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Abstract 

Information flow in a system is a core cybernetics concept. It has been used frequently in Sensory 
Psychology since 1951. There, Shannon Information Theory was used to calculate "information 
transmitted" in "absolute identification" experiments involving human subjects. Originally, in 
Shannon's "system", any symbol received ("outcome") is among the symbols sent ("events"). 
Not all symbols are received as transmitted, hence an indirect noise measure is calculated, 
"information transmitted", which requires knowing the confusion matrix, its columns labeled by 
"event" and its rows labeled by "outcome". Each matrix entry is dependent upon the frequency 
with which a particular outcome corresponds to a particular event. However, for the sensory 
psychologist, stimulus intensities are "events"; the experimenter partitions the intensity 
continuum into ranges called "stimulus categories" and "response categories", such that each 
confusion-matrix entry represents the frequency with which a stimulus from a stimulus category 
falls within a particular response category. Of course, a stimulus evokes a sensation, and the 
subject's immediate memory of it is compared to the memories of sensations learned during 
practice, to make a categorization. Categorizing thus introduces "false noise", which is only 
removed if categorizations can be converted back to their hypothetical evoking stimuli. But 
sensations and categorizations are both statistically distributed, and the stimulus that corresponds 
to a given mean categorization cannot be known from only the latter; the relation of intensity to 
mean sensation, and of mean sensation to mean categorization, are needed. Neither, however, are 
presently knowable. This is a quandary, which arose because sensory psychologists ignored an 
ubiquitous component of Shannon's "system", the uninvolved observer, who calculates 
"information transmitted". Human sensory systems, however, are within de facto observers, 
making "false noise" inevitable. 

Keywords: Shannon Information Theory, sensory psychology, observer 
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Introduction 

A core cybernetics concept, Information flow in a system, has been extensively used in Sensory 
Psychology since 1951, when the "information transmitted" of Shannon Information Theory 
(Shannon, 1948) was first computed for the results of "absolute identification" experiments using 
human observers (Gamer & Hake, 1951 ). It was believed that a fundamental aspect of human 
capability was being measured, the "channel capacity", famously proselytized early on as "The 
Magical Number Seven, Plus Or Minus Two: Some Limits On Our Capacity For Processing 
Information" (Miller, 1956). Publicized by Miller, the Gamer & Hake computation was 
enormously influential in the study of behavior; Garner & Hake, with Miller, together have been 
cited over 4,750 times by workers in psychology, systems theory, management, information 
engineering, human factors, music, neurology, and general cybernetics. The numbers are from 
ISi Web of Science; however, according to GoogleScholar, Miller (1956) alone has received 
nearly 15,000 citations. 

Computations of "channel capacity" are ongoing. Nonetheless, the use of information theory in 
psychology has been declared fruitless, several times (e.g., Gregory, 1980; Luce, 2003; Laming, 
cited in Luce, 2003; Collins, 2007), yet with some puzzlement, because a compelling explanation 
of why has been lacking. This paper provides such an explanation. 

Shannon's "General Communication System", Information Transmitted, and 
the "Confusion Matrix" 

In Shannon's "general communication system'', there is "An information source which produces 
a message or sequence of messages to be communicated to the receiving terminal"; "A 
transmitter which operates on the message in some way to produce a signal suitable for 
transmission over the channel"; "The channel is merely the medium used to transmit the signal 
from transmitter to receiver"; "The receiver ordinarily performs the inverse operation of that 
done by the transmitter, reconstructing the message from the signal"; and "The destination is the 
person (or thing) for whom the message is intended". Figure 1 shows the "general 
communication system". 

Probabilities lead to information as follows (Shannon, 1948). n events are possible. The event 
that occurs is the outcome. When n > 1, the outcome is uncertain. What is certain is each event's 
probability of occurrence, Pb i = 1, ... , n. Shannon proved that the requisite [amount of] 
''uncertainty", "choice", or "information", called Is , is 

n 

source (signal) uncertainty (source information)= -KL P; logp;, K > 0. (1) 
i=l 

Shannon set K =1. When events are symbols "k", 

ls=-Ip(k) logp(k). (2) 
k 
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Shannon assumed, for simplicity's sake, that any symbol received is one of the set of symbols 
sent. Not all symbols will be received as transmitted; unintended errors occur. Let the probability 
of transmission of symbol k given reception of symbol j be denoted pj(k). Then 

information transmitte d 11 =ls -Es =f:p (k) logp(k) + LL pik) logp1(k), (3) 
k j k 

Es =-II p 1(k) logp1(k) is the stimulus equivocation/uncertainty/entropy, calle d H. (4) 
j k 

Information Imperfect channel 
Source Transmitter r - - - - - - - - _ , Receiver Dastlnatlon 

D )))))) I I• tt�,� · + ��•·I I )))))) D Message 1
1 

Signal l Received :I Received 
(event) signal message 

I (outcome) 
I No�e I 
.. _____ _ - - - .. 

- - - - - - - - - +Information flow - - - - - - - - - _..,. 

Figure 1. A "general communication system" (after Shannon, 1948), to which Shannon 
applied his Information Theory. 

It can be computed by knowing (a) what symbols were transmitted, (b) what symbols were 
received, and ( c) for each symbol sent and each symbol received, the number of times that the 
latter corresponded to the former. Those numbers form the basis of the confusion matrix, whose 
columns are labeled by the symbol transmitted (the event) and whose rows are labeled by the 
symbol received (the outcome), such that each matrix entry depends upon the number of times 
that the particular outcome corresponded to the particular event. Figure 2 shows the Shannon 
confusion matrix. The confusion matrix can be assembled as follows for a set of transmitted 
symbols "k". Njk =the number of times a symbol transmitted as k  is received as j; p(j) = Nj.IN = 
the probability that j was received; p(k) = N.k/N = the probability that k was transmitted; Pk(j) = 
Njk /N.k = the probability that j was received if k was transmitted; and pj(k) = Njk!Nj. = the 
probability that k was transmitted, if j was received. Non-zero off-diagonal elements in the 
confusion matrix represent lack of transmission fidelity ("noisiness"). When what is transmitted 

· is identically received, the non-zero entries lie on the diagonal, and It = Is. 
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Symbol sent (event) 

I 2 '?:I. k a. n 

Symbol received 

(outcome) 

1 N 11 N 12 a N lk a N In 

2 N 21 N 22 a N1k a N1n 
a a a a a a a 

J N JI N J2 a NJk M N Jn 
� a a a a � '?1 

n N n1 N n2 a Nnk a Nnn 

Column totals N.1 N.2 a N.k a N.n 

Figure 2. Shannon's Information Theory "confusion matrix" (Shannon, 1948). 

Here, 
n n 

Row 
totals 

N t. 

N 2 . 

N J . 

N n . 

�N 

total number of symbols receive d = L Ni. = L N. k = total number of symbols sent = N. 
j=l k=I 

The Confusion Matrix in Sensory Psychology 

Shannon's Information Theory has been employed in psychology to quantify a subject's 
performance in the "category" or "absolute identification" experiment. The computational 
method has been attributed to Gamer and Hake (1951). A set of sensory stimuli are made to vary 
in only one sensory attribute. Here, as in most actual experiments, let that attribute be the 
intensity. The experimenter partitions the intensity continuum into ranges called "stimulus 
categories" and "response categories". The response categories can be named or numbered, 
usually rising with rise in intensity, for example, ''very weak" to "very strong" or 1-10. Each 
stimulus from a stimulus category evokes a sensation; as intensity increases, sensation increases. 
Corresponding to the response categories, the subject has a set of non-overlapping ranges of 
sensations. In the experiment, the subject is exposed to randomly chosen intensities, presented 
one after the other in a block of intensities spanning the intensity range to be explored. Based on 
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r 
I I 
I sensation, the subject states the response category that they believe corresponds to the given 

stimulus. 

Figure 3 shows the confusion matrix of sensory psychology. The rows of the confusion matrix 
are labeled by response category and the columns of the matrix are labeled by stimulus category. 
Each matrix entry is the number of times that a stimulus taken from the respective stimulus 
category was classified by the subject as falling within the respective response category. 
According to Gamer and Hake ( 195 1, p. 452), It expresses ''the amount of information about the 
event continuum which a particular range of stimulus values can transmit". 

Response 

category 

1 

2 

a. 

J 
a. 
n 

Column 

totals 

1 

N 11 

N 21 
a. 

N jt 
a. 

N nt 

N .1 

Stimulus category 

2 � k a. n Row totals 

N 12 a. N tk a. N In N t. 

N 22 a. N 2k a. N 2n Ni. 
a. a. a. a. a. a. 

N j2 a. N jk � N Jn N. J. 
a. a. a. a. a. a. 

N 02 a. N ok a. N DD N n. 

N.2 a. N.k a. N.n �N 

Figure 3. The "confusion matrix" of sensory psychology (after Gamer & Hake, 1951). 

Problems with the Confusion Matrix in Sensory Psychology: (1) Categories, 
and their Manipulation to Maximize Information Transmitted 

In Shannon Information Theory, the "outcomes" are elements of the set of known possible 
"events". Thus, "events" and "outcomes" are similar things. Not so, in point of fact, for the 
sensory psychologist. In absolute identification, stimulus intensities are the "events", and 
responses to the stimuli are verbal, written, or electronically signalled "outcomes". But responses 
("outcomes") and stimuli of given intensities ("events") are self-evidently different things. They 
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do not have the same units, or even the same dimensions of units. Stimulus intensity has physical 
units, whose particular dimensions are some combination of mass, length and time; in contrast, 
the response to a stimulus is simply a number, having no physical units at all. 

That difference may have been what motivated Garner and Hake (1951) to replace Shannon's 
"events" and "outcomes" by "categories". Thereby, any given stimulus was contained within a 
stimulus category, and any given response was contained within a response category. Categories 
had the advantage that they masked any arbitrariness by seeming to be similar, perhaps identical, 
things. For example, there could be a Category 3 of "events", and a Category 3 of "outcomes". 
When a stimulus within Stimulus Category 3 was "matched" by an experimental research subject 
to a response within Response Category 3, both stimulus and response fell within something 
calle d Category 3. Further, the common practice in sensory science was to make the number of 
stimulus and response categories the same, in which case "information transmission" for/by/of 
the stimulus could possibly be "perfect". 

The partitioning of stimulus intensity, a continuum, into stimulus categories was always 
arbitrary. As Garner and Hake (1951, p. 452) put it, "Which events (or how many) are 
represented by which particular discrete stimulus is an arbitrary matter". That is, stimulus 
ranges, consider to be "event" (i.e., stimulus intensity) categories, were represented by 
individual stimulus intensities. Indeed, individual stimuli were often referred to as stimulus 
categories (e.g., Garner, 1953; Engen & Pfaffmann, 1959). Conversely, the concept of "stimulus 
category" was sometimes not applied; stimuli were sometimes simply called "stimuli" (e.g., 
Beebe-Center et al., 1955; Eriksen & Hake, 1955; Blarney & Clark, 1987; Fulgosi et al., 1987; 
Mori & Ward, 1995; Petrov & Anderson, 2005). From this point on, what are called "events" 
will be the particular stimulus intensities used in absolute identification experiments. Possible 
responses (e.g., ''that was stimulus number 6") were not typically called response categories. 
Regardless, all papers referred to the computed "information transmitted" I, as a source of the 
theoretically identifiable number of categories of stimuli; when the logarithms in Eqs. (1)-(4) are 
taken to base X, where X is a positive integer, the number of identifiable stimulus categories is, 

in principle, X 11 • 

Note well, however, that the magnitude of the information transmitted can be increased by 
changing the numbers and widths of the stimulus categories and response categories of the 
confusion matrix (Garner & Hake, 1951 ), in a manner that eliminates or reduces the magnitude 
of off-diagonal entries. In particular, Garner and Hake (1951) realized that the information 
transmitted could be maximized by making the stimuli equally discriminable, that is, just as easy 
to discriminate from their nearest neighbors. Equal discriminability could allegedly be 
established through an elaborate and time-consuming experiment that was proposed by Garner 

·and Hake (1951), who carried it out for some pure (single-frequency) tones. Unfortunately, such 
preliminary experiments constitute lengthy procedures in themselves and are therefore beyond 
the scope of most sensory psychology "information transmission" experiments. (Some, 
nonetheless, took that track.) Alternatively, such experiments could be done for a broad variety 
of stimuli, with the derived sets of equally-discriminable stimuli being made publicly known for 
future use. That, however, has not happened. Regardless, equal discriminability would seem to 
be a capability of a human being, not of a "communication system". 
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Indeed, if the magnitude of "information transmitted" can easily be altered by simply 
manipulating the spacing between the stimuli, then only its maximum seems to have any 
meaning. Recall from Eq. (3) that actual "information transmitted" depends partly upon the a 
priori probabilities of stimulus presentation, p (k ), set by the experimenter. But those alone are 

not the only stimulus properties that affect "information transmitted" in absolute identification; 
as noted, the latter is empirically dependent upon stimulus configuration, which perforce must 
alter the a posteriori probabilities p1(k) in Eq. (3). But alterations to p1(k) imply alterations to 

the "noise" of the Shannon "communication system". In Shannon's system, noise was imagined 
as a random, independent feature of the channel, not as a property of the "events"; that is, the 
"events" are used to test the channel for its information capacity, rather than the channel being 
used to test the "events" for discriminability through the Garner-Hake equal-discriminability 
protocol. Stimulus intensity discriminability is presumably a memory-dependent cognitive 
feature, not a "channel" property per se, and as such, less-than-optimal discriminability 
constitutes "false noise". 

Problems with the Confusion Matrix in Sensory Psychology: (2) the 
Complicated Relation of Outcome to Event 

Even if the "false noise" could be eliminated by choosing equally-discriminable stimuli and their 
appropriate response categories, thus maximizing "information transmitted", there is a further 
source of "false noise", and one that arises from categorization by the research subject. That is, 
by glossing over the differences in units between "events" and "outcomes'', categorization serves 
a deeper purpose, namely, to downplay the ultimate source of that difference in units: that the 
experimental research subject's categorizations (the "outcomes") relate to the stimulus intensity 
"events" in a decidedly nonlinear manner. That is, the transformation of "event" to "outcome" is 
more complicated than a simple straight-line function y = ax  + b . Consider that the relation of 

stimulus intensity to category judgment may comprise not one but two successive nonlinearities. 
The first nonlinear transformation occurs when a stimulus evokes a sensation. The mechanism is 
still poorly understood, but any contemporary textbook or review paper assumes it to be 
nonlinear. After all, sensation must depend upon the behavior of the first neurons to respond to a 
stimulus, the primary sensory afferents, and their stimulus-driven spike firing-rate is a nonlinear 
function of stimulus intensity. 

But there is an even further step beyond sensation-generation. Recall that all of the possible 
stimuli in an absolute identification experiment are not presented for the subject's review every 
time that the subject is obliged to make a categorization. Such comparisons are possible only 
during training sessions. Subsequent to the training sessions (which can be brief), the subjects 
categorize stimuli by comparing their immediate memory of the stimulus-evoked sensation to the 
memories of the sensations that were learned during practice. 

At this point it proves helpful to adopt some mathematical notation, with the understanding that 
equations only represent mean values. Let us assume that the stimulus I evokes a mean sensation 
S according to a relation that is meaningful, in that it is smooth, continuous, and monotonic, call 
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it S(l). Despite the potentially chaotic effects of memory upon the transformation of sensation 

to judged category, let us assume for simplicity's sake that, on average, the subject assigns S(I) 
a category judgment (category number) f according to a relation that is meaningful, in that it is 
smooth, continuous, and monotonic, f (s) . Although categories are discrete, it is convenient 

mathematically to represent them (for the present) as being infinitely thin and hence continuous. 

By assigning f (s) to S, the subject indirectly relates the assigned category to the stimulus 

intensity according to a meaningful relation f(S(I)), which is smooth, continuous, and 

monotonic, call it F(l) . Figure 4 shows the two-stage process in absolute identification. 

.... ------------..... ..... ----..... 
S(I) ------11> 

--------------- , ... 

............. .... .... .. .. .. .. .... .... .... ........... f(S) 
_____ _,[> 

...... .... .... , .. .... 
.... .... , .. .... .... 

0 
Intensity, I 

0 
Sensation, S 

0 
Category, f 

Figure 4. A graphic depiction of two examples of categorization of stimulus intensity. 
Two intensities I (the black dots on the leftmost vertical number line) are transformed 

into two respective sensations S(I) (the black dots on the central vertical number line), 

which in turn are transformed into two respective categorizations /(S) (the black dots on 

the rightmost vertical number line). The relations S(I) and /(S) are assumed to be 

smooth, continuous, and monotonic (see text). Therefore, the higher I gives the higher 

S(l), which gives the higher /(S) . However, the transformations are nonlinear, as 

indicated by the difference in slope between the pair of dashed lines that link I to S, and 
by the difference in slope between the pair of dashed lines that link S to f. We may 

assume that S(J = 0) = 0 (i.e., absence of stimulus produces absence of sensation) and 

that, likewise, f(S = 0) = 0 (absence of sensation results in no assigned category, as 

represented here by a convention, "zero" category). Sensation is assumed to have an 

effective maximum, S MAX , for which there is a maximum categorization, f MAX . 
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Returning to the role of memory: there is considerable accumulated circumstantial evidence that 
"information transmitted" obtained in absolute identification experiments is a measure of short
term memory for random letters or digits, unless the involvement of memory is lessened or 
removed, in which case "information transmitted" in absolute i dentification increases perhaps 
without bound (Nizami, 2010). The latter critical review was later condensed to form the 
background and justification of what is perhaps the first comprehensive and readable original 
model of how memory actually influences categorizations (Nizami, 2011).1 Nizami's conclusion 
(see Nizami, 2010, 2011) was that memory does not merely limit "information transmitted" in 
absolute identification, as some had suggested; rather, memory capacity is what is actually 
measured in absolute identification. "Memory noise", a form of "false noise", utterly obscures 
any role of actual sensory noise. 

Thus, the results from absolute identification experiments cannot be meaningfully interpreted 
using Shannon Information Theory, unless the obscuring effect of"false noise" is stripped away. 
The obvious way to do that is to convert category judgments back to outcomes-as-events. But 
sensory psychologists do not do that. Regardless, an equation relating categories back to 
outcomes-as-events could conceivably be devised if we knew the transformations by which a 
research subject turns stimulus intensities into statements of response category. Whether it is 
possible to achieve that knowledge is the subject of the following sections. 

Problems with the Confusion Matrix in Sensory Psychology: (3) Outcome 
(Categorization) is Stochastic 

There is an important related point, one that should not be further delayed, namely, that 
categorization is stochastic. First of all, the response of a primary afferent neuron is distributed 
(references too numerous to mention). That is, the spike firing rate can be represented by a 
probability density function (a "distribution") having a mean value and a variance. As such, the 
. sensations evoked by repetitions of a fixed stimulus, whether dependent upon a single neuron or 
an ensemble of neurons, will inevitably be distributed. Figure 5 shows this point. This variability 
of sensation is the sensory system's true noisiness, that is, its true tendency to error. However, 
the subsequent categorization of any given single sensation is memory-dependent and hence 
imperfect, introducing a new level of variability. Altogether, the judged category to which a 
fixed sensation is assigned is necessarily distributed. Figure 6 shows this point. Overall, then, a 
stimUlus intensity "event" evokes two steps of randomization by the time the human subject 
announces the category to which the stimulus intensity belongs. And empirically, category 
judgments are indeed distributed (e.g., van Krevelen, 1951; Terman, 1965; Miyazaki, 1988; 
McCormack et al., 2002; Elvevag et al., 2004; Neath et al., 2006; Murphy et al., 2010). Hence, it 
helps to use mean values of sensations and of categorizations, with the understanding that each 
mean value reflects an underlying distribution of values. 

Problems with the Confusion Matrix in Sensory Psychology: ( 4) Two Steps 
Link Event to Outcome, and Both are Unknown 

And here we arrive at an apparently intractable problem, as follows. Sensory psychologists 
ignored the possibility that there was an intervening step between sensation generation and 
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categorization. That is, they imagined that "information transmission" involved only the 
generation of the sensation from the stimulus, not the subsequent memory-dependent generation 
of the category judgment from sensation. Given functions S(I) and /(S) which are smooth, 

continuous, and monotonic, the mean categorization as a function of stimulus intensity, F(I), 
has an inverse F-1(1), which is such that I= F-1(F(1))= F(F-1(1)) . (Imagine, for example, 

that Fis "squared" and F-1 is "square root", or vice versa.) Similarly, the equation /(S) has an 

inverse /-1(S), such that S = /-1(/(s))= 1(r-1(s)); the equation S(I) has an inverse 

S-1(1), such that I= S-1(S(1))= s (s-1(1)). But, also, I= F-1(F(1))= F(F-1(1)). 
Counterintuitively, the latter stimulus intensity is not the true mean outcome-as-event, as 
follows. 

.. c 0 
+-0 "' c Q) 
Cf) I I I 

' p(S 1 > p(So) I ' Probability 
density, p(S) 

o---��������-

Io 
Intensity, I 

Figure 5. The stochastic nature of sensation. A stimulus of intensity 10, over repeated 

presentations, evokes a distribution of sensations (here assumed Gaussian, in the absence 
of data to the contrary) having a mean value S0• S0 occurs with a probability density 

p(S0), and, likewise, another sensation S1 occurs with a probability density of p(si) in 

response to other presentations of I 0 . Probability density should be thought of as an axis 

that extends perpendicularly out of the page. 
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Suppose that we know F(I). Consider two intensities, I and I'. Then given F(l)= /(S(I)), 
and if/is not the Identity transformation /(S)= S, then the declaration F(I')= S(I) implies that 
I* I', that is, that the stimulus intensity "event" I' corresponding to F(I') is not the stimulus 
intensity "event" I corresponding to S(I). To see this, first assume that F(I')= S(I). 
Consequently, /(S(I'))= S(I), from which 1-1(/(S(I')))= 1-1(s(I)), that is, S(I')= 1-1(s(I)). 
Consequently, s-1(S(I'))= s-1(r-1(s(I))). Suppose now that I= I'; then 

s-1(S(I))= s-1(r-1(s(I))), which is true if and only if /-1(S(I))= S(l), that is, if 

1-1 = Identity, in which case also f = Identity in order that 

1{r-1(s(I)))= 1-1(/(s(I))) = S(I). Conversely, for f *Identity, we have I* I'. Figure 7 
shows a graphic version of the argument. 

In sum, the mean outcome-as-event that corresponds to a given mean category judgment cannot 
be known from only F(I), the categorization as a function of intensity. What is required is S(l), 
the relation of sensation to intensity, and also /(S), the transformation of sensation to category 
judgment. The proof above is a variation on one by Phillips (1964). Phillips' proof actually 
concerned F(I) as loudness, a judgment of sensation magnitude, rather than category number; 
and indeed, Phillips (1964) did not discuss memory or categorization, because he was not 
concerned with absolute identification. The latter is not the same thing as judged loudness. 
Nonetheless, Phillips' (1964) proof is relevant, and it proceeds as follows. Phillips noted that 
I= s-1(s(I))= s(s- 1(I)), hence F(I)= F(s- 1(s(I)))= J(S(I)). Phillips emphasized that, if we 

know F(I), but if we have no reason to know s- 1 (I) (and indeed we do not), then we cannot 
know S = S(I) without knowing /(S). In other words, no relation of intensities to numbers 
which results from two unknown successive stages can reveal those stages. To give credit where 
credit is due, Phillips' proof deals with concepts that were actually pursued earlier (using similar 
algebra) by Attneave (1962), whom Phillips (1964) does not cite. Regardless, an /(S) for either 
absolute identifications or magnitude judgments seems unlikely to be discovered any time soon. 

Even if S(I) and /(S) were both known, we could never know exactly the stimulus intensity I 
(the outcome-as-event) that corresponded after-the-fact to a known single categorization F(l), 
due to the stochastic nature of absolute identification. Only mean values could be specified; the 
closest we might get to obtaining outcomes-as-events might be to simulate the variability 
inherent in S(I) and in F(I) by using Monte Carlo simulations, as done by physicists. But that 
would require knowing how S(I) and /(S) are distributed.2 

Finally, note an interesting property that is illustrated in Fig. 7, namely, that the lowest and 
highest sensations naturally correspond to the lowest and highest category judgments. But such 
numbers are all mean values. With mean values of sensation/categorization which are at the 
extremes of sensation/categorization, the distributions of sensations and of categorizations must 
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both, within this model, become increasingly skewed towards lower sensations/categorizations as 
sensation/categorization approaches zero, and toward higher sensations/categorizations as 
sensation/categorization approaches maximum. Such skewing was predicted by Nizami (2011) 
for categorization, and is found experimentally for categorizations of the duration (McCormack 
et al., 2002; Murphy et al., 2010) and for the pitch (McCormack et al., 2002) of pure (i.e. single
frequency) tones, and for the lenfbs of rods (Neath et al., 2006) and for tone duration and for 
line length (Elvevag et al., 2004). 

I 
I 
I 
I 
I 

- f(S1) ----------------:----
(/) I 
- I 
Cf-

. c 0 
+ 0 N 
'-0 O> Q) 

+ 0 
u 

.l .2 

p(f(S1)) 
Probability 

density, p(f(S)) 

o---------------------------------------------------------------------
S1 

Sensation, S 

Figure 6. The stochastic nature of categorization. The sensation S1 seen in Fig. 5, over 

repeated occurrences, evokes a distribution of categorizations (here assumed Gaussian, in 
the absence of data to the contrary) having a mean value /{S 1) which occurs with a 

probability density p(/{si)). Probability density should be thought of as an axis that 

extends perpendicularly out of the page. The pictured Gaussian distribution is broader 
than that of Fig. 5, to suggest that variability in memory greatly exceeds variability in 
sensation (see text) in absolute identifications. 
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-
-

CJ) 
. c 0 

+-0 fl) c Q) 
CJ) 

S2 -----------

I 
I 
I -r ---,- ---------
1 : 
I I 

I I 

I 

IF 2 Isl Is2 
Intensity, I 

. c 0 
+-0 N 
'-0 0) Q) 

+-

FI 8 

Figure 7. A graphical version of the proof (see text) that given F(l)= /(S(I)), and if 

f(S):1; S, then the declaration F(I')= S(I) implies that I'* I', that is, that the stimulus 

intensity "event" I' of F(I') is not the stimulus intensity "event" I of S(I). All 

functions here represent mean values, and for the sake of illustration, /(S) is assumed to 

be nonlinear. We assume that S(/=0)= 0 and /(S= O)=O (see Fig. 4), hence 

F(I = 0) = 0. We also assume that /(S MAX)= f MAX = F MAX • The mean sensation S 1 

evokes the mean categorization Fi; due to /(S):1; S, the dashed horizontal line touching 

Si will not intercept the F-axis at Fi, hence the respective intensities ls1 and IF1 differ 

(follow the long dashed lines). The same sort of argument applies for the mean sensation 
S2 that evokes the mean categorization F2, and the respective intensities ls2 and IF2 
(follow the short dashed lines). 

Overall Summary 

Shannon's Information Theory offered an estimate of "information transmitted" from the data 
·cumulated in the "confusion matrix". Originally, the columns of the matrix were labeled by 
symbol sent ("event") ·and the rows by symbol received ("outcome"). However, sensory 
psychologists broke from this tradition, instead labeling the matrix's columns by stimulus 
category and its rows by response category. The usefulness of the psychologists' approach has 
been doubted by theorists. The present paper reveals that those doubts were justified, not only 
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because the psychologists' approach uses arbitrarily defined "events" and "outcomes", but also 
because its "event" and "outcome" continua are arbitrarily partitioned. 

Shannon's "symbols received" (Fig. 2) are elements of the set of "symbols sent". But category 
judgments, used by sensory psychologists as "outcomes", are nonlinear transformations of 
stimulus intensity "events" and, as such, are not elements of Shannon's "general communication 
system". In principle, this incongruity might be compensated for by algebraic conversion of 
categorizations back into outcomes-as-events - that is, back to stimulus intensities. But such a 
conversion has not been provided by sensory psychologists, which, in retrospect, is no surprise; 
categorization should be recognized as a two-step process involving transformation of intensity 
to sensation, followed by transformation of sensation to a category judgment. Both steps are 
stochastic. It is presently impossible to quantify the mean sensation with intensity, or the relation 
linking mean sensation to mean category judgment. Hence, it is not possible to work backwards 
from a mean category judgment to a mean sensation to a stimulus intensity. And indeed, thanks 
to stochasticity, it is always impossible to work backwards from a particular category judgment 
to a particular sensation to a particular stimulus intensity. Altogether, categorizations of stimulus 
intensity, made by human subjects cannot be reduced to elements of the set of possible "events" 
(stimulus intensities), and therefore cannot be used to compute "information transmitted" using 
Shannon Information Theory. Without that correction, we are left with "false noise" which 
reduces the possible computed magnitude of "information transmitted". 

Final Analysis 

The mistakes just mentioned all have a common root cause. That root cause is the misapplication 
of Shannon Information Theory to things that it was not designed for, as follows. 

To compute Shannon "information transmitted" requires an observer (sometimes called "the 
engineer"). The observer must perforce know what the "events" are, and what their a priori 
probabilities of occurrence are. The observer records the actual frequency of occurrence of the 
outcomes (as a subset of the events). Indeed, it is observers-as-engineers who construct the 
"general communication system" itself. 

Remarkably, sensory psychologists have never acknowledged the role of the observer. Shannon 
himself may be partly to blame, because the observer did not appear in Shannon's (1948) 
original illustration of his system, and hence not in Fig. 1 here. Regardless, sensory psychologists 
assumed that what they were measuring, in applying Shannon Information Theory to absolute 
identification, was the neural noise of a sensory system. Seemingly, they did not think that they 
were measuring aspects of a more complicated system, one that generates human behavior under 

. other kinds of noise. Indeed, the sensory psychologists treated sensory response as if it was 
isolated from all other neural activity within the human subject, hence examinable independently 
of the sensory system's role as part of the whole human, the whole human who was always a 
potential observer. 

That is, sensory psychologists, themselves observers, tried to quantify the noisiness of a 
"system" that was part of a larger system, the potential observer. By indicating their own 
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responses, rather than having them recorded in an unbiased manner by a third party, the 
experimental subjects themselves introduced a bias, in fact, a memory bias. That bias occurred 
because subjects could not accurately indicate their own sensations, or work backwards from 
those to indicate the evoking stimuli (even if sensation were not stochastic, or if the stochasticity 
were ignorable). In contrast, in Shannon Information Theory the observer is utterly apart from 
the "general communication system", thus being unbiased, a necessary attribute. 

In short, it may have been sensible to apply Shannon Information Theory to things made by 
humans, such as transmission lines, but not to humans themselves. 
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Notes 

1. Earlier "reviews" of the results of the Gamer-Hake method in psychology (e.g., Broadbent, 
1975; Baddeley, 1994; Shiffrin & Nosofsky, 1994) were too brief, and focused on the respective 
authors' own connections to the field rather than on the evidence in general. 

2. There are many researchers who believe that S(I) is already well-known. Indeed, those 

researchers believe that /(S)=S and that S(J) follows Stevens' Law, named after Professor 

S.S. Stevens of Harvard University. Stevens' Law was inferred from magnitude judgments, 
which are self-quantifications of sensations. Stevens treated magnitude judgments as "reflexes" 
(e.g., Stevens, 1959), i.e., f =Identity. However, the latter is unlikely, because humans cannot 
accurately self-quantify their sensations. And regardless, Stevens' Law lacks credibility on an 
enormous number of other grounds, for which the supporting references are far too numerous to 
mention. 

3. Nizami (2011) did not consider the skewing of the distribution of sensation, but perhaps 
should have. 
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