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ABSTRACT 
A major question in sensory science is how a sensation of magnitude 𝐹𝐹 (such as loudness) depends upon a sensory 
stimulus of physical intensity I (such as a sound-pressure-wave of a particular root-mean-square sound-pressure-
level). An empirical just-noticeable sensation difference (∆𝐹𝐹)𝑗𝑗 at 𝐹𝐹𝑗𝑗 specifies a just-noticeable intensity difference 
(∆𝐼𝐼)𝑗𝑗 at 𝐼𝐼𝑗𝑗. Intensity differences accumulate from a stimulus-detection threshold 𝐼𝐼𝑡𝑡ℎ up to a desired intensity 𝐼𝐼. 
Likewise, the corresponding sensation differences are classically presumed to accumulate, accumulating up to 
𝐹𝐹(𝐼𝐼) from 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ), a non-zero sensation (as suggested by hearing studies) at 𝐼𝐼𝑡𝑡ℎ. Consequently, sensation growth 
𝐹𝐹(𝐼𝐼) can be obtained through Fechnerian integration. Therein, empirically-based relations for the Weber Fraction, 
∆𝐼𝐼 𝐼𝐼⁄ , are individually combined with either Fechner’s Law ∆𝐹𝐹 = 𝐵𝐵 or Ekman’s Law (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔; the number 
of cumulated steps in 𝐼𝐼 is equated to the number of cumulated steps in 𝐹𝐹, and an infinite series ensues, whose 
higher-order terms are ignored. Likewise classically ignored are the integration bounds 𝐼𝐼𝑡𝑡ℎ and 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ). Here, we 
deny orthodoxy by including those bounds, allowing hypothetical sensation-growth equations for which the 
differential-relations ∆𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼 + ∆𝐼𝐼) − 𝐹𝐹(𝐼𝐼) or (∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ) = �𝐹𝐹(𝐼𝐼 + ∆𝐼𝐼) − 𝐹𝐹(𝐼𝐼)� 𝐹𝐹(𝐼𝐼)⁄  do indeed return 
either 𝐵𝐵 or 𝑔𝑔, for linear growth of sensation 𝐹𝐹 with intensity 𝐼𝐼. Also, 24 sensation-growth equations 𝐹𝐹(𝐼𝐼), which 
had already been derived by the author likewise using bounded Fechnerian integration (12 equations for the Weber 
Fraction (∆𝐼𝐼 𝐼𝐼⁄ ), each combined with either Fechner’s Law or with Ekman’s Law), are scrutinized for whether 
their differential-relations return either 𝐵𝐵 or 𝑔𝑔 respectively, particularly in the limits (∆𝐼𝐼 𝐼𝐼⁄ ) ≪ 1 and the even-
more-extreme limit (∆𝐼𝐼 𝐼𝐼⁄ ) → 0, both of which seem unexplored in the literature. Finally, some relevant claims 
made by Luce and Edwards (1958) are examined under bounded Fechnerian integration: namely, that three popular 
forms of the Weber Fraction, when combined with Fechner’s Law, produce sensation-growth equations that 
subsequently return the selfsame Fechner’s Law. Luce and Edwards (1958) prove to be wrong. 
 

1 Introduction 
This article is a critical re-evaluation of a 
foundational theory of mathematical psychophysics. 
It focuses on derivations, without comparison to 
measurement (which is not germane to the task). 
 
A sensory stimulus of physical intensity 𝐼𝐼, however 𝐼𝐼 
is measured, produces a sensation of magnitude 𝐹𝐹(𝐼𝐼). 
How sensation magnitude grows with intensity 

continues to be a major topic in sensory science. 
Classically [1-20], it has been assumed that the actual 
minimal differences in sensation, the sensation 
“chunks” (so-to-speak), can be added together to 
produce the sensation magnitude. This exemplifies 
ratio scaling, in which quantities can be added 
together to make proportionately greater quantities. 
(Physical intensity is one such quantity.) These 
notions can be expressed algebraically. For a positive 
integer 𝑗𝑗  labeling an intensity 𝐼𝐼𝑗𝑗  that evokes a 
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corresponding sensation 𝐹𝐹𝑗𝑗 , consider an empirical 
just-noticeable sensation difference ∆𝐹𝐹 𝑎𝑎𝑎𝑎 𝐹𝐹𝑗𝑗  that 
corresponds to a just-noticeable intensity difference 
∆𝐼𝐼 𝑎𝑎𝑎𝑎 𝐼𝐼𝑗𝑗: 
 
∆𝐼𝐼 𝑎𝑎𝑎𝑎 𝐼𝐼𝑗𝑗  𝑖𝑖𝑖𝑖 𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝐼𝐼)𝑗𝑗     (1𝑎𝑎),
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑔𝑔  𝑎𝑎𝑐𝑐  ∆𝐹𝐹 𝑎𝑎𝑎𝑎 𝐹𝐹𝑗𝑗, 𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (∆𝐹𝐹)𝑗𝑗     (1𝑏𝑏) 
 
Any detectable stimulus has an experimentally-
determined stimulus-detection threshold, here 
denoted 𝐼𝐼𝑡𝑡ℎ = 𝐼𝐼1 . Now imagine m successive 
increments ∆�𝐼𝐼𝑗𝑗� . They accumulate from 𝐼𝐼𝑡𝑡ℎ = 𝐼𝐼1 , 
where ∆(𝐼𝐼𝑡𝑡ℎ) = ∆(𝐼𝐼1), up to a desired intensity 𝐼𝐼𝑚𝑚+1, 
reached from the lesser intensity 𝐼𝐼𝑚𝑚 by the increment 
∆(𝐼𝐼𝑚𝑚) . Correspondingly, the sensation increments 
(∆𝐹𝐹)𝑗𝑗 accumulate from the sensation at the stimulus-
detection threshold 𝐼𝐼𝑡𝑡ℎ, namely 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) = 𝐹𝐹(𝐼𝐼1), up to 
the sensation 𝐹𝐹(𝐼𝐼𝑚𝑚+1) , reached from 𝐹𝐹(𝐼𝐼𝑚𝑚)  by the 
increment ∆𝐹𝐹(𝐼𝐼𝑚𝑚). 
 
Let us assume that there exist smooth, continuous 
relations 𝛼𝛼(𝐼𝐼) and 𝛽𝛽(𝐹𝐹) such that 
 
(∆𝐼𝐼)𝑗𝑗 = 𝛼𝛼�𝐼𝐼𝑗𝑗�    (2a)    𝑎𝑎𝑐𝑐𝑐𝑐    (∆𝐹𝐹)𝑗𝑗 = 𝛽𝛽�𝐹𝐹𝑗𝑗�    (2𝑏𝑏) 
𝑓𝑓𝑐𝑐𝑐𝑐 𝑗𝑗 ≥ 1, 𝑗𝑗 ∈ 𝕀𝕀+ 
 
Several well-known steps (omitted for the sake of 
brevity) lead to 
 

�
𝑐𝑐𝐼𝐼
𝛼𝛼(𝐼𝐼)

𝐼𝐼𝑚𝑚+1

𝐼𝐼1
 

= �
𝑐𝑐𝐹𝐹
𝛽𝛽(𝐹𝐹)

𝐹𝐹𝑚𝑚+1

𝐹𝐹1
 

+ lim
(∆𝐼𝐼)𝑗𝑗→𝑑𝑑𝐼𝐼

� �
(∆𝐼𝐼)𝑗𝑗

2

𝛽𝛽�𝐹𝐹𝑗𝑗�
∙ �
𝑐𝑐2𝐹𝐹(𝐼𝐼)
𝑐𝑐𝐼𝐼2

�
𝑗𝑗
�

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=𝑚𝑚

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=1

+ lim
(∆𝐼𝐼)𝑗𝑗→𝑑𝑑𝐼𝐼

�  
𝑂𝑂�(∆𝐼𝐼)𝑗𝑗

3�
𝛽𝛽�𝐹𝐹𝑗𝑗�

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=𝑚𝑚

𝐼𝐼𝑗𝑗, 𝐹𝐹𝑗𝑗,   𝑗𝑗=1
    (3) 

 
where 𝑂𝑂  represents “order of”. To a first 
approximation, then, and replacing “approximately” 
by “equals”, 
 

�
𝑐𝑐𝐼𝐼
𝛼𝛼(𝐼𝐼)

 
𝐼𝐼𝑚𝑚+1

𝐼𝐼1
= �

𝑐𝑐𝐹𝐹
𝛽𝛽(𝐹𝐹)

𝐹𝐹𝑚𝑚+1

𝐹𝐹1
      (4) 

 
Equation (4) represents “bounded Fechnerian 
integration”. We therefore depart from the literature, 
in which the bounds are typically omitted from the 
calculus. Of course, the Taylor series expansion in 
Eq. (3) will have some region of validity, which must 
be established separately for each 𝛼𝛼(𝐼𝐼)  and 𝛽𝛽(𝐹𝐹) . 
The method appears in advanced textbooks, but will 
not be elaborated here, because the present author has 
never seen it used in the psychophysics literature. 

2 General equations for sensation 
growth, from bounded Fechnerian 
integration under Fechner’s Law or 
Ekman’s Law 

Remarkably, the “father” of psychophysics, Gustav 
Fechner [1], ignored the approximate nature of Eq. 
(4). Indeed, he and his contemporaries also ignored 
the bounds of integration, {𝐼𝐼1,  𝐼𝐼𝑚𝑚+1}  and 
{𝐹𝐹(𝐼𝐼1),  𝐹𝐹𝑚𝑚+1} . That is, what Fechner and later 
investigators used was “Fechnerian indefinite 
integration”, as follows for the smooth continuous 
functions 𝛼𝛼(𝐼𝐼) = ∆𝐼𝐼 and 𝛽𝛽(𝐹𝐹) = ∆𝐹𝐹: 
 

�
𝑐𝑐𝐼𝐼
∆𝐼𝐼

 = �
𝑐𝑐𝐹𝐹
∆𝐹𝐹

     (5) 

 
The solutions of the integrals lacking bounds are 
vague. But definite integrals can be found if we can 
specify a lower bound for the stimulus intensity. For 
human hearing, the stimulus-detection threshold 𝐼𝐼𝑡𝑡ℎ, 
𝐼𝐼𝑡𝑡ℎ ≠ 0 , is empirically associated with nonzero 
loudness, 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ≠ 0 [3-4]. This result should be no 
surprise; stimulus-detection thresholds are defined 
statistically in psychophysics. That is, loudness “near 
threshold”, for example, sometimes occurs and 
sometimes does not [5-6]. The same should apply to 
the other senses. After all, a threshold cannot be 
defined in terms of what is not detected! Let us hence 
assume that in humans, at least, 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ≠ 0. 
 
For the sensation magnitude 𝐹𝐹(𝐼𝐼1) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) evoked 
at the stimulus-detection threshold 𝐼𝐼1 = 𝐼𝐼𝑡𝑡ℎ , Eq. (4) 
can be written as 
 

�
𝑐𝑐𝐼𝐼
∆𝐼𝐼

𝐼𝐼

𝐼𝐼𝑡𝑡ℎ
   = �  

𝑐𝑐𝐹𝐹
∆𝐹𝐹

𝐹𝐹

𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
     (6) 
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Let us assume that 1 ∆𝐼𝐼⁄  is finite, smooth, and 
continuous, having no zeroes (let us avoid the limits 
𝐼𝐼 → 0  and 𝐼𝐼 → ∞). Let us likewise postulate some 
finite, smooth, and continuous function 𝐺𝐺(𝐼𝐼): 
 

�
𝑐𝑐𝐼𝐼
∆𝐼𝐼

 = 𝐺𝐺(𝐼𝐼) + 𝑖𝑖𝑐𝑐𝑚𝑚𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎,     (7𝑎𝑎)            

 

�
𝑐𝑐𝐼𝐼
∆𝐼𝐼

𝐼𝐼

𝐼𝐼𝑡𝑡ℎ
 = 𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ)     (7𝑏𝑏) 

 
Now introduce a classical assumption about just-
noticeable sensation differences, namely, that they 
are constant. This is Fechner’s Law, ∆𝐹𝐹 = 𝐵𝐵. From 
Eqs. (6) and (7b), 
 

𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = �  
𝑐𝑐𝐹𝐹
𝐵𝐵

𝐹𝐹

𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
    (8) 

 
Evaluating, we obtain 
 
𝐹𝐹(𝐼𝐼) = 𝐵𝐵 ∙ �𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ)� + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)      (9) 
 
for 𝐼𝐼 ≥ 𝐼𝐼𝑡𝑡ℎ . When 𝐼𝐼 = 𝐼𝐼𝑡𝑡ℎ , then 𝐹𝐹 = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)  as 
required. Equation (9) can be expressed in a 
particularly useful form, as follows. Note that the 
quantity ∆𝐼𝐼 𝐼𝐼⁄  will arise in these calculations. It is 
called the Weber Fraction, and it takes many forms 
proposed from data. Therefore, 1 ∆𝐼𝐼⁄  and 𝐺𝐺(𝐼𝐼)  do 
also. Let 𝐵𝐵 ∙ 𝐺𝐺(𝐼𝐼) = 𝐾𝐾1𝒢𝒢(𝐼𝐼), where 𝐾𝐾1 is a composite 
of other constants which may arise from the Weber 
Fraction. From Eq. (9), 
 
𝐹𝐹(𝐼𝐼) = 𝐾𝐾1𝒢𝒢(𝐼𝐼) + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) − 𝐾𝐾1𝒢𝒢(𝐼𝐼𝑡𝑡ℎ)    (10) 
 
Now consider, for the just-noticeable sensation 
difference ∆𝐹𝐹, an alternative to Fechner’s Law, viz., 
 
∆𝐹𝐹
𝐹𝐹

= 𝑔𝑔     (11) 
 
Stevens [7] describes this as “Ekman’s Law”, after 
Ekman [8]. However, it was used by Plateau ([9], p. 
384); indeed, it may pre-date Plateau. Nonetheless, let 
us call it Ekman’s Law. Under it, 
 

𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ) = �  
𝑐𝑐𝐹𝐹
𝑔𝑔𝐹𝐹

𝐹𝐹

𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
    (12) 

 
from which 
 

𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
𝐻𝐻(𝐼𝐼)
𝐻𝐻(𝐼𝐼𝑡𝑡ℎ)      (13𝑎𝑎) 

 
𝑤𝑤ℎ𝑐𝑐𝑐𝑐𝑐𝑐  𝐻𝐻(𝐼𝐼) = 𝑐𝑐𝑒𝑒𝑐𝑐�𝑔𝑔 ⋅ 𝐺𝐺(𝐼𝐼)�       (13𝑏𝑏) 
 
for 𝐼𝐼 ≥ 𝐼𝐼𝑡𝑡ℎ . When 𝐼𝐼 = 𝐼𝐼𝑡𝑡ℎ , then 𝐹𝐹 = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)  as 
required. Equation (13a) can be transformed into a 
more revelatory form under the substitution 𝑔𝑔 ∙
𝐺𝐺(𝐼𝐼) = 𝐾𝐾2𝒢𝒢(𝐼𝐼) , from which 𝐾𝐾2 = 𝐾𝐾1𝑔𝑔 𝐵𝐵⁄  and 
𝐻𝐻(𝐼𝐼) = 𝑐𝑐𝑒𝑒𝑐𝑐�𝐾𝐾2𝒢𝒢(𝐼𝐼)�. 

3 Sensation-growth equations for which 
the sensation difference would return 
Fechner’s Law or Ekman’s Law  

Fechnerian integration is inexact (Eq. 3). We might 
ask whether any 𝐹𝐹(𝐼𝐼)  obtained under either 
Fechner’s Law ∆𝐹𝐹 = 𝐵𝐵 or Ekman’s Law (∆𝐹𝐹 𝐹𝐹⁄ ) =
𝑔𝑔  actually returns those respective Laws. We can 
answer for Fechner’s Law, by noting whether 
[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹(𝐼𝐼 + ∆𝐼𝐼) − 𝐹𝐹(𝐼𝐼) returns B. We 
merely substitute into the derived 𝐹𝐹(𝐼𝐼) whatever ∆𝐼𝐼 
had been originally assumed when deriving that 𝐹𝐹(𝐼𝐼). 
Similarly, for Ekman’s Law, we evaluate whether 
 

�
∆𝐹𝐹(𝐼𝐼)
𝐹𝐹(𝐼𝐼)

�
𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐

=
𝐹𝐹(𝐼𝐼 + ∆𝐼𝐼) − 𝐹𝐹(𝐼𝐼)

𝐹𝐹(𝐼𝐼)
    (14) 

 
returns the value g. That is, for Fechner’s Law, 
 
[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹(𝐼𝐼 + ∆𝐼𝐼) − 𝐹𝐹(𝐼𝐼) 
 
= 𝐵𝐵 ∙ �𝐺𝐺(𝐼𝐼 + ∆𝐼𝐼) − 𝐺𝐺(𝐼𝐼)� 
= 𝐾𝐾1 ∙ �𝒢𝒢(𝐼𝐼 + ∆𝐼𝐼) − 𝒢𝒢(𝐼𝐼)�     (15) 
 
Equations (13) and (14) allow [∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐: 
 

�
∆𝐹𝐹(𝐼𝐼)
𝐹𝐹(𝐼𝐼)

�
𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐

=
𝐻𝐻(𝐼𝐼 + ∆𝐼𝐼)
𝐻𝐻(𝐼𝐼)

− 1     (16) 
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where 𝐻𝐻(𝐼𝐼) = 𝑐𝑐𝑒𝑒𝑐𝑐�𝑔𝑔 ⋅ 𝐺𝐺(𝐼𝐼)�= 𝑐𝑐𝑒𝑒𝑐𝑐�𝐾𝐾2𝒢𝒢(𝐼𝐼)�, hence 
 

�
∆𝐹𝐹(𝐼𝐼)
𝐹𝐹(𝐼𝐼)

�
𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐

 

 

=
𝑐𝑐𝑒𝑒𝑐𝑐  �𝑔𝑔 ⋅ 𝐺𝐺(𝐼𝐼 + ∆𝐼𝐼)�
𝑐𝑐𝑒𝑒𝑐𝑐  �𝑔𝑔 ⋅ 𝐺𝐺(𝐼𝐼)�

− 1 

= −1 + 𝑐𝑐𝑒𝑒𝑐𝑐 �𝐾𝐾2 ⋅ �𝒢𝒢(𝐼𝐼 + ∆𝐼𝐼) − 𝒢𝒢(𝐼𝐼)��     (17) 
 
From Eq. (15), and recalling that 𝐾𝐾2 = 𝐾𝐾1𝑔𝑔 𝐵𝐵⁄ , Eq. 
(17) can be written 
 

�
∆𝐹𝐹(𝐼𝐼)
𝐹𝐹(𝐼𝐼)

�
𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐

 

 

= −1 + 𝑐𝑐𝑒𝑒𝑐𝑐 �
𝐾𝐾2
𝐾𝐾1

⋅ [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐�

= −1 + 𝑐𝑐𝑒𝑒𝑐𝑐 �
𝑔𝑔
𝐵𝐵
⋅ [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐�      (18) 

 
That is, if we know [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 , then we know 
[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 . To find [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 , 
note that Eq. (15) and Eq. (7b) altogether yield 
 
[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 
 

= 𝐵𝐵 ∙ ��
𝑐𝑐𝐼𝐼
∆𝐼𝐼

𝐼𝐼+𝛥𝛥𝐼𝐼

𝐼𝐼𝑡𝑡ℎ
 −  �

𝑐𝑐𝐼𝐼
∆𝐼𝐼

𝐼𝐼

𝐼𝐼𝑡𝑡ℎ
� = 𝐵𝐵 ∙ �

𝑐𝑐𝐼𝐼
∆𝐼𝐼

𝐼𝐼+𝛥𝛥𝐼𝐼

𝐼𝐼
     (19) 

 
For Eq. (19) to yield  [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐵𝐵, the term 
∆𝐼𝐼 must be 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎. The respective Weber Fraction 
is then (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 𝐼𝐼⁄ . This Weber Fraction 
is not evident in the literature, but would allow a 
linear growth in 𝐹𝐹(𝐼𝐼) under Fechner’s Law ∆𝐹𝐹 = 𝐵𝐵; 
that is, from Eqs. (7b) and (9), we obtain 𝐹𝐹(𝐼𝐼) =
𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) +  (𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎⁄ ) ∙ (𝐼𝐼 − 𝐼𝐼𝑡𝑡ℎ) . Conversely, 
Ekman’s Law (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔  would yield 𝐹𝐹(𝐼𝐼) =
𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) 𝑐𝑐𝑒𝑒𝑐𝑐�(𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎⁄ ) ∙ (𝐼𝐼 − 𝐼𝐼𝑡𝑡ℎ)�. 
 
Now consider what possible 𝐹𝐹(𝐼𝐼)s  would return 
Ekman’s Law itself. Combining Eqs. (18) and (19), 
 

�
∆𝐹𝐹(𝐼𝐼)
𝐹𝐹(𝐼𝐼)

�
𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐

= −1 +  𝑐𝑐𝑒𝑒𝑐𝑐 �𝑔𝑔 ∙ �
𝑐𝑐𝐼𝐼
∆𝐼𝐼

𝐼𝐼+𝛥𝛥𝐼𝐼

𝐼𝐼
�      (20) 

 
Replacing the left-hand-side of the equation by 𝑔𝑔 
(Eq. 11), and solving its right-hand-side using Eq. 
(7b), we obtain 
 
𝐺𝐺(𝐼𝐼 + ∆𝐼𝐼) − 𝐺𝐺(𝐼𝐼) = (𝑐𝑐𝑐𝑐(𝑔𝑔 + 1)) 𝑔𝑔⁄      (21)  
 
Recall that ∆𝐼𝐼  is presumed to be a function of 
intensity (Eq. 2). This makes Eq. (21) a functional, 
that is, a function of functions. For this particular 
functional, the logarithmic term 𝑐𝑐𝑐𝑐(𝑔𝑔 + 1) suggests a 
logarithmic solution for 𝐺𝐺(𝐼𝐼). Substituting a potential 
solution 𝐺𝐺(𝐼𝐼) = (1 𝑔𝑔⁄ )𝑐𝑐𝑐𝑐�𝐶𝐶(𝐼𝐼 + 𝑐𝑐)� + 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 
into Eq. (21), where  𝐶𝐶  and 𝑐𝑐  are constants, yields 
∆𝐼𝐼 = 𝑔𝑔(𝐼𝐼 + 𝑐𝑐). The latter should satisfy Eq. (7b) for 
the aforementioned potential logarithmic solution 
𝐺𝐺(𝐼𝐼). In fact, from Eq. (7b), it yields 
 
1
𝑔𝑔
𝑐𝑐𝑐𝑐

𝐼𝐼 + 𝑐𝑐
𝐼𝐼𝑡𝑡ℎ + 𝑐𝑐

= 𝐺𝐺(𝐼𝐼) − 𝐺𝐺(𝐼𝐼𝑡𝑡ℎ)     (22) 

 
which is correct for the potential solution 𝐺𝐺(𝐼𝐼) . 
Hence, from Eq. (13), 
 

𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)
𝐼𝐼 + 𝑐𝑐
𝐼𝐼𝑡𝑡ℎ + 𝑐𝑐

      (23) 

 
This is a linear 𝐹𝐹(𝐼𝐼) . Conversely, Fechner’s Law 
∆𝐹𝐹 = 𝐵𝐵 combined with ∆𝐼𝐼 = 𝑔𝑔(𝐼𝐼 + 𝑐𝑐) gives 
 

𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) + (𝐵𝐵 𝑔𝑔⁄ ) 𝑐𝑐𝑐𝑐
𝐼𝐼 + 𝑐𝑐
𝐼𝐼𝑡𝑡ℎ + 𝑐𝑐

     (24) 

 
The relation ∆𝐼𝐼 = 𝑔𝑔(𝐼𝐼 + 𝑐𝑐)  can be expressed as a 
Weber Fraction, (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝑔𝑔(𝐼𝐼 + 𝑐𝑐) 𝐼𝐼⁄ . The latter 
transpires to be a special case (thanks to 𝑔𝑔 ) of a 
Weber Fraction credited to Hermann von Helmholtz 
([10], p. 177). Indeed, there are at least two particular 
cases of it in the literature, as will be discussed. 
 
To summarize: bounded Fechnerian integration using 
either Fechner’s Law ∆𝐹𝐹 = 𝐵𝐵  or Ekman’s Law 
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(∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔  will only return the respective 
Fechner’s Law or Ekman’s Law when sensation 
magnitude 𝐹𝐹(𝐼𝐼) is a linear function of intensity. All 
other 𝐹𝐹(𝐼𝐼)s  obtained under bounded Fechnerian 
integration will be inaccurate. But the bounds 
represent real-world conditions. The literature shows 
remarkably little interest in these matters, but it is 
vast. Furthermore, the Weber Fraction that returns 
Fechner’s Law is (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 𝐼𝐼⁄ , a Weber 
Fraction not used in the literature. In contrast, the 
Weber Fraction that returns Ekman’s Law is 
(∆𝐼𝐼 𝐼𝐼⁄ ) = 𝑔𝑔(𝐼𝐼 + 𝑐𝑐) 𝐼𝐼⁄ , a specialized form of a Weber 
Fraction that has been in print for some time.  
 
All this is not to say that Fechnerian integration has 
not been studied; indeed, Luce and Edwards [11], 
amongst many others, have examined non-bounded 
Fechnerian integration. As shown below, such non-
bounded integration can produce different results 
from the concern of the present paper, which is 
bounded Fechnerian integration. 

4 The sensation difference for 
sensation-growth equations derived 
under various Weber Fractions 

There are many published equations for the Weber 
Fraction ∆𝐼𝐼 𝐼𝐼⁄ . The present author has assembled 
some of them into a Table, presented elsewhere for 
the sake of space (InterNoise 2020 e-Congress, Seoul, 
S. Korea), along with the sensation-growth functions 
𝐹𝐹(𝐼𝐼) that can be derived from them under Fechner’s 
Law ∆𝐹𝐹 = 𝐵𝐵  with bounded Fechnerian integration 
(and, by implication, the 𝐹𝐹(𝐼𝐼) s that arise under 
Ekman’s Law (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔 ). Here, all of the 
respective 𝐹𝐹(𝐼𝐼)s will be evaluated for whether they 
respectively return [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐵𝐵  or 
[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 = 𝑔𝑔. 
 
Table 1 shows the ∆𝐹𝐹(𝐼𝐼) and ∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ , after first 
reiterating the Weber Fractions ∆𝐼𝐼 𝐼𝐼⁄ , and then shows 
the respective evaluated [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐵𝐵𝐾𝐾1(∆𝒢𝒢(𝐼𝐼) 𝐵𝐵⁄ )  (from Eq. 15) for the  𝐹𝐹(𝐼𝐼)  derived 
under Fechner’s Law. From the latter, the 
[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐  for Ekman’s Law can be 
inferred, according to Eq. (18). 
 

Findings: none of the 𝐹𝐹(𝐼𝐼)s obtained under Fechner’s 
Law returns [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐵𝐵. Indeed, the only 
cases that returned constants at all, rather than 
equations, are case a (Weber’s Law) and case e 
(Delboeuf [19]), in which an unspecified constant is 
added to Weber’s Law. For both these cases, 
[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 is also constant. 

5 The returned sensation difference in 
the limit that the Weber Fraction is 
much less than unity 

Given that the [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐  or 
[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐  evaluated from 𝐹𝐹(𝐼𝐼)  may 
transpire to be a function of the independent variable 
𝐼𝐼 (Table 1) rather than a constant, and given that 𝐼𝐼 is 
related to ∆𝐼𝐼 through the Weber Fraction ∆𝐼𝐼 𝐼𝐼⁄ , then 
altogether the functions in question can be written as 
functions of the Weber Fraction (see Table 1, third 
column). This facilitates the examination of two 
useful limits. First, note that, empirically, the value of 
the Weber Fraction for human subjects can be well 
below unity for broad intensity ranges centered on 
relatively moderate stimulus intensities (for general 
empirical results, see [24-28]; for hearing, see the 
reviews in [29-31]; for vision, see the review in [32]; 
and for cutaneous pressure, see the review in [33]). 
(Of course, the Weber Fraction’s magnitude depends 
upon the intensity units [34, 35].) Let us examine 
[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐  and [∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐  in “the 
limit of the limit of” (∆𝐼𝐼 𝐼𝐼⁄ ) < 1, namely, (∆𝐼𝐼 𝐼𝐼⁄ ) <
< 1. Table 2 lists the results for [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 , 
from which the results for [∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 can 
be inferred. Cases a, c, e, and f in Table 2 return a 
limit of [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 → 𝐵𝐵, from which therefore 
[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 → −1 + 𝑐𝑐𝑒𝑒𝑐𝑐(𝑔𝑔). For the left-
hand term (the differential) of the latter, substituting 
𝑔𝑔  gives 𝑔𝑔 + 1 → 𝑐𝑐𝑒𝑒𝑐𝑐(𝑔𝑔) , a well-known general 
approximation for 𝑐𝑐𝑒𝑒𝑐𝑐(𝑔𝑔) in the limit 0 ≤ 𝑔𝑔 < 0.5, 
which improves as 𝑔𝑔 → 0. In other words, returning 
Fechner’s Law in a particular limit does not guarantee 
a return of Ekman’s Law in that same limit; further 
limits are required. In contrast to cases a, c, e, and f, 
consider case d, Nutting’s [18] Weber Fraction, 
which returns a constant that only approaches 𝐵𝐵  if 
𝜈𝜈𝐶𝐶 < 1 and 𝜈𝜈𝐶𝐶 → 0 (see below). 
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The limit (∆𝐼𝐼 𝐼𝐼⁄ ) << 1  produces equations (not 
constants) for the other Weber Fractions of Table 1. 
 
A second limit worth considering is the even more 
extreme limit (∆𝐼𝐼 𝐼𝐼⁄ ) → 0. From the very beginnings 
of psychophysics, there has been an intuitive 
stipulation that sensation magnitude depends 
monotonically upon stimulus intensity. Hence, the 
sensation increment ∆𝐹𝐹 should shrink in tandem with 
the corresponding just-noticeable intensity difference 
∆𝐼𝐼; that is, as ∆𝐼𝐼 → 0 (hence (∆𝐼𝐼 𝐼𝐼⁄ ) → 0), we should 
see ∆𝐹𝐹(𝐼𝐼) → 0 . And, indeed, [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐  and 
[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐  both approach zero as 
(∆𝐼𝐼 𝐼𝐼⁄ ) → 0 for the cases a, b, c, e, f, h, i, and j in 
Table 1. For cases g (Langer [20]) and l (Krantz [23]), 
however, the differentials only approach zero if 𝐾𝐾 →
0 in the respective Weber Fractions (see the footnotes 
to Table 2). Of course, 𝐾𝐾 → 0 is the only way that 
(∆𝐼𝐼 𝐼𝐼⁄ ) → 0 in Weber’s Law, (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾, the most 
basic Weber Fraction. 
 
For cases d (Nutting [18]) and k (Luce & Edwards 
[11]), [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 initially seems to approach 0

0
. 

But (∆𝐼𝐼 𝐼𝐼⁄ ) can be treated as a variable in a series 
expansion. Hence, for case d, the limit becomes 
(𝐵𝐵 𝜈𝜈𝐶𝐶⁄ ) 𝑐𝑐𝑐𝑐(1 + 𝜈𝜈𝐶𝐶), which results in 0

0
 unless 𝜈𝜈𝐶𝐶 <

1  and 𝜈𝜈𝐶𝐶 → 0 ; then, [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 → 𝐵𝐵  (see 
footnotes to Table 2). For case k (Luce & Edwards 
[11]), [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐  can only reach zero if the 
exponent 𝑏𝑏 in the Weber Fraction equals unity (see 
footnotes to Table 2), which is forbidden for this 
particular Weber Fraction. This contradiction 
hypothetically eliminates the Nutting [18] and Luce 
and Edwards [11] Weber Fractions from contention 
in devising 𝐹𝐹(𝐼𝐼). In this light, the failure of the Luce 
and Edwards [11] Weber Fraction should not be 
surprising, as it is a specialized version of the Nutting 
[18] Weber Fraction, although Luce and Edwards do 
not say so. 

6 Luce and Edwards: “Fechner’s Law is 
returned by the Weber-Fechner Law” 

Combining Weber’s Law (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾 and Fechner’s 
Law ∆𝐹𝐹 = 𝐵𝐵  through bounded Fechnerian 
integration yields the so-called Weber-Fechner Law, 
represented in Table 1 by row a: 

 

𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) +
𝐵𝐵
𝐾𝐾
𝑐𝑐𝑐𝑐

𝐼𝐼
𝐼𝐼𝑡𝑡ℎ

     (25) 

 
This equation does not return ∆𝐹𝐹 = 𝐵𝐵 . In fact, 
[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = (𝐵𝐵 𝐾𝐾⁄ ) 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) (Table 1, row 
a). This contradiction was noted by Dzhafarov and 
Colonius ([36], p. 132; after [37]). Remarkably, 
however, Luce and Edwards ([11], p. 225) state the 
opposite, for their typical, non-bounded Fechnerian 
integration: “Only for a very few Weber functions – 
some pathological ones, Weber’s law, and its 
generalization  ∆𝑒𝑒 = 𝐸𝐸𝑒𝑒 + 𝑐𝑐  – does the 
“mathematical auxiliary principle” [Fechner’s term 
for Fechnerian integration] yield a Fechner function 
[i.e., 𝐹𝐹(𝐼𝐼)] with equal jnd’s [sic]”. Note once again 
that Weber’s Law refers to the constant Weber 
Fraction, case a in Tables 1 and 2. The phrase “equal 
jnd’s” refers to Fechner’s Law ∆𝐹𝐹 = 𝐵𝐵 . 
“Pathological” was not explained, but might refer to 
the finding (Section 3, above) that 𝛥𝛥𝐼𝐼 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎 
yields  [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐵𝐵. 
 
Algebra-wise, Luce and Edwards’ 𝑒𝑒 is the present 𝐼𝐼. 
Luce and Edwards set 𝐵𝐵 = 1 in ∆𝐹𝐹 = 𝐵𝐵, purely for 
algebraic convenience; this particular convenience 
was later used by others, for example implicitly in Eq. 
(5) of Kostal and Lansky [38]. But to continue: for 
Weber’s Law, Luce and Edwards ([11], p. 227) set 
𝐼𝐼 + ∆𝐼𝐼 = 𝐸𝐸𝐼𝐼, 𝐸𝐸 > 1 , which amounts to (∆𝐼𝐼 𝐼𝐼⁄ ) =
𝐸𝐸 − 1, 𝐸𝐸 > 1 . Luce and Edwards then note that 
substituting 𝐹𝐹(𝐼𝐼) = log 𝐼𝐼 log 𝐸𝐸⁄  (where the base of 
the logarithm is irrelevant) into  ∆𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼 +
∆𝐼𝐼) − 𝐹𝐹(𝐼𝐼) returns their assumption that ∆𝐹𝐹 = 1. 
 
Let us scrutinize the Luce and Edwards results in the 
context of bounded Fechnerian integration, first by 
composing the Luce and Edwards algebra in the 
present notation. The condition (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐸𝐸 − 1,
𝐸𝐸 > 1 can be written as (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾, 𝐾𝐾 > 0. This 𝐾𝐾 
is the same as the 𝐾𝐾 used to derive Eq. (25). Further, 
in order to have the present-day ∆𝐹𝐹 = 𝐵𝐵  as an 
underlying assumption of 𝐹𝐹(𝐼𝐼), we must introduce a 
multiplier 𝐵𝐵 into the Luce and Edwards algebra. The 
Luce and Edwards sensation-growth equation now 
becomes 𝐹𝐹(𝐼𝐼) = 𝐵𝐵 log 𝐼𝐼 log(1 + 𝐾𝐾)⁄  for (∆𝐼𝐼 𝐼𝐼⁄ ) =
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𝐾𝐾, 𝐾𝐾 > 0. Using base e for the logarithms, the Luce 
and Edwards equation is equivalent to 
 

𝐹𝐹(𝐼𝐼) =
𝐵𝐵

𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) 𝑐𝑐𝑐𝑐𝐼𝐼𝑡𝑡ℎ +
𝐵𝐵

𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) 𝑐𝑐𝑐𝑐
𝐼𝐼
𝐼𝐼𝑡𝑡ℎ

     (26) 

 
Compare this now to Eq. (25): this obliges 𝐾𝐾 =
𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) , under which [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 =
(𝐵𝐵 𝐾𝐾⁄ ) 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾)  (Table 1, row a) devolves to 
[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐵𝐵. In other words, except for any 
cases actually satisfying 𝐾𝐾 = 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾), Luce and 
Edwards [11] have not proven that Fechner’s Law is 
returned by the sensation-magnitude equation that 
results from Fechnerian integration of Weber’s Law 
combined with Fechner’s Law. Elsas [37] realized 
this nearly a century earlier (according to [39], p. 
716). 
 
An obvious solution to 𝐾𝐾 = 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) is 𝐾𝐾 = 0, i.e. 
∆𝐼𝐼 = 0. But this defeats the purpose of the exercise. 
However, for 0 < 𝐾𝐾 ≤ 1, a Taylor’s series provides 
the approximation 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) ≈ 𝐾𝐾 − (𝐾𝐾2 2⁄ ) +
(𝐾𝐾3 3⁄ ) −⋯ , such that 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) → 𝐾𝐾  as 𝐾𝐾 → 0 , 
thus giving the limiting case 𝐾𝐾 ≈ 𝐾𝐾 for “very small” 
Weber Fractions (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾 . Thus, the Weber-
Fechner Law returns ∆𝐹𝐹 = 𝐵𝐵 only in the limits 0 <
𝐾𝐾 ≤ 1 , 𝐾𝐾 → 0 . Indeed, Weber’s Law (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾 
might yield 𝐾𝐾 ≤ 1 when fitted to the mid-intensity 
range of much discriminability data. But this 𝐾𝐾 might 
remain too large to satisfy the limiting condition. 
 
Luce and Edwards [11] did not examine cases where 
𝐹𝐹(𝐼𝐼) was derived under Ekman’s Law, (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔. 
For example, when Ekman’s Law is combined with 
Weber’s Law (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾  through bounded 
Fechnerian integration, the result is the “bounded 
version” of Stevens’ well-proselytized Power Law: 
 

𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ∙ �
𝐼𝐼
𝐼𝐼𝑡𝑡ℎ
�
𝑔𝑔
𝐾𝐾

     (27) 

 
The term 𝑐𝑐 = 𝑔𝑔

𝐾𝐾
 is the Stevens Exponent. From 

[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = (𝐵𝐵 𝐾𝐾⁄ ) 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾)  we obtain 
[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 = −1 + (1 + 𝐾𝐾)

𝑔𝑔
𝐾𝐾�  (after Eq. 

18). Now letting 𝑔𝑔 = 𝐾𝐾, corresponding to ∆𝐼𝐼 = 𝑔𝑔𝐼𝐼, 
produces [∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 = 𝑔𝑔. In other words, 

Ekman’s Law is returned when the Stevens Exponent 
is unity. This confirms the linear growth seen in Eq. 
(23) under the Weber Fraction ∆𝐼𝐼 = 𝑔𝑔(𝐼𝐼 + 𝑐𝑐), 𝑐𝑐 = 0. 

7 Luce and Edwards: “Fechner’s Law is 
returned by the generalized Weber’s 
Law” 

The Weber Fraction ∆𝐼𝐼 = 𝑔𝑔(𝐼𝐼 + 𝑐𝑐)  is a case of 
(∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾(𝐼𝐼 + 𝐶𝐶) 𝐼𝐼⁄ , 𝐾𝐾,𝐶𝐶 > 0 . This particular 
Weber Fraction is dealt with in row e of Tables 1 and 
2. Its obvious difference from Weber’s Law ∆𝐼𝐼 = 𝐾𝐾𝐼𝐼 
is the addition of a second unknown, C, which (in one 
explanation) “may represent the amount of sensory 
noise that exists” when 𝐼𝐼 = 0  ([26], p. 6). This 
“generalized Weber’s Law” ([40], pp. 36, 218) has 
“long been recognized as a better approximation to 
experimental data” than Weber’s Law alone ([8], p. 
347). 
 
Note that ∆𝐼𝐼 𝐼𝐼⁄ = 𝐾𝐾(𝐼𝐼 + 𝐶𝐶) 𝐼𝐼⁄  was used by Luce and 
Edwards [11], under their own notation, as the 
“generalization  ∆𝑒𝑒 = 𝐸𝐸𝑒𝑒 + 𝑐𝑐 ” ([11], p. 225). Luce 
and Edwards also noted ([11], p. 229) that a particular 
equation that uses the term 𝐸𝐸𝐼𝐼 + 𝑐𝑐 , namely 𝐹𝐹(𝐼𝐼) =
log(𝐸𝐸𝐼𝐼 + 𝑐𝑐) log(1 + 𝐸𝐸)⁄ , satisfies their simplification 
∆𝐹𝐹 = 1. However, for compliance with the present 
notation, we must introduce the multiplier 𝐵𝐵. Let us 
also use natural logarithms. Altogether, we have 
𝐹𝐹(𝐼𝐼) = 𝐵𝐵 𝑐𝑐𝑐𝑐�𝐾𝐾(𝐼𝐼 + 𝐶𝐶)� 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾)⁄ . This resembles 
the sensation-growth equation that arises under 
(∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾(𝐼𝐼 + 𝐶𝐶) 𝐼𝐼⁄  and ∆𝐹𝐹 = 𝐵𝐵  in bounded 
Fechnerian integration, 
 

𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) + (𝐵𝐵 𝐾𝐾⁄ )𝑐𝑐𝑐𝑐
𝐼𝐼 + 𝐶𝐶
𝐼𝐼𝑡𝑡ℎ + 𝐶𝐶

     (28) 

 
Luce and Edwards’ own equation is therefore 
equivalent to 
 
𝐹𝐹(𝐼𝐼)

=
𝐵𝐵

𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) 𝑐𝑐𝑐𝑐�𝐾𝐾
(𝐼𝐼𝑡𝑡ℎ + 𝐶𝐶)�

+
𝐵𝐵

𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) 𝑐𝑐𝑐𝑐
𝐼𝐼 + 𝐶𝐶
𝐼𝐼𝑡𝑡ℎ + 𝐶𝐶

      (29) 

 
Comparing Eq. (29) to Eq. (28) yields 𝐾𝐾 = 𝑐𝑐𝑐𝑐(1 +
𝐾𝐾). The term 𝑐𝑐𝑐𝑐(1 + 𝐾𝐾) appears in row e of Table 1, 
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for the Weber Fraction ∆𝐼𝐼 𝐼𝐼⁄ = 𝐾𝐾(𝐼𝐼 + 𝐶𝐶) 𝐼𝐼⁄ . In short, 
we have arrived at the same situation described above 
for Weber’s Law, (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾 : Luce and Edwards 
have, as above, found a special case that satisfies 
bounded Fechnerian integration only for 𝐾𝐾 = 𝑐𝑐𝑐𝑐(1 +
𝐾𝐾). Krantz ([23], p. 592) inadvertently emphasizes 
this point by reiterating Luce and Edwards’ [11] 
findings for the generalized Weber’s Law. 
 
Luce and Edwards [11] did not examine cases where 
𝐹𝐹(𝐼𝐼) was derived under Ekman’s Law, (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔. 
Combining the latter with ∆𝐼𝐼 𝐼𝐼⁄ = 𝐾𝐾(𝐼𝐼 + 𝐶𝐶) 𝐼𝐼⁄  
through bounded Fechnerian integration yields 
 

𝐹𝐹(𝐼𝐼) = 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) ∙ �
𝐼𝐼 + 𝐶𝐶
𝐼𝐼𝑡𝑡ℎ + 𝐶𝐶

�
𝑔𝑔
𝐾𝐾

     (30) 

 
Following the same logic as in Section 6 above, we 
obtain [∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 = 𝑔𝑔  for ∆𝐼𝐼 = 𝑔𝑔(𝐼𝐼 +
𝐶𝐶), a very unique intensity-difference. 

8 Luce and Edwards: “Fechner’s Law is 
returned by a power function for the 
intensity difference” 

Luce and Edwards [11] discuss the Weber Fraction 
that is inherently defined by 𝑒𝑒 + ∆𝑒𝑒 = 𝑎𝑎𝑒𝑒𝑏𝑏 , 𝑏𝑏 ≠ 1 
(Luce & Edwards [11], p. 228), claiming that it 
returns their stipulation ∆𝐹𝐹 = 1. Let us examine their 
claim by first converting the Luce and Edwards 
algebra to the present notation, replacing 1 by 𝐵𝐵 and 
𝑒𝑒 by 𝐼𝐼, and assuming natural logarithms. The Luce 
and Edwards Weber Fraction is (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1,
𝑏𝑏 ≠ 1 . Combining this with ∆𝐹𝐹 = 𝐵𝐵  under non-
bounded Fechnerian integration ([11], p. 228) gives 
 

𝐹𝐹(𝐼𝐼) = 𝐵𝐵
𝑐𝑐𝑐𝑐 �𝑐𝑐𝑐𝑐 �𝐾𝐾

1
𝑏𝑏−1  ∙ 𝐼𝐼� �

𝑐𝑐𝑐𝑐 𝑏𝑏
     (31) 

 
The logarithm in the denominator implies that 𝑏𝑏 > 0. 
Oddly, Luce and Edwards state only that 𝑏𝑏 ≠ 1 . 
Regardless, evaluating ∆𝐹𝐹(𝐼𝐼)  does return ∆𝐹𝐹(𝐼𝐼) =
𝐵𝐵, as required for 𝐹𝐹(𝐼𝐼) to be an exact solution of the 
non-bounded Fechnerian integral. The bounded 
Fechnerian integral for (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1 
combined with ∆𝐹𝐹 = 𝐵𝐵 yields 

 

𝐹𝐹(𝐼𝐼) =
𝐵𝐵

𝑏𝑏 − 1
𝑐𝑐𝑐𝑐

�1 − 1
𝐾𝐾𝐼𝐼𝑏𝑏−1�

�1 − 1
𝐾𝐾𝐼𝐼𝑡𝑡ℎ𝑏𝑏−1

�
 + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ)     (32) 

 
Comparison to Eq. (31) illuminates the different 
outcomes of bounded versus non-bounded 
integration. From Eq. (32), 
 
[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 
 

=
𝐵𝐵

𝑏𝑏 − 1
𝑐𝑐𝑐𝑐 �

(𝐾𝐾𝐼𝐼𝑏𝑏−1)𝑏𝑏 − 1
(𝐾𝐾𝐼𝐼𝑏𝑏−1)𝑏𝑏−1(𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1)�      (33) 

 
(row k of Table 1). This is not B. Are there any 
circumstances in which [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 → 𝐵𝐵  for 
Eq. (32)? As mentioned above, often (∆𝐼𝐼 𝐼𝐼⁄ ) < 1 for 
the broad middle of the detectable range of many 
psychophysical stimuli. Also, we may restrain the 
range of values for 𝐾𝐾, by assuming that the Weber 
Fraction very crudely follows Weber’s Law, 
(∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾 ; if indeed (∆𝐼𝐼 𝐼𝐼⁄ ) < 1 then 0 < 𝐾𝐾 < 1. 
By convention, however, ∆𝐼𝐼 > 0 ; this necessitates 
(∆𝐼𝐼 𝐼𝐼⁄ ) > 0. Therefore, if (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1 (after 
Luce and Edwards), then 𝐾𝐾 > 𝐼𝐼1−𝑏𝑏 , 𝑏𝑏 ≠ 1 . So we 
have assembled some restraints on 𝐾𝐾.  
 
Let us now assume that 0 < 𝐼𝐼 < 1, and that, for the 
sake of argument, 𝑏𝑏 > 1. If so, then the requirement 
𝐾𝐾 > 𝐼𝐼1−𝑏𝑏  implies 𝐾𝐾 > 1 . But this is incompatible 
with the presumption that 0 < 𝐾𝐾 < 1. We might now 
ask whether the Weber Fraction of Luce and Edwards 
could have any value for 𝑏𝑏 that is compatible with the 
empirical possibility that 0 < (∆𝐼𝐼 𝐼𝐼⁄ ) < 1  at 
relatively moderate stimulus levels. This condition, 
when combined with Luce and Edwards’ (∆𝐼𝐼 𝐼𝐼⁄ ) =
𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1,𝑏𝑏 ≠ 1 , altogether implies that �1 −
(𝑐𝑐𝑐𝑐 (𝐾𝐾) 𝑐𝑐𝑐𝑐 𝐼𝐼⁄ )� < 𝑏𝑏 < �1 − (𝑐𝑐𝑐𝑐 (𝐾𝐾 2⁄  ) 𝑐𝑐𝑐𝑐 𝐼𝐼⁄ )� , 
which is equivalent to 0 < �𝑏𝑏 − 1 +
(𝑐𝑐𝑐𝑐 (𝐾𝐾) 𝑐𝑐𝑐𝑐 𝐼𝐼⁄ )� < (𝑐𝑐𝑐𝑐 2 𝑐𝑐𝑐𝑐 𝐼𝐼⁄ ). Now, consider some 
evaluated practical cases of these restrictions. If 𝐼𝐼 =
0.01  and  𝐾𝐾 = 0.4 , then 0.801 < 𝑏𝑏 < 0.650 , an 
absurdity. Similarly, if 𝐼𝐼 = 0.01 and 𝐾𝐾 = 0.04, then 
0.301 < 𝑏𝑏 < 0.150 , another absurdity, and if 𝐼𝐼 =
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0.001  and  𝐾𝐾 = 0.4 , then 0.867 < 𝑏𝑏 < 0.767 , yet 
another absurdity.  
 
Altogether, scrutiny of the Luce and Edwards [11] 
Weber Fraction (∆𝐼𝐼 𝐼𝐼⁄ ) = 𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1, 𝑏𝑏 ≠ 1 reveals 
that it is not compatible with empirical 
discriminability that obeys 0 < (∆𝐼𝐼 𝐼𝐼⁄ ) < 1. 

9 Conclusions 
Equations for sensation magnitude as a function of 
stimulus intensity, 𝐹𝐹(𝐼𝐼) , can be derived through 
Fechnerian integration, given stipulations that specify 
how just-noticeable sensation differences ∆𝐹𝐹  relate 
to sensation magnitude, and how the corresponding 
just-noticeable intensity differences ∆𝐼𝐼  relate to 
stimulus intensity. But Fechnerian integration 
involves truncating a series of equations, therefore 
being inexact. Furthermore, it is habitually done 
without specified bounds, adding further uncertainty. 
Here, the Fechnerian integration is bounded, 
following the concept that sensation cannot be zero at 
the stimulus-detection threshold. Insights emerge that 
are absent from the literature. 
 
Traditionally, sensation differences are stipulated to 
follow either Fechner’s Law ∆𝐹𝐹 = 𝐵𝐵  or Ekman’s 
Law (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔. It transpires that these same laws 
will only be recouped from the derived 𝐹𝐹(𝐼𝐼)  (i.e., 
Fechnerian integration is exact) when sensation 
magnitude is a linear function of intensity; any other 
sensation-growth equations will be inaccurate. But 
the respective Weber Fractions ∆𝐼𝐼 𝐼𝐼⁄  that return 
Fechner’s Law and Ekman’s Law are not amongst the 
plethora found useful in the literature. 
 
A Table of published Weber Fractions is presented 
here, along with the differentials ∆𝐹𝐹(𝐼𝐼)  of the 
sensation-growth functions 𝐹𝐹(𝐼𝐼) that can be derived 
from the respective Weber Fractions under Fechner’s 
Law ∆𝐹𝐹 = 𝐵𝐵  with bounded Fechnerian integration 
(and, by implication, the 𝐹𝐹(𝐼𝐼)s  that arise under 
Ekman’s Law (∆𝐹𝐹 𝐹𝐹⁄ ) = 𝑔𝑔 ). None of the 
differentials ∆𝐹𝐹(𝐼𝐼)  and ∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄  respectively 
yield Fechner’s Law or Ekman’s Law. The 
differentials are then examined for the limit 
(∆𝐼𝐼 𝐼𝐼⁄ ) ≪ 1 , and also in the limit (∆𝐼𝐼 𝐼𝐼⁄ ) → 0 , in 
which the sensation difference ∆𝐹𝐹(𝐼𝐼)  should 

approach zero. In the limit (∆𝐼𝐼 𝐼𝐼⁄ ) ≪ 1 , Fechner’s 
Law (but not necessarily Ekman’s Law) was returned 
by some Weber Fractions. In the limit (∆𝐼𝐼 𝐼𝐼⁄ ) → 0, 
the sensation difference fails to approach zero for a 
Weber Fraction of Nutting, and for a specialized 
Weber Fraction from Luce and Edwards [11]. 
 
Luce and Edwards’ [11] well-cited paper “The 
Derivation of Subjective Scales from Just Noticeable 
Differences” claims that Fechner’s Law is returned 
for three Weber Fractions: Weber’s Law (i.e., a 
constant Weber Fraction), the more elaborate 
“generalized Weber’s Law”, and a power function 
minus a constant. All three claims prove wrong for 
sensation-growth equations derived through bounded 
Fechnerian integration. 
 
My thanks to Dr. Claire S. Barnes PhD for many 
thoughtful suggestions. 
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Table 1. The Weber Fraction ∆𝐼𝐼 𝐼𝐼⁄ , and the resultant ∆𝒢𝒢(𝐼𝐼) 𝐵𝐵⁄  of the evaluated sensation difference [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐵𝐵𝐾𝐾1(∆𝒢𝒢(𝐼𝐼) 𝐵𝐵⁄ ) for the 
sensation magnitude 𝐹𝐹(𝐼𝐼) = 𝐾𝐾1𝒢𝒢(𝐼𝐼) + 𝐹𝐹(𝐼𝐼𝑡𝑡ℎ) −𝐾𝐾1𝒢𝒢(𝐼𝐼𝑡𝑡ℎ). The 𝐹𝐹(𝐼𝐼) arises from combining the Weber Fraction with Fechner’s Law, ∆𝐹𝐹 = 𝐵𝐵, under 
bounded Fechnerian integration. From [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 we obtain [∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 = −1 + 𝑐𝑐𝑒𝑒𝑐𝑐 �(𝐾𝐾2 𝐾𝐾1⁄ ) ⋅ [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐�. The footnotes 
list 𝐾𝐾1; recall that 𝐾𝐾2 = 𝐾𝐾1𝑔𝑔 𝐵𝐵⁄  (text). The terms 𝐾𝐾, 𝐵𝐵, 𝐶𝐶, 𝑐𝑐, 𝐾𝐾1, and 𝐾𝐾2 all exceed zero. The value of 𝐾𝐾 need not be the same from one Weber Fraction 
to another; the same symbol is used merely for convenience. 

  

Weber Fraction,
∆𝐼𝐼
𝐼𝐼  

Source 
(footnote) 

∆𝒢𝒢(𝐼𝐼)
𝐵𝐵 for 𝐹𝐹(𝐼𝐼) obtained under Fechner’s Law 
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∆𝐼𝐼
𝐼𝐼 � 

𝐾𝐾
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𝑐𝑐𝑐𝑐 𝐼𝐼� 𝑐𝑐𝑐𝑐 �𝐼𝐼

2 �1 +
𝐾𝐾
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2 𝑐𝑐𝑐𝑐

⎝

⎛
�𝐼𝐼 �1 + ∆𝐼𝐼

𝐼𝐼 � + �𝐼𝐼 �1 + ∆𝐼𝐼
𝐼𝐼 � + 𝐶𝐶

√𝐼𝐼 + √𝐼𝐼 + 𝐶𝐶
⎠

⎞ 

+�𝐼𝐼 �1 +
∆𝐼𝐼
𝐼𝐼
��𝐼𝐼 �1 +

∆𝐼𝐼
𝐼𝐼 � + 𝐶𝐶 ��𝐼𝐼 �1 +

∆𝐼𝐼
𝐼𝐼 �

�𝐼𝐼 �1 +
∆𝐼𝐼
𝐼𝐼 � + 𝐶𝐶 −

𝐶𝐶
2 − �𝐼𝐼 �1 +

∆𝐼𝐼
𝐼𝐼 ��� 

−√𝐼𝐼√𝐼𝐼 + 𝐶𝐶 �√𝐼𝐼√𝐼𝐼 + 𝐶𝐶 −
𝐶𝐶
2 − 𝐼𝐼� 

𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1, 𝑏𝑏 ≠ 1 k 𝑐𝑐𝑐𝑐 �
(𝐾𝐾𝐼𝐼𝑏𝑏−1)𝑏𝑏 − 1

(𝐾𝐾𝐼𝐼𝑏𝑏−1)𝑏𝑏−1(𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1)� = 𝑐𝑐𝑐𝑐�
�1 + ∆𝐼𝐼

𝐼𝐼 �
𝑏𝑏
− 1

�1 + ∆𝐼𝐼
𝐼𝐼 �

𝑏𝑏−1
∙ ∆𝐼𝐼𝐼𝐼

� 

𝐾𝐾 �√𝐼𝐼 + 𝐶𝐶 + 𝐾𝐾
4�

𝐼𝐼  l 
𝐾𝐾
2 �1 −

1
2 𝑐𝑐𝑐𝑐 �

√𝐼𝐼 + 𝐶𝐶 + 𝐾𝐾
4 + 𝐾𝐾

2
√𝐼𝐼 + 𝐶𝐶 + 𝐾𝐾

4
�� =

𝐾𝐾
2 �1 −

1
2 𝑐𝑐𝑐𝑐 �1 +

𝐾𝐾
2

∆𝐼𝐼
𝐼𝐼 ∙

𝐼𝐼
𝐾𝐾
�� 

 
a. Weber [12]. 𝐾𝐾1 = 1

𝐾𝐾
. b. Aubert ([13], p. 69), reproduced in Fechner ([2], p. 19). 𝐾𝐾1 = 1

2𝐾𝐾
. c. Uncertain provenance, but old; allegedly used by 

Mayer [14] for visual acuity (cited in [15]). Fechner ([2], p. 21) notes that it can be derived from Plateau ([9], p. 384). It is also found in Guilford 
([16], p. 79). In auditory research, it is often attributed to McGill and Goldberg [17]. 𝐾𝐾1 = 1

𝐾𝐾𝜈𝜈
. d. Nutting ([18], p. 292). 𝐾𝐾1 = 1

𝜈𝜈𝜈𝜈
. e. Fechner ([2], p. 

35), reproduced from Delboeuf ([19], pp. 21, 54). Delboeuf himself named von Helmholtz as the actual source, but provided no references; the 
equation can, in fact, be found in the later English translation of von Helmholtz ([10], p. 177). 𝐾𝐾1 = 1

𝐾𝐾
. f. Fechner ([2], p. 17), credited there 

(incompletely) to von Helmholtz. The equation can, in fact, be found in the later English translation of von Helmholtz ([10], p. 180). 𝐾𝐾1 = 1
𝐾𝐾(𝜈𝜈−𝑐𝑐). 
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g. Fechner ([2], p. 41), reproduced from Langer ([20], p. 62). 𝐾𝐾1 = 1
2𝐾𝐾

. h. Hecht ([21], p. 772). 𝐾𝐾1 = 2
𝐾𝐾

. i. Pierrel-Sorrentino and Raslear ([22], p. 

765), for the case n = 0.5. 𝐾𝐾1 = 1
𝜈𝜈
. j. Hecht ([21], p. 772). 𝐾𝐾1 = 1

𝐾𝐾
. k. Luce and Edwards ([11], p. 228). 𝐾𝐾1 = 1

𝑏𝑏−1
. l. Krantz ([23], p. 595). 𝐾𝐾1 = 2

𝐾𝐾
. 

 
 
 
 

Table 2. Evaluation of [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐵𝐵𝐾𝐾1(∆𝒢𝒢(𝐼𝐼) 𝐵𝐵⁄ )  and [∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 = −1 + 𝑐𝑐𝑒𝑒𝑐𝑐 �(𝐾𝐾2 𝐾𝐾1⁄ ) ⋅ [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐�  in the 

limit in which the Weber Fraction (∆𝐼𝐼 𝐼𝐼⁄ )  is much less than unity, for which lim
(∆𝐼𝐼 𝐼𝐼⁄ )≪1

[∆𝐹𝐹(𝐼𝐼) 𝐹𝐹(𝐼𝐼)⁄ ]𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑐𝑐 = −1 + 𝑐𝑐𝑒𝑒𝑐𝑐 �(𝐾𝐾2 𝐾𝐾1⁄ ) ⋅

lim
(∆𝐼𝐼 𝐼𝐼⁄ )≪1

[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐�. Each “note” refers to the corresponding source listed in Table 1. 

 

Weber fraction, ∆𝐼𝐼 𝐼𝐼⁄  Notes lim
(∆𝐼𝐼 𝐼𝐼⁄ )≪1

[∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 

𝐾𝐾 a 𝐵𝐵 

𝐾𝐾
𝑐𝑐𝑐𝑐 𝐼𝐼 

b 
𝐵𝐵

2𝐾𝐾 �2𝐾𝐾 + �
𝐾𝐾
𝑐𝑐𝑐𝑐 𝐼𝐼�

2
� 

𝐾𝐾𝐼𝐼−𝜈𝜈 , 0 < 𝜈𝜈 < 1 c 𝐵𝐵 

𝐶𝐶 + 𝐾𝐾𝐼𝐼−𝜈𝜈 , 0 < 𝜈𝜈 < 1 d 
𝐵𝐵
𝜈𝜈𝐶𝐶 𝑐𝑐𝑐𝑐

(1 + 𝜈𝜈𝐶𝐶) 

𝐾𝐾(𝐼𝐼 + 𝐶𝐶)
𝐼𝐼  e 𝐵𝐵 

𝐾𝐾(𝐼𝐼 + 𝑐𝑐)(𝐼𝐼 + 𝐶𝐶)
𝐼𝐼 ,𝐶𝐶 > 𝑐𝑐 f 𝐵𝐵 

𝐾𝐾(𝐼𝐼2 + 𝐶𝐶)
𝐼𝐼2  g 

𝐵𝐵
2𝐾𝐾�

𝐾𝐾2(𝐼𝐼2 + 𝐶𝐶)
𝐼𝐼2 + 2𝐾𝐾 + 1� 

𝐾𝐾�√𝐼𝐼 + 𝐶𝐶�
2

𝐼𝐼  h 
2𝐵𝐵
𝐾𝐾

⎣
⎢
⎢
⎢
⎢
⎡

𝑐𝑐𝑐𝑐 �1 +
√𝐼𝐼
𝐶𝐶
�1 +

𝐾𝐾�√𝐼𝐼 + 𝐶𝐶�
2

2𝐼𝐼
�� − 𝑐𝑐𝑐𝑐 �

√𝐼𝐼 + 𝐶𝐶
𝐶𝐶 � +

√𝐼𝐼
√𝐼𝐼 + 𝐶𝐶

−
√𝐼𝐼 �1 +

𝐾𝐾�√𝐼𝐼 + 𝐶𝐶�
2

2𝐼𝐼 �

√𝐼𝐼 �1 +
𝐾𝐾�√𝐼𝐼 + 𝐶𝐶�

2

2𝐼𝐼 � + 𝐶𝐶
⎦
⎥
⎥
⎥
⎥
⎤

 

�√𝐼𝐼 + 𝐶𝐶�
2

𝐼𝐼 − 1 i 
𝐵𝐵
𝐶𝐶 �𝐶𝐶 +

𝐶𝐶2

2√𝐼𝐼
−
𝐶𝐶
2 𝑐𝑐𝑐𝑐 �1 +

𝐶𝐶
√𝐼𝐼
�� 
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𝐾𝐾

𝐼𝐼�√𝐼𝐼 + 𝐶𝐶 − √𝐼𝐼�
2 j 

𝐵𝐵
𝐾𝐾

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶2

2 𝑐𝑐𝑐𝑐

⎝

⎜⎜
⎛
√𝐼𝐼 �1 + 𝐾𝐾

2𝐼𝐼�√𝐼𝐼 + 𝐶𝐶 − √𝐼𝐼�
2� + √𝐼𝐼 + 𝐶𝐶

√𝐼𝐼 + √𝐼𝐼 + 𝐶𝐶

⎠

⎟⎟
⎞

+ √𝐼𝐼√𝐼𝐼 + 𝐶𝐶

⎝

⎜⎜
⎛

𝐾𝐾√𝐼𝐼√𝐼𝐼 + 𝐶𝐶

𝐼𝐼�√𝐼𝐼 + 𝐶𝐶 − √𝐼𝐼�
2 �1 +

𝐾𝐾

4𝐼𝐼�√𝐼𝐼 + 𝐶𝐶 − √𝐼𝐼�
2�

−
𝐾𝐾

𝐼𝐼�√𝐼𝐼 + 𝐶𝐶 − √𝐼𝐼�
2 �
𝐶𝐶
4 + 𝐼𝐼 �1 +

𝐾𝐾

2𝐼𝐼�√𝐼𝐼 + 𝐶𝐶 − √𝐼𝐼�
2� +

𝐼𝐼
2
�
⎠

⎟⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

 

𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1, 𝑏𝑏 ≠ 1 k 
𝐵𝐵

𝑏𝑏 − 1 𝑐𝑐𝑐𝑐 �
𝑏𝑏

1 + (𝑏𝑏 − 1)(𝐾𝐾𝐼𝐼𝑏𝑏−1 − 1)� 

𝐾𝐾 �√𝐼𝐼 + 𝐶𝐶 + 𝐾𝐾
4�

𝐼𝐼  l 𝐵𝐵�1 −
1
2 𝑐𝑐𝑐𝑐 �1 +

𝐾𝐾
2

√𝐼𝐼 + 𝐶𝐶 + 𝐾𝐾
4
�� 

 
a. Uses 𝑐𝑐𝑐𝑐(1 + 𝑒𝑒) ≅ 𝑒𝑒 for −1 < 𝑒𝑒 ≤ 1. b. Uses 𝑐𝑐𝑐𝑐(1 + 𝑒𝑒) ≅ 𝑒𝑒 for −1 < 𝑒𝑒 ≤ 1. c. Uses (1 + 𝑒𝑒)𝑛𝑛 ≅ 1 + 𝑐𝑐𝑒𝑒 for −1 < 𝑒𝑒 ≤ 1. d. At first glance, it 
appears that ∆𝒢𝒢(𝐼𝐼)

𝐵𝐵
→ 0

0
, but using (1 + 𝑒𝑒)𝑛𝑛 ≅ 1 + 𝑐𝑐𝑒𝑒 for −1 < 𝑒𝑒 ≤ 1, an approximation that improves as 𝑒𝑒 → 0, we obtain 

 

lim
∆𝐼𝐼
𝐼𝐼 →0

 [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = lim
∆𝐼𝐼
𝐼𝐼 →0

 
𝐵𝐵
𝜈𝜈𝐶𝐶 𝑐𝑐𝑐𝑐�

𝐶𝐶 �1 + ∆𝐼𝐼
𝐼𝐼 �

𝑣𝑣
+ ∆𝐼𝐼

𝐼𝐼 − 𝐶𝐶
∆𝐼𝐼
𝐼𝐼

� ≅ lim
∆𝐼𝐼
𝐼𝐼 →0

𝐵𝐵
𝜈𝜈𝐶𝐶 𝑐𝑐𝑐𝑐

(1 + 𝜈𝜈𝐶𝐶) 

 
using (1 + 𝑒𝑒)𝑛𝑛 ≅ 1 + 𝑐𝑐𝑒𝑒 for −1 < 𝑒𝑒 ≤ 1 such that �1 + ∆𝐼𝐼

𝐼𝐼
�
𝑣𝑣
≅ 1 + 𝑣𝑣 ∆𝐼𝐼

𝐼𝐼
. Now if 𝜈𝜈𝐶𝐶 < 1, then 𝐵𝐵

𝜈𝜈𝜈𝜈
𝑐𝑐𝑐𝑐(1 + 𝜈𝜈𝐶𝐶) ≅ 𝐵𝐵 using 𝑐𝑐𝑐𝑐(1 + 𝑒𝑒) ≅ 𝑒𝑒 for −1 <

𝑒𝑒 ≤ 1 , an approximation that improves as 𝑒𝑒 → 0 . e. Uses 𝑐𝑐𝑐𝑐(1 + 𝑒𝑒) ≅ 𝑒𝑒  for −1 < 𝑒𝑒 ≤ 1 . f. Uses 𝑐𝑐𝑐𝑐(1 + 𝑒𝑒) ≅ 𝑒𝑒  for −1 < 𝑒𝑒 ≤ 1 . g. Uses 
𝑐𝑐𝑐𝑐(1 + 𝑒𝑒) ≅ 𝑒𝑒 for −1 < 𝑒𝑒 ≤ 1. At first glance, it seems that  ∆𝒢𝒢(𝐼𝐼)

𝐵𝐵
↛ 0 as ∆𝐼𝐼

𝐼𝐼
→ 0, but the latter means that 𝐾𝐾(𝐼𝐼2+𝜈𝜈)

𝐼𝐼2
→ 0, which is achieved for any 

given 𝐼𝐼 only if 𝐾𝐾 → 0, in which case ∆𝒢𝒢(𝐼𝐼)
𝐵𝐵

→ 0. h. Uses (1 + 𝑒𝑒)𝑛𝑛 ≅ 1 + 𝑐𝑐𝑒𝑒 for 𝑐𝑐 = 1
2
 for −1 < 𝑒𝑒 ≤ 1. i. Uses (1 + 𝑒𝑒)𝑛𝑛 ≅ 1 + 𝑐𝑐𝑒𝑒 for 𝑐𝑐 = 1

2
 for 

−1 < 𝑒𝑒 ≤ 1. j. Uses (1 + 𝑒𝑒)𝑛𝑛 ≅ 1 + 𝑐𝑐𝑒𝑒  for 𝑐𝑐 = 1
2
 for −1 < 𝑒𝑒 ≤ 1, and additionally assumes that 𝐶𝐶 ≫ ∆𝐼𝐼

𝐼𝐼
. k. The limits of ∆𝒢𝒢(𝐼𝐼)

𝐵𝐵
 as ∆𝐼𝐼

𝐼𝐼
→ 0 are 

difficult to discern, but using (1 + 𝑒𝑒)𝑛𝑛 ≅ 1 + 𝑐𝑐𝑒𝑒 for −1 < 𝑒𝑒 ≤ 1, an approximation that improves as 𝑒𝑒 → 0, we obtain 
 

lim
∆𝐼𝐼
𝐼𝐼 →0

 [∆𝐹𝐹(𝐼𝐼)]𝐹𝐹𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 = lim
∆𝐼𝐼
𝐼𝐼 →0

 
𝐵𝐵

𝑏𝑏 − 1 𝑐𝑐𝑐𝑐 �
�1 + ∆𝐼𝐼

𝐼𝐼 �
𝑏𝑏
− 1

�1 + ∆𝐼𝐼
𝐼𝐼 �

𝑏𝑏−1
∙ ∆𝐼𝐼𝐼𝐼

� ≅ lim
∆𝐼𝐼
𝐼𝐼 →0

 
𝐵𝐵

𝑏𝑏 − 1 𝑐𝑐𝑐𝑐 �
𝑏𝑏

1 + (𝑏𝑏 − 1)∆𝐼𝐼𝐼𝐼
� =

𝐵𝐵
𝑏𝑏 − 1 𝑐𝑐𝑐𝑐

(𝑏𝑏) 

  
which reaches zero only when 𝑏𝑏 = 1, which is forbidden in the specification of this particular Weber Fraction. l. At first, it seems that  ∆𝒢𝒢(𝐼𝐼)

𝐵𝐵
↛ 0 as 

∆𝐼𝐼
𝐼𝐼
→ 0, but the latter means that 

𝐾𝐾�√𝐼𝐼+𝜈𝜈+𝐾𝐾4�

𝐼𝐼
→ 0, which is achieved for any given 𝐼𝐼 only if 𝐾𝐾 → 0, in which case ∆𝒢𝒢(𝐼𝐼)

𝐵𝐵
→ 0. 
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