveles que evitan el anidamiento 
del operador modal. La semántica se basa en una variante de la semántica de Kripke, en donde los 
operadores modales se indexan sobre fórmulas de lógica proposicional (“pre-fórmulas” en el tra-
bajo). Además, presentamos un conjunto de axiomas y reglas que rigen el sistema, y demostramos 
que el sistema es correcto y completo con relación a los modelos de Kripke.  

En la sección final del artículo, discutimos posibles trabajos futuros. Consideramos la posibilidad 
de combinar nuestro operador modal con otras modalidades, como necesidad o conocimiento. 
Además, como ejemplo de la utilidad de nuestro operador modal, analizamos brevemente la fór-
mula de Barcan adaptada de manera conveniente dentro del marco de nuestro sistema. En resumen, 
proponemos la combinación de nuestro operador modal con otros como una forma más simple y 
compacta, aunque con un menor poder expresivo, para abordar la lógica modal cuantificada. 

Palabras clave: lógica modal cuantificada, silogismos, fórmula Barcan, consistencia, completud 

 

 

 

Modal Logic for Relationships between Sets 

 

Abstract 

In this article, we present a modal logic system that allows representing relationships between sets 
or classes of individuals defined by a specific property. We introduce two modal operators, [a] and 
<a>, which are used respectively to express "for all A" and "there exists an A". Both the syntax 
and semantics of the system have two levels that avoid the nesting of the modal operator. The 
semantics is based on a variant of Kripke semantics, where the modal operators are indexed over 
propositional logic formulas ("pre-formulas" in the paper). Furthermore, we present a set of axioms 
and rules that govern the system and we prove that the logic is correct and complete with respect 
to Kripke models. 

In the final section of the article, we discuss potential future work. We consider the possibility of 
combining our operator with other modalities, such as necessity or knowledge. Additionally, as an 
example of the utility of our modal operator, we briefly analyze a conveniently adapted Barcan 
formula within the framework of our system. In summary, we propose combining our modal op-
erator with other ones as a simpler, more compact, albeit less expressive way to address quantified 
modal logic.  

Keywords: quantified modal logic, syllogisms, Barcan formula, soundness, completeness 



 

 

 

 

1. Introduction 

There are many ways of expressing relations between classes of beings in a formal language or, 
more precisely, relations of inclusion and intersection between sets. The most common way is the 
use of first-order logic, which allows expressing the inclusion of a certain set into another one or 
the existence of some individuals belonging to one set that also belong to another one. This is done 
by using universal and existential quantification. We might be interested just in simpler formulas 
expressed in a more concise notation. For example, [a]b and <a>b for “all A’s are B” and “some 
A’s are B”, in which A and B are classes defined by some property, simple or complex (not being 
A, being A and B, being A and D or E, and so on). We might also want to express more elaborated 
assertions that relate these “syllogisms”, such as “If all B’s are C or D, then there is some D or C 
that is B”. 

In this work, we propose a new approach, by using a modal operator, which is indexed over the 
subject of these kinds of “syllogisms” of the type we have described before, allowing for a more 
intuitive and expressive representation of relations between classes of individuals. This indexing 
of modal operators to the subject brings about a natural way of reasoning about classes or sets 
defined by properties or predicates, capturing a sense of modality that is simpler than standard 
first-order logic and avoids some of its limitations, given that it only deals with sets, not with 
individuals.  

The reader might be curious about the pertinence of this proposal. The notation may be simpler 
and more compact, but it appears to be just a shortened way of expressing formulas of first-order 
logic, leaving aside the modal nature of the operator. [a]b, for example, is slightly more readable 
than ∀x (Ax→Bx), but nothing more. The real reason for the usefulness of this proposal is that 
this modal operator allows very easy integration with other modal operators (alethic, doxastic, 
epistemic…), thus enabling the modeling of complex modalities with quantification in a unified 
modal framework. In other words, it is a way of dealing with quantified modal logic just by using 
different combinations of modal operators, instead of combining modal operators and quantifiers 
of first-order logic. The system is less expressive than quantified modal logic because we will not 
be able to deal with n-ary relations for n greater than 1, just with unary properties, but this sim-
plicity is the basis of the convenience of the language: we will deal just with propositional modal 
logic all the time. This potential for combining the modal operators presents interesting opportu-
nities for interdisciplinary research and opens new avenues for investigating modal reasoning in 
diverse fields, including the representation of necessity, knowledge, and belief. This approach is 
also expandable to more refined kinds of quantification, for example considering proportions 
(“60% of A’s are also B“), yielding complex expressions that can be expressed concisely and rig-
orously. This work will mainly be devoted to introducing the modal operator, showing its syntax, 
semantics, and the completeness and soundness of a simple axiomatic system in a variation of the 
usual Kripke semantics. In the last part of the paper, we outline the possibilities of the combination 
of this modal class operator with other modal operators, and we make a very brief analysis of the 



Barcan formula in our language. Being aware of the difficulties of the topic, we just sketch it, 
opening the door to future works in this direction. 

A last remark about the name of this modal logic we are introducing. Since there are works in the 
field of modal set theory, mainly the work of Linnebo (2010; 2013), more recently with Hamkins 
(Hamkins and Linnebo 2022), we have opted to call our system "modal class logic" to avoid con-
fusion. The name may seem a bit vague but calling it “modal set logic” would be misleading. Our 
scope and goals are more limited than the work of Linnebo, and we do not aim to develop a full 
system for modal set theory.  

 

2. Syntax and Semantics 

The language that is going to be introduced here, which we will call LC, has two layers: pre-for-
mulas and formulas. Although both follow the usual syntax for propositional logic, they differ in 
their meaning. Pre-formulas do not represent propositions, but rather classes or sets of entities 
defined by some property. Thus, the negation of a pre-formula represents the complement of the 
corresponding set, and the conjunction, the intersection of two sets defined for some properties. 

Definition 1. (Syntax of the pre-formulas.) We will denote by p any element of a non-empty set of 
literals, Lit. We define the set of pre-formulas recursively as follows: 

π ::=   p   | ¬π  | (π∧π) 

The definition of disjunction, tautology, and contradiction in terms of ¬ and ∧ is the usual one. We 
also follow the standard convention for the suppression of parenthesis. 

 

Definition 2. (Atomic modal formulas.)  Given two pre-formulas, α and β, then a formula of the 
type <α>β is said to be an atomic modal formula, where α is called the index of the operator. 

Definition 3. (Duality of the modal operators.) We define [α]β, the dual of the previous modal 
operator, as follows: 

[α]β ↔ ¬<α>¬β  (Dual) 

These modal formulas will function in the same way that atomic letters do in propositional logic 
because they will be the basic elements of the formulas of our language. They mean “some A’s 
are B” and “all A’s are B”, respectively. From these basic modal formulas, we can define the set 
of wff’s of LC. 

 

Definition 4. (Syntax of formulas.) If α is an atomic modal formula, we define recursively the set 
of wff’s of LC as follows: 

φ ::= α | ¬φ |  (φ∧φ) 

This system of two levels avoids nesting modal operators. For example, we can express “all dogs 
are mammals, and some dogs are white” as [d]m ∧ <d>w, or “if all dogs are mammals and all 



mammals are animals, then all dogs are animals” as [d]m ∧ [m]a → [d]a.  We cannot mix in the 
same level pre-formulas and formulas: “d∧[d]a”, for example, would be a badly formed formula, 
with a meaningless translation into natural language as “dogs, and all dogs are animals”.  

The semantics will reflect this pattern of two levels over a standard Kripke model: instead of a 
single W, we will have two non-empty sets, WP and WM. We define the following: 

 

Definition 5. (Kripke model for modal class logic.) The model M for LC is a tuple <WP, WM, R, 
v>, where WP and WM are non-empty sets, R is a subset of WM x WP, and v is a valuation function 
from literals to subsets of WP. 

The semantics of pre-formulas is the standard semantics of propositional formulas. The semantics 
of the modal formulas of LC is a variation of the standard one for modal operators but restricting 
the scope of the accessible worlds. To do that, we must adjust the semantics for reflecting this. The 
idea of restricting the model has been widely used in logic. (Plaza 1989) introduced it for public 
announcements, and this has been successfully used in dynamic epistemic logic. The paper has 
been republished in (Plaza 2007). 

The exact way of restricting the model may vary depending on the purpose of the restriction: up-
date of available information or other change of the state, constraint to a narrower situation, etc. 
Often, a model requires restricting W, R, and v: W|φ is the subset of W of worlds that satisfy a 
certain formula φ, and R|φ and v|φ are defined similarly, yielding the model M|φ = <W|φ, R|φ, v|φ >, 
as Plaza proposed. Works that deal with public announcements in dynamic epistemic logic, for 
example (van Ditmarsch 2003) or (van Ditmarsch, van der Hoek and Kooi 2007), follow this path. 

Our work just restricts the accessibility relationship R, because we just want to limit the scope of 
the modal operators to worlds in WP that satisfy a certain pre-formula φ. Instead of stating “all 
accessible worlds satisfy q”, we want to express “all accessible worlds that satisfy p, also satisfy 
q”, that is, “all p’s are q”. We do this by applying the corresponding restriction to R.  

 

Definition 6. (Restriction of R.) We define R|φ as follows: 

 

R|φ = {(w, w’) in WM x WP | M, w’╞ φ} 

 

R|φ is thus the subset of R in which the second projection of R satisfies φ. We could similarly 
restrict WP and v to define a restricted model, but it is not necessary, and WM has to remain un-
changed since it does not satisfy any pre-formula. Thus, we have opted for the minimal change, 
which only affects R. Now we define the following: 

 

Definition 7. (Restricted model.) Given a pre-formula φ and a model M=<WP, WM, R, v>, the 
restricted model M|φ is the tuple <WM, WP, R|φ, v>, where R|φ is as described above. 



In our language, restricting R to consider just the accessible worlds that satisfy the index makes 
the latter similar to the subject of a classical syllogism. Wff’s of the type [a]b or <a>b could be 
seen indeed as a kind of complex syllogism, but interpreted on a Kripke frame: if w satisfies “all 
A’s are B” or “some A’s are B”, this means that we obtain respectively a universal or particular 
quantification, after restricting the scope to A. Thus, although [a]b and <α>β respectively are 
equivalent to □(a→b) or ◊ (a∧b), they aim to express different ideas. For example, stating that w 
satisfies <α>β wants to express a slightly different thing from ◊ (a∧b): the first wff says that some 
accessible world satisfying a, also satisfies b, not merely that some accessible world satisfies the 
conjunction of a and b. In other words, <a>b expresses that, restricting us to the accessible worlds 
that satisfy a, some of them satisfy b. The key point is the idea of restricting the scope of the 
accessibility relationships, which is marked by the index of the modal operator. 

The semantics of the language works in two steps. In Wp, we have a set of worlds that satisfy the 
wff’s of propositional logic. In WM, a set of worlds that satisfy modal formulas and their compo-
sition by using logical connectives. 

Definition 8. (Satisfaction in WP.) Semantics in Wp is the standard Kripkean semantics for propo-
sitional logic. For any w in WP, we define: 

• Base case: M, w╟ p if and only if w∈ v(p). 

• Conjunction: M, w╟ φ∧ ψ if and only if M, w╟ φ and M, w╟ ψ. 

• Negation: M, w╟ ¬φ if and only if it is not the case that M,w╟ φ 

Definition 9. (Satisfaction in WM.) For any world w in WM, we define the following, where φ and 
ψ are pre-formulas, and α and β are formulas: 

• Base case: M, w╟ <φ> ψ if and only if there is some w’∈WP such that wR|φw’ and M|φ, w’╟ 
ψ.  

• Conjunction: M, w╟ α ∧ β if and only if M, w╟ α and M, w╟ β. 

• Negation: M, w╟ ¬ α if and only if it is not the case that M, w╟ α 

 

A note for the curious reader: Strictly speaking, WM and WP could be the same set or intersect. 
They do not necessarily have to be disjoint but, since we cannot mix in a single wff pre-formulas 
and formulas, we can consider them as disjoint for all practical purposes.  

 

3. Axiomatic System 

Definition 10. (Axiomatic system of LC.) Again, we have to consider that LC has two layers. Pre-
formulas are propositional wff’s, so it has as axioms all propositional tautologies, and it is closed 
under the rule of substitution and modus ponens. The layer of wff’s of LC has these two familiar 
axiom schemes for every pre-formulas φ and ψ: 

• Axiom K-c: [φ] ψ ∧ [ φ] ψ ↔ [ φ] (ψ∧γ) 



• Dual-c: [φ] ψ ↔ ¬<φ>¬ ψ 

 

Regarding the rules, the first one is a variation of the rule of generalization or necessitation. The 
second one is the novelty of this system: 

• Taut-c: If ψ is a tautology in propositional logic, then for all pre-formulas φ, [φ] ψ is a 
tautology in  LC.  

• Transf: If (φ ∧ ψ) → (φ’∧ ψ’) in propositional logic, then <φ > ψ → < φ’> ψ’ in LC. 

 

Also, LC is closed under the rule of substitution and modus ponens, and it contains all tautologies 
in LC. The modal class operator is a family of operators which are indexed over the set of all pre-
formulas. Thus, axioms K-c and Dual-c are the usual axioms K and Dual, and the same for the rule 
of generalization for indexed modalities. Sometimes axiom K-c can be restated in equivalent 
forms, such as < φ > ψ v < φ > γ ↔< φ >(ψ v γ).  

Axioms K-c and Taut-C are defined just for formulas with the same index. The rule Transf is the 
basis of several theorems that allow combining wff’s with different indexes and transforming a 
wff with an index into another one with a different index, given certain conditions. Let us see some 
theorems that can be obtained by the application of Transf (the proofs are very easy and most of 
them are almost immediate): 

1. Swap: <φ>ψ ↔ <ψ> φ.  

2. Translat: <φ>(ψ∧γ) ↔ <φ∧ψ>γ. Note that Swap is a particular case of this. 

3. CombU-E: [φ]ψ ∧ <φ> γ → <φ>(ψ∧γ) 

4. Contrp: [φ]ψ ↔ [¬ψ] ¬φ 

5. IntCIndex and ElimCIndex: [φ]γ → [φ∧ψ] γ, equivalent to < φ∧ψ> γ → <φ> γ. 

6. IntDIndex and ElimDIndex: <φ> γ → <φvψ> γ, equivalent to [φvψ] γ → [φ] γ.  

 

Thus, Transf is the keystone of the modal system because it states how to operate with modal 
formulas whose indexes are different.  

 

4. Soundness and Completeness 

Definition 11. (Modal logic.) A logic is a set of wff’s that contains all tautologies of the language 
and is closed under the rules of modus ponens and uniform substitution. A modal logic is a logic 
in which we have modal operators in the syntax of the language and axioms and rules for them. 

The language LC has two layers, the first one corresponding to pre-formulas is just standard prop-
ositional logic. In this layer, all non-modal propositional tautologies belong to the set of pre-



formulas. The set of wff’s in the second layer is formed by modal wff’s as basic elements. All 
modal formulas that are tautologies, such as [a]a, belong to the set of wff’s of LC, and propositional 
tautologies of the type [a]b v ¬[a]b, that is, tautologies akin to propositional tautologies in which 
the basic elements are modal formulas. This set is also closed under modus ponens, the rule of 
necessitation, and has a set of axioms that we have seen yet. 

Definition 12. (Normal modal logic.) A system of modal logic is normal if, for every square oper-
ator □i, the system contains axioms Dual, K and is closed under the rule of necessitation: 

□i (φ∧ψ) ↔ □i φ∧□i ψ    Ki 

□i φ ↔ ¬◊¬φ   Duali 

If φ is a tautology in propositional logic, □i φ is a tautology      Rule of necessitation 

 

We will make an abuse of the notation and we will call our logic system LC, like the language. As 
long the context is clear, it should not be problematic. 

 

Proposition 13. LC is a normal logic. 

Proof. For every modal operator [α], axioms K and Dual are valid in LC. Also, LC is closed under 
the rule of necessitation for every operator [a]. 

 

We might think that the rule Transf might need a special kind of Kripke frame. We are going to 
prove a surprising feature of this rule. 

 

Proposition 14. Rule Transf is sound in any Kripke model. 

Proof. Let us consider a Kripke model. Let us assume that α∧β→ α’∧β’ is a tautology and that M, 
w╟ <α> β. This means that there is some w’ such that wR|αw’, and w’ satisfies β, and therefore it 
satisfies α∧β. Given the initial assumption, w’ must satisfy α’∧β’ too, so M|α’, w’╟ β’ and therefore 
M, w╟ <a’> β’. 

Transf does not add any extra feature to a Kripke model, although it only appears in a multimodal 
system like ours, in which modal operators are indexed over a set of wff’s of propositional logic. 
Thus, we do not need to verify any additional properties of the model. The following work showing 
the soundness and completeness of LC on a Kripke model is a variation of the standard proof, 
adapted to the peculiarities of LC. 

 

Definition 15. (Strong soundness.) A logic is strongly sound on a Kripke model M if, for any set 
of wff’s Γ and for all φ, if M, Γ├ φ then M, Γ╟ φ.  



Definition 16. (Strong completeness.) A logic is strongly complete on a Kripke model M if, for 
any set of wff’s Γ and any wff φ, if M, Γ ╟ φ, then M, Γ ├ φ. 

 

4.1 Soundness 

The proof of the soundness of the rule Transf in a Kripke model has been proven a few paragraphs 
above. We just must study axiom K-c. Axiom scheme Dual-c is sound by definition. 

Theorem 17. Axiom K-c is sound. 

Proof: The proof for K-c is a slight variation of the proof for the standard axiom K: If some w∈W 
satisfies [α] φ and [α]ψ then, restricting the accessibility relationship only to those worlds in WP 
that satisfy α, all accessible worlds from w satisfy φ and ψ, and thus satisfy φ∧ψ, and therefore M, 
w╟ [α](φ∧ψ). The converse of the implication is similar, so we get as a result that M, w ╟ [α](φ∧ψ) 
iff M, w╟ [α] φ and M, w╟ [α]ψ. 

 

Corollary 18. LC is strongly sound on a Kripke model. 

Proof. It follows from the previous propositions. 

 

4.2 Completeness 

The adaptation of the construction of a Henkin canonical model to our modal is as follows: We 
will consider two canonical sets of sets instead of just one, one for pre-formulas, and the other one 
for formulas. The canonical accessibility relationship is from one to the other. An interesting al-
ternative exercise would be performing this task via filtration, as in (Chagrov 1997). We begin 
with some basic definitions. 

 

Definition 19. (Deducibility.) Given a set of formulas Γ we say that a formula ψ is deducible from 
Γ, stated as Γ├ ψ, if ψ is a tautology or there is a subset of Γ, {φ 1∧...∧ φ n}, such that it implies ψ. 

Definition 20. (Consistent and maximally consistent set.) A set of wff’s Γ is said to be consistent 
if it does not contain the contradiction. It is said maximally consistent set if it is consistent and all 
possible supersets of it are not consistent. In other words, if we add any new formula to it, the new 
set is inconsistent. 

Definition 21. (Strong completeness in Kripke frames.) A logic L is strongly complete with respect 
to the class of Kripke models if every L-consistent set of wff’s is satisfiable in some Kripke frame. 
This is equivalent to definition number 16, but from a different approach. 

The following lemma is crucial for the proof of completeness, we just state it, since it is standard. 

 



Proposition 22. (Lindenbaum lemma.) If Σ is an L-consistent set of wff’s, there is a is L-maximally 
consistent Σ’ such that Σ⊆ Σ’. 

 

The proof can be found in (Chellas 1980) or (Blackburn, de Rijke, and Venema 2001) for example. 
Its relevance is that, given a set Σ, we can always find a maximally consistent set Σ’ containing it. 
This Σ’ will allow us to create a canonical model for our system to prove its completeness. The 
basic idea of the proof of soundness is that we say that a certain formula is deducible from a set Σ 
of wff’s iff it is contained in every maximal superset of it. Thus, being Σ ‘any maximally consistent 
superset of Σ 

 

Σ├ φ iff ∈φ ∈Σ’, for all Σ’ such that Σ ⊆ Σ’ 

As we have two layers in the language, we will have two sets of maximally consistent sets: a set 
of MCS’s for pre-formulas, and another set of MCS’s for formulas. There are several notations for 
MCS’s. Some of them use uppercase Greek letters for MCS’s, such as Γ and Δ. Other authors 
prefer to denote them by w, w’, and so on. We will follow this last notation but having in mind 
that these “worlds” are MCS’s, which is the keystone of the proof. 

 

Definition 23. (Canonical model for modal class logic.) The canonical model for our logic LC is 
the tuple <WM, WP, R(g), v>, where: 

- WP is the set of all maximally consistent sets of pre-formulas. 

- WM is the set of all LC-maximally consistent sets of wff’s. 

- R(φ) is called the canonical relationship, defined as a binary relationship in WMxWP in this way: 
For w∈WM and w’∈WP, wR(φ)w’ iff for all φ, 𝜓, if φ∈w’ and 𝜓∈w’, then < φ >ψ ∈w. As we can 
see, it is the expected canonical relationship, but restricting the model to the worlds that satisfy φ. 
The standard R can be seen as R(T), where T is the tautology. 

- v is the canonical valuation. 

Now we need the following lemmas, whose proofs are standard. The idea is simple, we need to 
assure that there is indeed an accessible world. 

 

Lemma 24. For any w ∈WM and any w’ ∈WP, wR(φ)w’ iff [φ]ψ ∈w. 

The following lemma assures us that there is indeed the required accessible world. 

 

Lemma 25. (Existence lemma.) For any world w∈ WM, if <φ>𝜓 ∈w, then there is some w’ ∈WP 
such that wR(φ)w’ and 𝜓∈w’. In other words, if <φ> 𝜓 in w, then there is some w’∈WP such that 
wR(φ)w’ and 𝜓 ∈w’. 



Now, we can define recursively satisfaction of wff’s over MCS’s: 

 

Proposition 26. (Truth lemma.) Given a canonical model M, for each pre-formula or wff φ, we 
have that M, w╟ φ iff φ∈w, being w in WP or WM depending on whether φ is a pre-formula or a 
formula, respectively.  

We begin with pre-formulas, by induction over connectives as usual, for any w’∈WP:  

- Base case: If p is an atomic letter and w’∈WP, M, w’╞ p if and only if p∈w’, or equivalently, if 
w’∈v(p).   

- Negation: M, w’╞ ¬ φ if and only if it is false that M, w’╞ φ, that is, if φ ∉ w’. 

- Conjunction: M, w’ ╞ φ∧ψ if and only if M, w’╞ φ and M, w’ ╞ ψ, that is, if φ∈w’ and ψ∈w’. 

For wff’s in WM, we define the following for any w∈WM: 

- M, w╟ <φ> ψ iff there is some w’ in WP such that wR(φ)w’ and ψ ∈w’. 

Negation and conjunction are defined in the same way that in pre-formulas. Consequently, we 
have the following: 

 

Corollary 27. (Canonical model theorem.) The modal logic LC is strongly complete with respect 
to its canonical model. 

Proof: The proof is just a slight variation of the standard one for normal logics and Kripke models. 
The canonical model we have defined is a slight variation of a Kripke model, and LC is a variation 
of normal logic. Its novelty is just being a multimodal logic indexed over the set of pre-formulas. 
Regarding the rule Transf, we saw that it is sound in any Kripke model, now we are going to see 
that we need it in our system to be complete. Let us suppose, as usual, that that α∧β → α’∧β’. If a 
certain MCS w contains a wff <α>β, then it must contain <α’>β’ too. Otherwise, either w is not 
consistent (¬<α’>β’ is in w) or it is not maximal (we still can add either ¬<α’>β’ or <α’>β’). 

 

5. Discussion: Combination with other Modal Operators 

We have introduced a modal logical system that, in its simplest version, expresses relations of 
inclusion or intersection between sets and has the same expressive power as a little fragment of 
first-order logic. If we leave the work here, it does not add anything but a more compact notation, 
as we said in the introduction: □ [p]q is slightly more readable than □ ∀x (Px → Qx). The real 
reason for the development of this modal operator is that it is very easily combinable with other 
modal operators, so we can express formulas about the necessity, knowledge, change, and other 
modalities of these relations between sets without using modal first-order logic. As we are going 
to see soon, this is a different approach to quantified modal logic. Instead of using the combination 
of quantifiers and modal operators, we just use modal operators, because we deal with quantifica-
tion with the modal class operator we have defined.   



We could even contemplate a single world in WM, thus making LC just another way of expressing 
the relationship between subsets of a given domain, WP. More precisely, expressing a relationship 
between a set of sets that is isomorphic to the subsets of a given domain, whereas the domain and 
WP may not be isomorphic. What makes it interesting is that it opens the possibilities for multiple 
combinations. We will not discuss the possible combination of the operator with itself, since its 
meaning is not clear at all. 
 

5.1. Modal Operators in the Pre-formulas and the Formulas 

Let us assume a non-empty WM. Its worlds could represent different states, moments, spatial 
scopes, mental states (beliefs, knowledge of agents), and hypotheses, among others. Combining 
the class modal operator [a]b with other modal operators can lead to a more expressive system that 
is easily implementable by adding alethic, epistemic, or any kind of modal operator in general. We 
will add an alethic operator in the following paragraphs. We can add it to pre-formulas, formulas, 
or both levels. 

 

5.1.1. Modal operators in the formulas. We define an extended modal language that incorporates 
an alethic operator in the layer of formulas. It will range over the formulas, not over pre-formulas. 

 

Definition 28. (Syntax of the extended formulas.) Wff’s expressing the composition of modal for-
mulas are defined as follows, where α is an atomic modal formula: 

φ ::= α | ¬φ | (φ∧φ) | □φ 

 

So far, we had a model in which we only had accessibility relationships from worlds in WM to 
worlds in WP. Now, we have defined a standard modality whose accessibility relationship is in WM 
x WM. To avoid confusion, since R is being used for the accessibility WM x WP, we will denote by 
R□M the accessibility of the alethic operator. 

 

Definition 29. (Semantics of the extended formulas.) If φ is a formula, we add the following defi-
nition to the semantics of formulas, for a w in WM: 

• M, w╞ □ π iff all wi∈ WM such that wR□Mwi hold that M, wi ╞ π. 

 

As we expect, axioms for the □ operator would be Dual, K, and T. The same situation will arise 
when studying modal operators in the pre-formulas, so we will not repeat this comment. 

Example. “Necessarily all dogs are animals” can be adequately represented as □[d]a. If a certain 
world w in WM satisfies □[d]a, all w’ in WM that are accessible from w hold that M, w’╟ [d]a, 
including w itself, given that the alethic operator follows the reflexivity axiom. 

The possibilities of combining in a more complex formula necessity, knowledge, belief, and other 
modalities are multiple. We leave this to the reader’s imagination. Just a remark: Some operators 



are non-normal, and therefore Kripke semantics is not useful for them. We would require different 
semantics, for example, neighbourhood semantics, for the structure of WM.  

 

5.1.2. Modal operators in the pre-formulas. The accessibility relationship is now in WP x WP, so 
here we have the interesting fact that pre-formulas can be modal ones. It is not difficult to state 
[a]□b as “All A’s are necessarily B’s” (or necessary B’s). Other modalities would require fewer 
natural ways of expressing their meaning. For example, the combination with an epistemic opera-
tor in the pre-formula can produce formulas such as [a]Kxb, which has to be read as the tortuous 
expression “All A’s are known by X as being B”, or a similar one that expresses that, for every 
individual belonging to A, X knows that it belongs to B.  

 

Definition 30. (Syntax of the extended pre-formulas.) Given a non-empty set Lit, we define the set 
of pre-formulas recursively as follows: 

π ::=   p   | ¬π | (π∧π) | □π 

 

We add the corresponding accessibility relationships in WPxWP, we will denote it by R□P.  

 

Definition 31. (Semantics of the extended pre-formulas.) If π is a pre-formula, we add the following 
definition to the semantics of pre-formulas, for a w in WP: 

• M, w╞ □ π iff all w’∈WP such that w R□Pw’ hold that M, w’╞ π. 

 

Remark. (Two notes about the structure of WM and WP.) We have not talked too much about the 
internal structure of WM or WP. This is because there are many possibilities and levels of complex-
ity. Here we will outline some basic lines of work. The simplest form, in which WM contains a 
single world, represents an actualist vision of the world: There is only a possible state of affairs, 
so we could even omit the reference to this unique world if necessary. If we develop a system in 
which we introduce alethic operators, it will be necessary to have several worlds and the corre-
sponding accessibility relations between them. The same for epistemic operators, possibly a family 
of accessibilities for a set of agents. The most complex situation is that in which we mix different 
modalities: necessity/possibility, knowledge, etc. More options include dynamic logic and spatial 
or temporal modal logics which would allow expressing change or narrowing or widening of scope, 
spatial or temporal. 

The structure of WP can be also complex if we allow modalities in pre-formulas, but there is a 
more relevant issue that must be clarified. Worlds do not represent individuals. If a certain world 
in WM satisfies “all dogs are animals”, this does not mean that each accessible world in WP repre-
sents a certain dog existing in the world or state WM. We only want that the worlds in WM reflect 
the relationship between the sets of beings in these worlds, not the cardinality of these sets. The 
accessibility relationship of the modal class operator from WM to WP is structured in a way that 
the whole model is bisimilar to another one in which each world in WM has access to a set of 



worlds with the corresponding number of entities satisfying each property among these that are 
specified by the pre-formulas of the language. 

 

5.1.3. Modalities in formulas and pre-formulas. We may have modal operators both in the pre-
formulas and the formulas. They do not interfere among themselves, for we have a set of modal 
operators in WM x WM, other ones defined in WPxWP, and the class modal operator, the only one 
defined in WM x WP. Inevitably, this leads us to quantified modal logic at last. Our modal system 
is a way to interpret quantified wff's in modal terms and, if we combine it with other kinds of 
modalities, it is evident that we are using a variation of quantified modal logic in which quantifi-
cation is made by using a modal operator. We will just sketch the topic in the next subsection, 
which will be the object of more detailed research in future works. 

 

5.2. Modal Class Logic and the Barcan Formula: a Simple Analysis 

In this subsection we will just sketch a brief introduction to this topic, considering QML from the 
perspective of a particular kind of combination of modal operators, the modal class one we are 
studying here, and other modalities. QML endeavors to merge first-order logic and modal logic, a 
task that entails numerous complexities and issues beyond the scope of this work. There is an 
extensive body of literature on the subject. We recommend (Janssen-Lauret 2022) for an introduc-
tion to the topic. Our approach offers an advantage in terms of reduced complexity and offers a 
different perspective: the modal class operator does not explicitly quantify individuals but rather 
concerns itself with the inclusion of relationships between sets of individuals. We will see that this 
offers an interesting approach to Barcan formulas in terms of relations between sets, rather than in 
terms of quantification over individuals. 

Let us recall the Barcan schema, which in its universal formulation is stated as ∀x □ φ(x)→ □∀x 
φ(x). Since LC uses propositional logic and not first-order logic, we can adapt it to [d]□ φ →□[d] 
φ, for a given domain of individuals D. We are in a situation in which we have a necessity operator 
both in the formulas and the pre-formulas, as well as the modal class operator. If we add [φ]□ φ 
→□[ φ] ψ as an axiom scheme to the axioms of LC, we will obtain a variation of what Linsky and 
Zalta (1994) call “the simplest quantified modal logic”, a variation whose peculiarity is the absence 
of quantifiers, which are substituted by the modal class operators. We may also assume the validity 
of the axiom of reflexivity for the modal operator, both in formulas and pre-formulas. It is not very 
important in what follows, though.  

Let us assume a bounded domain, vampires, and state this sentence: “all vampires are necessarily 
immortal” (i.e., for vampires, the property of being immortal is necessary, and there is no possi-
bility of not being immortal), which we write in LC as [v] □i. The Barcan formula is stated in this 
situation as [v]□i → □[v]i. If we accept it, the conclusion is □[v]i, “necessarily all vampires are 
immortal”, there is no possible situation in which vampires could not be immortal. What is inter-
esting now is to explore the semantics of this entailment, and its relationship to actualism.  If some 
w in WM satisfies [v]□i, this means that all its accessible worlds w’ in WP that satisfy v also satisfy 
□i, and hence all worlds in WP that are accessible from these w’ satisfy i, including w’, because 
necessity is reflexive. Now, we see the semantic interpretation of the Barcan formula in LC: we 
can move the alethic accessibility relationship from WP to WM. If w satisfies [v]□i, then all worlds 



in WM that are accessible from w via the alethic operator also satisfy [v]i, w itself, and therefore 
w satisfies □[v]i. The quantification, which is made via the modal class operator, is not changed. 
The converse Barcan formula would do the opposite movement, as expected, from WM to WP: We 
can move the alethic accessibility relationship from WM to WP. 

Regarding the relationship of this issue to actualism, we must recall that worlds in WM represent 
possible states of affairs. Having understood the previous paragraph, the connection is almost im-
mediate. We cannot talk about individuals, for we are in a propositional language, but LC allows 
us to talk about sets of individuals and relationships among these sets. The Barcan formula, thus, 
means this in set-theoretical terms: if a set is a subset of the set of beings that necessarily have a 
certain property, then necessarily the first set is a subset of the set of beings that have that property. 
Not a classical formulation but, instead of talking about the impossibility of contingent individual 
objects (Hayaki 2006), the Barcan formula as we have stated in LC affirms the impossibility of 
contingent sets of objects. Let us conclude the discussion here, as it deserves a more thorough 
examination in future works. In this context, we have merely utilized it to exemplify certain se-
mantic considerations about the combination of the modal class operator and the alethic operator. 

 

6. Concluding Remarks and Future Work 

This paper has introduced a modal logic that allows to express relationships between sets, a way 
of introducing quantification in a modal way. Although much work remains to be done, we have 
identified several promising avenues for future research. The most obvious direction is to further 
investigate the combination of this modal operator with other operators, such as alethic, epistemic, 
doxastic, temporal, and other kinds. Each kind of operator has its own peculiarities which would 
have to be carefully studied in its combination with the modal class operator. Additionally, we 
suggest exploring the quantification of proportions and probabilities using a metric over the acces-
sibility relationship. This line of research may follow the path started with the works of Larsen and 
Skou (1991) and Fagin and Halpern (1988), which studied modal logic for probabilities. A very 
similar scheme can be used for proportions (“60% of A’s are B”), which although conceptually 
different from probability, may be modelised using almost the same approach. These are not dif-
ficult tasks, and they would increase the expressive power of this operator greatly. 

A last area of further research that deserves more attention might involve the exploration of various 
relationships between worlds or states. These worlds can encompass imaginary scenarios, broader 
or more restrictive possibilities, changes over time or space, or hypotheses. The use of modal op-
erators in pre-formulas and formulas has only been briefly outlined, and we encourage research 
into their precise meaning. This is of special interest in the case of extensions of LC with different 
kinds of modal operators in both pre-formulas and formulas. This line of inquiry could lead to 
further exploration of related topics, including the discussion on Barcan formulas that we have just 
sketched in the last part of this work, and its ontological and epistemological consequences. 
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