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Abstract

This paper argues that all of the standard theories about the divisions of space 
and time can benefit from, and may need to rely on, parsimony considerations.
More specifically, whether spacetime is discrete, gunky or pointy, there are 
wildly unparsimonious rivals to standard accounts that need to be resisted by 
proponents of those accounts, and only parsimony considerations offer a 
natural way of doing that resisting. Furthermore, quantitative parsimony 
considerations appear to be needed in many of these cases.

When scientists evaluate scientific theories, they often have to rely on many criteria besides 

whether the relevant theories are consistent with the evidence so far. For one thing, it is 

harder than it looks to have evidence flatly contradict hypotheses, especially when we 

remember how easy it is to chalk recalcitrant results up to noise, or experimental error, or 

bias, or as-yet-undiscovered factors, and the fact that our theories often only have 

probabilistic connections to data. For another, it is relatively easy to come up with different 

theories that agree on any given body of data, though many will look like mere philosophers' 

tricks rather than serious scientific rivals. Finally, we need theories to help tell us about tricky

cases that we have not observed so far: and when we are setting up experiments or 

observations we are not already sure about, we want to put extra effort into testing plausible 

theories of the new phenomena, rather than doing undirected data collection. But this 

suggests that we want criteria of plausibility that help choose between theories that have not 

already been ruled out by the evidence we already have. Scientists do seem to use criteria 

such as simplicity, coherence with theories in other areas, inductive considerations, valuing 

explanatory hypotheses, and so on. Call criteria of theory choice like these "theoretical 

virtues".1 

On one conception of philosophical theorising, one which I share, evaluation of philosophical

theories also involves appeal to theoretical virtues, at least implicitly. My view is that the 

basic theoretical virtues appealed to in philosophy are the same as the ones appealed to in the 

1 This usage of "theoretical virtues" may be a little wider than others, who may wish to e.g. exclude inductive 
methods. I doubt it will matter exactly where we draw the boundaries for the purposes of the current discussion.
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sciences, and indeed the process in philosophy is often not too different in principle to the 

theoretical end of research in the natural and social sciences: and this includes the 

requirement that our philosophical theories cohere in the appropriate way with what the 

natural and social sciences tell us about the world around us and about ourselves. Even those 

who do not agree that there is a basic unity of method should agree, I think, that there are 

some important parallels and similarities between some criteria we should use in philosophy 

and criteria used in the sciences.

The question of exactly which criteria should be used in scientific and philosophical 

theorising remains, of course, as does the question of how important those criteria should be. 

In this paper, I want to focus on one often-mentioned criteria, that of theoretical parsimony, 

and to examine how it should play a role, and plausibly is already playing an implicit role, in 

the reasoning behind some prominent positions in the philosophy of space, time and 

spacetime. My focus will be on parsimony considerations about the structure of space and 

time, and in particular what divisions spacetime comes in. When we come to questions about 

how divisible space and time are, all of the standard views gain some support from parsimony

considerations, at least against a range of rivals that have not received much attention. This 

does not yet show that parsimony considerations are in fact guiding people's theoretical 

preferences. However, I will argue that if we do not endorse parsimony considerations, the 

standard positions in the debate about the structure of space and time face unexpected 

challenges from unparsimonious variants. Furthermore, the cases I will look at suggest that 

supporting our favourite theories against unparsimonious rivals will often require an appeal to

quantitative parsimony, that is, parsimony about how many entities of a given kind should be 

postulated, and not just parsimony about the kinds of entities in our ontology. Whether 

quantitative parsimony should play a significant role in theory choice is even more 

controversial than that some form of parsimony should be employed: so if we discover that 

quantitative parsimony has been an implicit part of our thinking, that is particularly 

methodologically interesting.

To keep things manageable, I will for the most part focus on theories of space and time that 

assume space and time have a structure. There are various theories that deny this. Some 

extreme theories deny that spatiotemporal phenomena are anything but illusions. Less 

extreme are theories according to which there are spatio-temporal phenomena, but there is no 

space or time. Perhaps the most discussed kind of theory under this heading is relationalism, 
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the hypothesis that while there are entities that are spatiotemporally related, apparent talk of 

space and time is just indirect talk about those objects, and that there is no space or time. 

Another view that rejects the existence of space and time is fictionalism about space and 

time: there is only a convenient fiction that there is any space or time (See e.g. Hinckfuss 

1986.) And there are others that, one way or another, reject the literal existence of space and 

time. Parsimony is obviously a potential motivation for such theories, and it is appealed to on 

behalf of relationalism by e.g. Huggett 2006 p 41 ftnt 1, and Vassallo et. al. 2017. However 

my topic will be appeals to parsimony, even granted there is such a thing as space or time.2

As it happens, I am among those convinced that space and time are not entirely distinct: 

instead, spatiotemporal goings-on are found in spacetime, a manifold of at least four 

dimensions, of roughly the same sort postulated by contemporary general relativity. But 

though I will often talk about spacetime, I do not think much of what I have to say here 

depends on whether one thinks that space and time are unified like this, or whether space and 

time are distinct manifolds.

After a discussion of some of the parsimony principles at play and how we might understand 

them, I will then turn to a central question where parsimony must play a role. This is the 

question of the fine structure of spacetime, and in particular what parts a region of spacetime 

has. Spacetime might be made up, ultimately, of minimal units of some positive magnitude; 

or might be resolvable into smaller and smaller regions ad infinitum; or might be ultimately 

made up of 0-sized points. Within each of these options, I will argue parsimony must play a 

crucial role if we are to support the positions with the most initial plausibility, and which are 

the positions in fact endorsed by mainstream proponents in the literature.3

Parsimony considerations have played an important role in two recent arguments about space 

and time, besides the motivation for relationalism mentioned above. Jonathan Tallant has 

argued that presentism, the doctrine that only present things exist (and, as Tallant develops it, 

that there are no concrete times), is supported by parsimony considerations. (Tallant 2013). 

2 Some relationalist theories in effect have ontologies very similar to substantivalists, for example relationalists 
who reject spacetime but postulate all-encompassing fields (electromagnetic, gravitational etc.) which have the 
structure that substantival space or time would have. For those theorists, questions about the fine structure of 
spacetime can be paraphrased into questions about the fine structure of the fields that should be posited.
3 I expect creative philosophers and physicists will be able to come up with more options for the parts of 
spacetime than those listed here. There is also the option of claiming that subregions and points are not literally 
parts of the regions they are located within: those, if any, who prefer another account of this relationship can 
still appreciate the main point by translating my talk of parts into their preferred vocabulary. 
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Presentism does have a number of advantages on the score of parsimony, it seems to me. It 

also incurs some additional costs in simplicity, in requiring primitive tense operators. (That 

is, it may be less ideologically parsimonious than a theory committed to a block universe of 

temporal locations and their contents.) Parsimony considerations will only be part of the story

in adjudicating between presentism, eternalism, and other rivals: and while that debate is 

fascinating, I will set it aside here.

Another interesting discussion of the interaction of parsimony considerations and the 

philosophy of space and time is found in Sorensen 2014. Sorensen raises the interesting 

question of whether parsimony would lead us to favour a finite past and future over infinite 

durations in one or both directions, and why, if so, philosophers and cosmologists have been 

relatively willing to postulate infinities in each direction. (Sorensen 2014) On the face of it, 

time and space are posits like any other theoretical posits, and postulating more years or light-

years rather than less looks a lot like other postulations of more rather than less. Should we 

apply Occam's razor, and postulate no more time or space than is necessary? Even if we do 

not apply parsimony to time and space themselves, we may be under pressure to apply 

parsimony to the contents of time and space: if additional space comes with additional stars, 

or additional time comes with additional events, then principles of parsimony that tell us to 

minimise entities like stars or events will cut against such theories.

Sorensen argues that theorists have not been reluctant to posit enormous extents of space and 

time, or even infinite amounts (e.g. an eternal world or boundless space). This poses an 

apparent challenge to parsimony principles, at least on the assumption that these theorists 

where theorising well. I think this challenge is a very interesting one, and whether there is a 

problem here for the view that parsimony is a desideratum for theories turns both on difficult 

questions about the history of theories of space and time, and the other considerations at play 

in those discussions. (For example, if parsimony is a relatively weak desideratum and those 

who postulated infinite spaces or times had strong reasons for doing so, their failure to be 

held back or worried by parsimony might be easy to explain.) The questions Sorensen raises 

about the interaction of parsimony and the history of theories of space and time would repay 

close attention: however, since the aspects of theories of space and time that Sorensen 

focuses on are significantly different from my focus here, I will leave sustained discussion of 

them to another occasion.
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While it is not a new idea that parsimony considerations might be used in theorising about 

space and time, it is not an uncontroversial one either. Huemer 2009 argues that we should 

never rely on parsimony considerations in philosophical theorising. Longino 1996 is 

suspicious of simplicity as a theoretical virtue in the sciences altogether, especially a form of 

simplicity that is in effect a parsimony principle: "the simpler theory is the one positing the 

fewest different kinds of fundamental entity (or causally effective entity)" (Longino 1996 p 

53). And Parsons 1979 is among philosophers who reject parsimony considerations outright: 

"Theories should not be compared by counting entities, kinds of entities, or primitives" 

(Parsons 1979 p 660).

Presented with the arguments below, I hope readers will be convinced that we should prefer 

more parsimonious theories of the structure of space and time than less parsimonious rivals 

that do equally well in other respects. But those readers antecedently convinced that 

parsimony is not a guide to truth, or even a good guide to theory selection, this paper can be 

read as a challenge of a different sort. Each of the typically occupied positions on the 

structure of space and time have a wide range of cousins that resemble them except that the 

cousins are far less parsimonious. If we should accept one of the standard options, we need a 

reason to reject these cousins. So if parsimony should not be playing a role, we either need a 

different kind of reason that happens to reject the unparsimonious options in these cases, or 

we should retreat to taking no stand on which of the many cousins is correct. Those who do 

not accept parsimony as a criterion in theory selection have work to do here.

There are a variety of potential parsimony principles that might be employed: these can vary 

in terms of what we are parsimonious about; whether parsimony considerations should 

counsel rejection of less parsimonious options or just some form of agnosticism about them; 

and how parsimony considerations might interact with other theoretical considerations. It will

be useful to briefly discuss these dimensions of variation before moving to look at how 

parsimony considerations may play a role in theories of the structure of spacetime.

1.  A Variety of Parsimony Principles

There are a number of dimensions to parsimony: various ways in which our theory can 

postulate less rather than more. There is also a range of attitudes one can take to parsimony 
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principles: whether parsimony, as variously described, is worth pursuing at all, and if so 

whether it is worth pursuing as a guide to the truth or merely for some more pragmatic end. It

will be worthwhile to rehearse a partial menu of options, to make it easier to discuss later 

what sorts of parsimony are at stake and why it might matter.

An Occam's razor style principle, "do not multiply entities beyond necessity" can be 

implemented in various ways. It can be interpreted as an instruction about which theories to 

prefer, or as a rule taking some theories out of consideration altogether, but I think the best 

way to understand a parsimony principle is as a dimension of cost in an overall cost-benefit 

analysis of a theory: a theory is better, in this respect, if it has fewer postulates rather than 

more. Of course, it would be absurd to think this is the only dimension by which a theory 

could be better or worse, and it is sometimes worth paying the cost of new postulates for 

other theoretical benefits. (A theory of subatomic particles that postulates neutrons as well as 

protons and electrons did better, overall, than a theory that postulated protons and electrons 

alone, for example.) Thinking about parsimony in terms of costs, benefits and tradeoffs lets 

us capture several things: the degree of extravagance seems to matter, and whether a theorist 

is right to add postulates to a theory depends, in a range of ways, on the rest of the theorist's 

evidence and theoretical background in a way that would make a simple on/off rule for 

adding a postulate hard to formulate sensibly. When talking about costs and benefits I do not 

mean to automatically be talking about purely pragmatic costs and benefits: in scoring 

theories we may well be evaluating them as better or worse guides to the truth, or to what to 

believe based on the considerations before us. 

There seem to be several dimensions of parsimony that matter. One is to limit the number of 

kinds of entities postulated by a theory. This "qualitative parsimony" seems to be the least 

controversial. Once a theory of light no longer required propagation in a luminiferous ether, 

orthodox physicists stopped postulating the ether. Once Kepler and Newton showed we could

account for planetary orbits without epicycles, astronomers (eventually) ceased postulating 

epicycles. If Occam were right that there is no need to postulate universals in an adequate 

theory of generality, we would have good reason to not postulate universals. And so on. It 

would be ideal to have a clear criterion for determining when a new postulate is a new kind of

entity, and when it is only more of the same. I do not know of an appealing general 

characterisation of this, though we seem to have a reasonable grip on the distinction in 

practice, at least in paradigm cases. 
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As well as quantitative parsimony, arguably we should also be parsimonious about how many

postulates of each kind that we make. This further dimension of parsimony is known as 

quantitative parsimony. Quantitative parsimony is more controversial than qualitative 

parsimony, though I have offered an argument from case studies that quantitative parsimony 

does seem to be part of good scientific practice, on at least some occasions (Nolan 1997). 

Many of the applications of parsimony considerations to be discussed below are cases of 

being quantitatively parsimonious: those suspicious of quantitative parsimony will have 

reason to be suspicious that we have grounds for preferring the intuitively more appealing 

options over the less appealing ones; and on the other hand, those sympathetic to the 

application of the relevant parsimony considerations below will have additional reason to 

look kindly on the idea that there is something to a more general principle of quantitative 

parsimony.

When it comes to quantitative parsimony, to be useful we need an answer to the question of 

which counts matter. The most straightforward way to implement a quantitative parsimony 

constraint would be to look only at the total number of objects postulated by each rival 

theory, and to count a theory that postulates more overall as less quantitatively parsimonious 

overall. That would yield some implausible results: once a theory is committed to standard 

number theory, it would be committed to infinitely many objects, and so no finite difference 

in the number of entities like planets or parasites or conspiracies would make a difference to 

its degree of quantitative parsimony. Better, I think, to measure quantitative parsimony by 

looking at the number of entities of each kind postulated (see Nolan 1997 p 339-340): so the 

number of numbers a theory is committed to need have no bearing on whether it is 

unparsimonious in its postulation of planets or criminals or dark matter. 

Another standard distinction that it will be worth keeping in mind is the difference between 

principles of parsimony that counsel rejection of theoretical postulates, versus those that 

merely counsel staying neutral on whether there are more kinds, individuals, or whatever 

than are needed. In Occam's razor terms, this is sometimes put as the distinction between an 

atheistic Occam's razor and agnostic Occam's razor. There is, of course, a distinction between

a theory being neutral on an issue and someone who employs that theory being neutral on it. 

Fundamental physical theories are typically neutral on the question of whether koalas exist, 

but that does not mean that physicists in general have no opinion on the issue. 
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If we read theories of space and time as only saying there is at least as much structure as they

explicitly postulate, then they will be consistent with most theories that are more 

ontologically extravagant than them. For purposes of this paper, I will take theories more at 

face value and read them as claims, not just that spacetime has at least a certain level of 

complexity and spatio-temporal features, but also that spacetime has at most that much 

structure. So, for example, a theory that says that a finite space is made up of finitely many 

regions of a fixed minimal size will turn out to be false if space is made up of infinitely many 

points. 

Once we read theories in this committal way, using parsimony to motivate a theory with a 

smaller ontology is, in effect, to be using it to reject the larger ontology, not just to be neutral 

on it. (A finitist theory of space, then, is silent on the existence of koalas one way or another, 

but rejects the existence of space with a continuum of points.)

Another kind of disagreement among the friends of parsimony is worth mentioning, though it

is not an issue I will attempt to resolve here. Even those who agree parsimony, of any form, is

valuable may disagree about why it is valuable. One could take it to be a theoretical virtue 

that does not stand in need of further explanation, or perhaps better take it to be an aspect of a

broader virtue of simplicity which is not explained in further terms. But one might also want 

to vindicate parsimony in further terms (or take it to have multiple sources of vindication). 

There could be a brutely inductivist one: it led to good results before! We could offer an 

account of the virtue of parsimony in terms of its contribution to valuable kinds of 

explanatoriness, as in Baker 2003. (Though see Jansson and Tallant 2017 for criticism of 

Baker's specific proposal.) No doubt there are many other further explanations of the 

desirability of parsimony that may be offered.

Note well that offering a further story about the value of parsimony is not denying that 

parsimony is a legitimate consideration in theory choice. If e.g. Baker should turn out to be 

right and parsimony brings explanatoriness of a sort we should prefer when choosing 

between theories, this does not mean that parsimony is not valuable: instead, it is valuable 

because of the desirable explanatoriness is ensures. If it is non-arbitrariness we prize, and 

there is some reason why the most parsimonious option is non-arbitrary but in general its 

rivals are not, then again we would have an explanation of parsimony’s value rather than a 
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rejection of it. If we were listing pros and cons of theories we may need to be careful to not 

double-count, of course, but that does not mean we should ignore whether theories are 

parsimonious when assessing them.

Once we are clear on what sort of parsimony we should pursue, there are further questions 

about what form of guidance parsimony considerations should offer. While we could 

interpret parsimony principles as absolute, forbidding any more postulates than absolutely 

required to save the phenomena, or at the other extreme we could treat parsimony principles 

as only tie-breakers when every other consideration is equipoised, I prefer to see parsimony 

as a consideration with some non-negligible weight, but also being the sort of consideration 

that can be outweighed. It does not seem not-negotiable: after all, scientists and other 

theorists do sometimes end up postulating more than they had initially been inclined to. On 

the other hand, I suspect it is a more powerful consideration than an "only when all else is 

equal" principle would have it. For example, sometimes when there is a recalcitrant piece of 

evidence that could only be accommodated by greatly complicating our theories, I think the 

right thing to do is to stick with the theory and assume the evidence is an anomaly that will 

eventually be resolved. The metaphor of weighing up different considerations and then 

picking one of the theories that does best on balance seems to me basically right as a story 

about what we should be doing. (Though there are plenty of places to cavil about details: 

perhaps the comparisons are not always clearcut, perhaps strength of considerations does not 

quite have the structure weight has, and adopting a theory may be less voluntary and less 

deliberate than choosing an object on a scale.)

Here is not the place to defend this general framework, or this particular take on how to 

understand parsimony considerations. Fortunately I think it will not matter much exactly 

whether we understand parsimony considerations as operating as weighted values, or rules, or

something else in the following discussion.  While I might talk in the language of a 

consideration to be weighed against others, I expect this can be translated easily enough into 

other idioms in the cases at hand. The conclusion I am concerned to argue for is that all the 

standard views on the parts of spacetime need to appeal to parsimony considerations if they 

are to be vindicated.

Many theories of space and time postulate one or more forms of infinite counts of their parts. 

Those familiar with the various sorts of infinite sizes that may be encountered in these 
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theories may wish to skip to section 3: for other readers, I offer the following primer on some

significant varieties of infinity in the next section.

2. Infinite Sizes

When counting things, there are larger and larger finite sizes of collections: 1, 2, 3... At the 

limit of all these sizes, there is the lowest infinite number ℵ0 (aleph0) often called a 

"countable infinity". It is the cardinality (i.e. the size) of the set of counting numbers. An 

interesting and important thing that Georg Cantor showed us is that it is not the only infinite 

size, and there are many infinite sizes above it. One interesting infinite size above it is ℶ1 

(beth1), the "cardinality of the continuum", sometimes represented as c. This is the size of the 

set of real numbers, and is also the size of the set of all the subsets of the counting numbers. 

(i.e. {{0}, {0, 1}, {1}, {0, 2} {0, 1, 2}, {2}, {1, 2}...}). Cantor showed that the "powerset" of 

any set is strictly greater in size than that set: that is, whenever you have a set S the set of all 

of S's subsets is strictly larger than it. ℶ1 is the size of the powerset of ℵ0.4 Sets of size ℶ1 also

have powersets, and the powerset of such a set has cardinality ℶ2. ℶ2 in turn, is smaller than 

ℶ3, (defined as the size of the powerset of a set of size ℶ3), and so on. In the symbolism of 

transfinite arithmetic, we often represent the size of a powerset in terms of the size of the set 

with started with using exponentiation: where n is the size of an infinite set, the size of its 

powerset is 2n.

Taking the limit of the sizes ℶ1, ℶ2, ℶ3... we get yet another size, ℶ. (It is the size of the union

of sets of each of the smaller beth sizes.) And we can keep going: ℶ+1, ℶ+2... With a 

combination of applications of the powerset operations and limit-taking, there is a healthy 

hierarchy of infinite sizes.

There is no highest infinite size in the above series of infinite sizes. Still, there are 

mathematical techniques to go further in defining even larger infinite sizes than the beths. We

can, if we like, stipulate that there is an infinite set size greater than all of the infinite sizes we

4 It is a pity that the terminology is inelegant in this way. Cantor introduced the alephs to name the infinities 
ranked in size, with ℵ0 being the smallest, ℵ1 being the next smallest, etc. Unfortunately, in ZFC the relationship
between the alephs and the beths, as defined in the text, is not entirely settled: the system leaves open that there 
are other infinite sizes between ℵ0 and ℶ1 . ℶ0 is another name for ℵ0, and using that would restore smoothness 
to the notation, but unfortunately aleph0/ℵ0  is so entrenched as the name for the first infinite cardinal that 
dropping it in favour of ℶ0 might confuse readers who have come across countable infinities before.
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can reach through the methods of application of powerset and taking limits. This "first 

strongly inaccessible cardinal" is often labeled  or . Once we have , we can apply 

powerset to get a cardinal that must be larger than it (2), a cardinal larger than that, and in 

effect there will be a hierarchy above  much like the one above ℵ0. We can then hypothesise

that there is another cardinality that stands to  as  stands to the beths: 1, or the "second 

strongly inaccessible cardinal". Indeed, we can postulate infinitely many strongly 

inaccessible cardinals, each larger than the one before in the way  is larger than the 

sequence of beths described above.

Postulating sizes such as , let alone infinitely many strongly inaccessible cardinals, takes us

beyond the sizes that can be shown to exist just with ZFC set theory. These infinite sizes that 

are larger than sizes that can be established with ZFC alone are known as "large cardinals". 

Mathematicians wanting to work with structures of this size need additional axioms. Still, 

these axioms seem internally consistent and have been used to describe structures of 

mathematical interest, so there is little controversy that these sizes are available. (For 

example, Grothendieck universes, which are consistent if and only if ZFC plus an 

inaccessible cardinal axiom is consistent, were invoked in Andrew Wiles's proof of Fermat's 

Last Theorem. While many mathematicians are confident that proofs of Fermat's Last 

Theorem will be found that do not need to employ resources like this, this is a prominent case

where postulating large cardinals, or the mathematical equivalent, is in practice useful even in

pure number theory.5)

The above series of inaccessible cardinals is only the beginning of the options for postulating 

larger and larger infinite sizes. So-called transfinite set theory typically postulates many kinds

of large cardinals eye-wateringly larger than the kappas. One kind of large cardinal that goes 

beyond those discussed above are the so called measurable cardinals, in particular the real 

valued measurable cardinals. New kinds of large cardinals require new additions to ZFC, but 

many of these additions are well-investigated and show no signs of being subtly inconsistent.

Finally, beyond all the sizes of sets that can be consistently postulated within set theory, there

is arguably at least one more size. Within set theory, we define cardinalities in terms of one-

5 The exact relation between postulating Grothendieck universes and Wylie's proof is somewhat controversial. 
See McLarty 2010 for a useful discussion. I follow McLarty (among others) in thinking Wylie's proof, as 
presented, relied on theorems that had been proved using Grothendieck universes and had not been proved 
without them.
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to-one mappings between sets. But there is no way within set theory to set up a function from

all the sets to some other set (or even itself). So no matter how many sets of inaccessible size 

are posited, and of what kinds, there will be some things (e.g. the sets) that cannot be 

captured by any of the cardinalities in the system: as is sometimes said, they are "too many" 

to form a set, or to have a cardinality in the ordinary way. There are several ways to talk 

about the "size" corresponding to the size of sets, if it is discussed at all. One straightforward 

one is to introduce another kind of set-like object, the "proper class", that has members but is 

not itself a member of anything. Without contradiction we can discuss the proper class of all 

sets, and it can be put in one-one correspondence with itself, or with other sets, but 

employing a proper class of ordered pairs, the domain of which is the proper class of sets.6

Even if we do not treat proper classes as a new kind of object, we can allow ourselves other 

techniques to talk about there being as many objects of a certain sort as there are sets. One 

option is to postulate a new quantifier, "there are proper class many", or a new collective 

predicate "Xs are proper class many". (I am not saying that this postulation is philosophically 

uncontroversial, just that it is an available theoretical option.) Provided these expressions can 

somehow be meaningful even if the objects in question do not all belong to a single set or 

class, we will have a way to talk about how many of a certain kind of object there are without

presupposing that they can be put into a one-one correspondence with any collection.

When these conditions are satisfied, we can say that there are "proper class many" of the 

objects in question, even if there are no proper classes. Even more loosely speaking, we can 

talk of "proper class many" as being a size, larger than all the sizes of sets. I will freely talk 

about the option of positing proper-class many objects of various sorts, and talking about this 

as a size larger than all sizes sets can have. But the reader should note that this talk may need 

some paraphrase unless we literally postulate proper classes. I will also, for convenience, talk

as if there is a single "size" that is "proper class many". There are systems that allow proper 

classes to come in different sizes, but for present purposes there is little point leaving that 

option explicitly open.

6 Can any proper class be put into one-one correspondence with any other? It depends on the system, or in 
particular whether a principle known as Global Choice is true of the system. (If and only if Global Choice is 
true, they are all of the same size.) How many proper classes are there? Since, in orthodox class theory, they do 
not belong to any sets or classes, we cannot find a class or set that they are in one-one correspondence to. If we 
use the analogue of one of the devices discussed in the text to let us talk in a sensible way about how many 
proper classes there are, there must be strictly more of them than there are sets. 
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What do all these infinite sizes have to do with space and time? According to one of the most 

standard contemporary conceptions of space and time, regions are infinitely divisible: indeed,

infinitely divided in the sense that they have infinitely many smaller and smaller parts. The 

most common models of these regions postulate at least as many regions as there are real 

numbers: that is, continuum-many or ℶ1 many regions. In fact, the most standard model of 

space and time postulates ℶ1 many points, small zero-sized and zero-dimensioned pieces of 

space. With ℶ1 many points, if we allow that arbitrary sets of points correspond to (perhaps 

scattered) regions, as is also standard, there will be ℶ2 regions.

Some theories of space and time postulate many fewer regions. Some postulate only finitely 

many (e.g. by having a minimum positive size of regions and having larger regions made out 

of those smallest ones). Some postulate only countably infinitely many regions, though this is

very rare. The standard approach to regions that takes them to be "gunky", with smaller and 

smaller regions all the way down, plus arbitrary fusions of all of those regions, postulates 

only ℶ1 regions rather than the ℶ2 regions standardly postulated by "pointy" theories. And of 

course some theorists resist postulating any space, time or spacetime at all. On the other hand,

in principle theories of space and time could postulate many more parts of space and time 

than the mere ℶ1 regions of standard gunky space or the mere ℶ2 regions of orthodox pointy 

space. Some of those options will be discussed below.

 When evaluating the postulates of different theories of space and time, then, we very quickly

get into the business of comparing infinite sizes. Some of the options I will entertain below 

posit vastly more regions and points even than the relatively low levels of infinity such as ℶ2, 

including various inaccessible infinite sizes and postulating proper-class many regions or 

points. Many of these options have not received sustained attention, but once we do attend to 

them I think we should be very suspicious of these alternatives. If we reject these alternatives,

as I think we probably should, we should make appeals to parsimony explicit to justify our 

preference for relatively small ontologies of regions and points. 

3. Parsimony and Discreteness

Once we accept that there are parts of spacetime, we have a number of options for 

understanding the structure of those parts. Orthodoxy is that spacetime is divided into a 
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continuum of points of zero-size, and regions of non-zero size are made up of those points. 

But a salient alternative, which has been defended explicitly at least since the time of the 

ancient atomists, is that space and time are made up of minima which themselves have non-

zero size, and that there are only finitely many of these minima in a meter, or a second, or for 

that matter there are only finitely many in any finite distance or duration.

There are armchair philosophical arguments both for and against spatial, temporal, or spatio-

temporal minima, and for and against infinitely divisible space and time. In my view both the 

picture of spacetime being made up of minima and the picture of it being continuous are 

coherent and not ruled out a priori: the decision between these rival pictures is to be made, if 

it can be made at all, on the basis of a posteriori considerations, and in particular what makes 

best sense of our evidence from physics. Showing that all the armchair arguments intended to

demonstrate that space or time are discrete fail is a task that would have to be done 

piecemeal. It is also beyond the scope of this paper, though see Forrest 1995 for responses to 

a number of the traditional armchair arguments against discrete spacetime.

One armchair argument that may have some force, even it is not demonstrative, is that 

positing discrete spacetime results in postulating many fewer parts of space than positing 

space divided into infinitely many parts. (At least this is true if there is only a finite volume 

of spacetime.)7 If we could do just as well with finitely divisible space and time, that might be

preferable from a parsimony point of view. Forrest 2004 pp 355-356 is one philosopher who 

mentions this parsimony argument in favour of discrete space over infinitely divided space, 

though he does not take it to be decisive.

When we turn to contemporary physics, there are a number of lines of thought converging on 

the idea that we should treat spacetime itself as quantised. One of the best known comes from

loop quantum gravity models of quantized spacetime, though there are a range of other 

theoretical approaches being tried.8 This is an evolving area of physics, however, and recent 

astronomical data suggests that spacetime is "smoother" than a range of quantised approaches

would have had it: see Perlman et al 2015. Quantised approaches postulate only finitely many

smallest parts of spacetime in a given finite area, though the number is not a small finite 

7 Even a countable infinity of meters of discrete space, each divided finitely, will result in fewer parts of space 
that orthodox "pointy" continuous approaches postulate within a single meter.
8 For an introduction to loop quantum gravity, see Rovelli and Vidotto 2014. One other promising approach to 
quantising space and time is the causal sets approach: see e.g. Bombelli et al 1987 or Dowker 2005.
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number. One popular conjecture about the smallest size of space is that it will be a planck 

length long, or about 10-35m. (If these minimum pieces are two-dimensional, the "planck 

areas" would be something in the range of 10-69-10-70 in a square meter, if three-dimensional 

the minimum volumes might be around 10-103-10-105 to a cubic meter, and so on.) The planck 

time is approximately 10-42 seconds, and is a plausible estimate for the minimum unit of time. 

With the minimum sizes being this tiny, treating space and time as approximately continuous 

at lengths and durations we normally come across does no harm for almost any practical 

purpose. 

Apart from the appeal of specific approaches to quantising space and time, there is a general 

theoretical reason to want to do so. Traditional quantum mechanics, or even traditional 

quantum field theories, and the general theory of relativity have been spectacularly 

empirically successful in their usual domains of application. However, at very small scales 

and at very high energies it becomes very challenging to apply both theories at once (some 

physicists talk of an "inconsistency" between the theories, though whether there is a formal 

inconsistency depends on some subtle issues about formulation). One approach to take to this

problem is to modify the theories so that gravity is in effect quantised as well, and it turns out

a natural way to do that in this context is to introduce minimum finite spatio-temporal 

distances. While not compulsory, introducing a minimum quantum by which distance can 

change or time can advance offers an appealing approach to this crucial puzzle area in 

theoretical physics. The plausibility that we will somehow need to quantise distance is thus 

higher than the plausibility of any of the particular, highly controversial, implementations of 

this idea.

As I have argued in earlier work (Nolan 2008), many of these arguments take a step that 

should require an explicit defence. Suppose it has been established that physical phenomena 

are spatio-temporally quantised, in the sense that there is a minimum size that variation can 

happen across. (And let us suppose also, as is standard, that these minimum sizes "line up", 

so it is not that e.g. one event can start or end half a minima after another.) One way that 

could be is if the minimum parts of space and time themselves corresponded to the minimum 

quantum of variation among objects, or fields, or other phenomena. But another way it could 

be, at least in principle, is if spacetime was continuous, made up of 0-sized points, but the 

phenomena located in spacetime never "took advantage" of the extra degrees of variation 

allowed to them. An analogy might be a traditional pixelated computer screen: while the 
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screen can in fact be divided into regions much smaller than the pixels, there is only variation

in what the computer displays between pixels on the monitor.

Those who want to draw on the evidence from physics to support discrete spacetime, and not 

just discrete variation of entities located in spacetime, need to do more than show that the 

entities in spacetime come in spatio-temporally quantised sizes. After all, we can embed these

discrete events in an underlying continuous spacetime, and the appropriate embedding will be

observationally equivalent to a discrete model of spacetime where the smallest distinctions in 

spacetime itself correspond to the smallest distinctions in behaviour the phenomena display. 

(The picture is more complicated when spacetime is a dynamic part of the theory, e.g. when 

we treat gravitational attraction as being a matter of differences in spacetime curvature. One 

brute force way to have quantised gravity and a continuous spacetime would be to have a 

distinct "curved" gravity field with discrete values embedded in a continuous spacetime: this 

would be ugly, but the ugliness is due to the lack of parsimony such an option would 

display.)

As well as ruling out discrete-phenomena-in-continuous-spacetime, it would also be good to 

rule out models where spacetime is discrete but the smallest units are much smaller than the 

smallest units posited by our theory. Suppose our theory posits the minimum distance of 

spacetime is the planck length. A rival theory can be constructed where the minimum length 

is one millionth or one billionth of a planck length, but spatiotemporal phenomena only 

display planck-length differences. (For instance, particles quantum jump from being one 

plank length apart to being two planck length apart, but are never found one half or one 

millionth of a planck length apart.) This can be done in such a way that the resulting theory is

observationally equivalent. 

I argued in Nolan 2008 that this extra step is a parsimony step. If we are not to postulate any 

more structure to spacetime than is needed for our best theory, then the fact that we can treat 

physical objects and processes as being located in a discrete spacetime (if this is a fact) would

require us to postulate only discrete spatiotemporal structure. I suspect an argument like this 

is implicit in the claims physicists make that there is evidence for quantised spacetime, 

though I have not seen it made explicitly. Instead, the form of the argument seems to be that 

the smallest quantities of spacetime needed, or that the laws operate on, or which are 

observable in principle... (etc.) are discrete and quantised, therefore space and time and 
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discrete and quantised. The premise is controversial and a focus of scientific debate: but we 

also need to support the inference. Parsimony would do so, but I cannot see any other 

plausible way of moving from the scientific evidence to the desired conclusion.9 So those 

who adopt discrete space or time had best be willing to endorse a parsimony principle, and a 

principle of quantitative parsimony at that.

4. Parsimony and Gunk

If we reject spatial or temporal minima of non-zero size, there is another salient alternative to 

orthodox continuous space and time. This is to treat space and time as gunk. In mereology, a 

gunky object is such that all of its proper parts themselves have proper parts: there are 

infinitely descending chains of whole-to-part, but there are no "least parts". The classic model

of gunky space and time (Tarski 1929) is a Euclidean space with smaller and smaller regions,

with smaller regions being parts of larger regions, but no points underneath the regions: there 

are no smallest parts of space. This model would need to be extended to spacetime: to model 

Minkowski spacetime, nested hypercones, rather than spheres, would seem to be the natural 

way to set up such a model, though I do not know of a presentation of the details in print.

There are a number of arguments for gunky space and time versus continuous, "pointy" space

and time, as well as a number of arguments against. An old argument for gunky space is the 

idea that putting together zero-magnitude parts of space could never yield a more-than-zero 

magnitude region: this, allegedly, is as intuitively absurd as hoping to add zero to itself 

enough times to get to one. (See Arntzenius and Hawthorne 2005 pp 443-445.) Relatedly, 

you may have thought it was just definitional of parts of space or time that they have positive 

spatial or temporal magnitude, something points would lack. Another argument concerns 

dimensionality: that smaller and smaller parts of a region must have the same number of 

dimensions as it (line segments made up by line segments, areas by areas, volumes by 

volumes, and so on). If that is correct, space could not be ultimately be made up of zero-

dimensional points, but a volume must only be made up by smaller volumes.

9 Those who hold that parsimony can be explained further, e.g. in terms of preferring more explanatory theories 
(Baker 2003), could argue against these rivals on the grounds of doing less well on explanatory grounds. But 
this is not a rival to a parsimony argument, but, if Baker is right, it is spelling out a parsimony argument in 
further detail.
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Put each of these premises together with the thought that space or time must be infinitely 

divisible (e.g. because it always makes sense to take half of any given magnitude), and we are

naturally led to a view where space is made up of smaller and smaller regions of non-zero 

size, but has no smallest size. The analogous arguments suggest intervals of time have the 

same kind of structure. While this gunky option was repopularised in the twentieth century by

writers such as Alfred Whitehead and Alfred Tarski, it has a much longer history: see Holden

2004 for evidence of this view in the early modern period, and Nolan 2006 for arguments that

it was the approach taken to space and time by Chrysippus.10 

A more recent argument for gunky space and time has its origins as a response to the 

"Banach-Tarski paradox". In a standard Euclidean three-dimensional space made up of 

points, if you start with a standard ball-shaped region of space, you will be able to specify an 

exclusive and exhaustive division of that ball into sub-regions, together with a mapping of 

those regions to a second set of regions, which preserves the size and shape of those sub-

regions. (That is, each sub-region of the ball is mapped to another region of the same shape 

and size.) However, such a mapping can be defined so that the second set of regions make up 

a region of twice the size of the ball we started with (Banach and Tarski 1924). There are a 

variety of possible responses to this result, but one that has sometimes been suggested is that 

this shows there is something inadequate or defective in understanding regions as 

corresponding to arbitrary sets of points. A natural alternative for those who wish to preserve 

the infinite divisibility of space, but to employ a geometry that does not allow the Banach-

Tarski result to be derived, is to allow smaller and smaller regions of non-zero size ad 

infinitum. See Forrest 2004 for discussion.

Beyond the arguments mentioned, there are at least three parsimony arguments for preferring 

gunky models of space and time to pointy ones, everything else being equal. One is that a 

gunky picture appears to commit us to a proper subset of the commitments of the standard 

pointy view of space and time. We are in any case committed to regions, and subregions of 

those, etc.: why, unless we have additional reason, should we accept the existence of point-

like parts of space and time as well? Points seem further from our ordinary experience of 

spatial regions and temporal intervals than regions do: even the aspects of our experience that

10 The arguments discussed are only two of a range of philosophical arguments offered in favour of gunky space:
for another, see Zimmerman 1996.
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involve edges of regions or boundaries seem adequately captured with very small boundary 

regions rather than literally magnitude-less points.

Note that in rejecting the existence of points, we reject a class of entities that seem 

qualitatively different from regions. As mentioned above, points are zero-dimensional parts 

of space/time, while typical gunky theories accept parts of space, time or spacetime that have 

positive magnitude and the same number of dimensions of the entire manifold. Points that are

supposed to make up larger spaces or times have another surprising feature, in that even 

though each of them is zero sized, wholes made up of them can have positive non-zero sizes. 

Points, at least in continuous space or time as normally conceived, are never adjacent to each 

other: so not only would spacetime have to be made up of a lot of "zeroes", it would have to 

be made up of entities that are never even adjacent to each other! Since points are so unlike 

typical paradigm regions, positing regions without points, instead of both points and regions, 

seems to be an improvement in qualitative parsimony.

Finally, a standard gunky spacetime has vastly fewer entities in it than the corresponding 

pointy spacetime. Given a finite total volume, if we consider the regions we get by halving it, 

halving all of them, halving all of them, etc., we have finitely many regions at each stage of 

this process. However, we do not escape commitment to infinitely many objects: there are ℵ0 

stages of that process, and taking arbitrary fusions of the regions generated ends up yielding 

us continuum-many (ℶ1) regions. (The number is the same whether we consider one or three 

or four dimensions.) In the standard pointy conception of spacetime, however, there are 

continuum-many points (ℶ1): and since arbitrary fusions of points correspond to regions, we 

end up with 2^ℶ1 (ℶ2) regions. ℶ2 is vastly larger than the continuum: not only is the 

difference larger than the difference between ℵ0 and any finite number, it is vastly greater 

than the difference between ℵ0 and the continuum itself. It is striking that theorists are so 

willing to accept this extra ontology lightly, when gunky space and time seems to offer 

infinite divisibility and a kind of continuity as well, without the vast array of additional 

regions pointy space and time provide.11 Preferring fewer regions to more, where fewer will 

do, is a matter of quantitative parsimony.

11 Arntzenius 2012 pp 151-2 points out that while parsimony might favour gunky spacetimes, other respects of 
simplicity may favour the pointy view, including simplicity of statements of physical laws. So one line of 
response to these parsimony arguments would be to stress those other aspects of simplicity.
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Of course, when gunky theories "recover" points by treating them as certain infinite sets of 

regions, they end up with as many "points" as a pointy theory, and as many sets of their 

constructed "points" as their rivals. But here it should matter that the gunk-theorist's points 

are only set-theoretic constructions from the genuine parts of spacetime. Everyone who 

adopts standard set theory is already committed to a staggering hierarchy of infinite sizes of 

sets. Given a set theory like ZFC, for almost any disagreement about which entities can be 

found in the physical world, we can find sets constructed out of those elements of mind-

numbing sizes. The fact that a gunk theorist postulates fewer parts of space and time seems to

be what matters here, rather than the fact that cardinality differences of total numbers of 

objects postulated wash out when we add the full power of set theory. After all, the 

cardinality of mathematical objects dwarfs the cardinality of non-mathematical entities 

postulated in standard e.g. physical theories, but that does not mean parsimony lacks a role in 

choosing between theories in the natural sciences. (See Nolan 1997 p 340 for this point.)

There is another reason partisans of gunky spacetime should want to employ parsimony 

considerations in defence of their theories: it is a concern about how to rule out gunky 

spacetimes with much higher cardinalities of gunky parts than the usual ℶ1 gunky regions. 

This final reason is analogous to the main reason I see that continuous, "pointy" theories of 

spacetime need to employ parsimony considerations: so for that reason I will delay discussion

of it until the end of the next section, after I have outlined the issue for that view.

5. Parsimony and Points

Suppose, as many hold, that the case for discrete spacetime time is not successful, and that 

spacetime should have at least the structure of the continuum. Suppose further that the case 

for gunk should be rejected, and as well as smaller and smaller regions ad infinitum, 

spacetime should resolve into points, and those points should be dense (between any two is 

another) and continuous (the limit of a series of positions of points closer and closer together 

will itself correspond to a point). This picture of space and time is not just that of classical 

physics, but also of standard theories of special and general relativity. It is also presupposed 

in much of the mathematics of contemporary physics: trying to solve even relatively simple 

problems involving motion without using calculus or integration would be a nightmare, and 

both assume continuous variation of spatiotemporal quantities such as distance, acceleration, 
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and so on. And defining qualities at points, such as instantaneous velocity or field strengths, 

is also ubiquitous in physics.

The standard "pointy" models of spacetime postulate continuum-many (c) points. This means

there are ℶ1 points in such a system. It is standard to treat any non-empty set of these points 

as corresponding to a region (albeit often a scattered and gerrymandered region): this means 

there are 2^ℶ1 regions of spacetime in the standard models, i.e. ℶ2.

However, those who postulate only continuum-many points of space or time or spacetime 

must answer the question of why they postulate only continuum many points. There are many

levels of infinity above the continuum: infinitely many, in fact. ℶ1  is the lowest cardinality 

that allows for points to be dense and continuous, but any infinity of points higher than ℶ1 

might do the job as well, as I will argue below. In fact, as discussed in Section 3, the 

hierarchy of available infinite sizes is enormous: we have infinitely many sizes to choose 

from (and depending on which large cardinal axioms we accept, a very large infinity at that).

In each case a measure will need to be put on some sets of the points so that distances, areas, 

volumes and so on behave in familiar ways, and so that field strengths and other values can 

be defined across spatio-temporal regions in a familiar way. Several slightly different things 

get called "measures". The most orthodox thing to call a measure is a function from sets of 

objects to the real numbers that obeys certain further constraints: for example, that when a 

measure is defined for two disjoint sets, the measure of their union is the sum of their 

measures. (For illustration, if I have two line segments that do not overlap and are each 1cm 

long, the measure of the set of points from the first line plus the set of points from the second 

line will be 2cm.) Grünbaum 1970 is an accessible introduction to measures of (Euclidean) 

space in pointy settings.

The most standard way of doing measure theory maps certain sets of points to real numbers 

where the real numbers are thought of as the lengths, areas, volumes or whatever of the 

regions that are made up by those points. (Each measure will implicitly have a unit of 

measurement specified: e.g. if the measure is volume-in-cubic-meters, it will map volumes of

1m3 to the number 1, volumes of 2.5m3 to 2.5, and so on.) We can also define "measures", in 

a slightly different sense, as a function from aggregates of points to real numbers: this is 

plausibly a function directly from the lines, planes, volumes (or whatever) to real numbers 
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that give their magnitude. Whether we say the domain of the measure is sets of points, or the 

regions that those points make up, will make little difference at least in standard settings.12 

I do not think it would be useful to give all the conditions a function must satisfy to count as a

measure here, but I do want to draw attention to one unusual feature of typical measure 

theory when applied to continuum-many (ℶ1) points. It turns out (given the Axiom of Choice)

that there is no way to define such measures so that they meet the various conditions needed 

and give a defined real-valued measure to every set of points. Instead, only privileged sets of 

points receive values from a measure function, and most infinite subsets of the points receive 

no measure at all. This is often thought to be a drawback of our understanding of measure: 

why shouldn't every region get a volume, even if that volume is 0 when the points are too 

scattered? Still, this is a result that those who see spacetime as made up from points have 

largely made their peace with. Some partisans of discrete spacetime or gunk have pointed to 

this feature as one more reason to reject a pointy conception of space or time, however.

Measuring space and time with real numbers is traditional, and it is plausible that if space is 

continuous we will need at least that many values for length, area or volume to take. 

(Comparing volumes of cubes and spheres cannot be done in general with only rational 

numbers, for example, since fractions of  are often important!) But we can also define 

measures with systems richer than the real numbers: measures employing imaginary numbers

are straightforward, and some theories with the right additional resources may employ 

functions from regions to surreal numbers: see below. Perhaps the easiest modification to 

grasp that uses more than real numbers is a measure on a space of infinite volume: while 

various sub-spaces of the volume may have arbitrarily high finite volumes, the measure will 

map the volume as a whole, as well as some of its sub-volumes, to something besides a real 

number: perhaps an infinite number such as ℵ0.

Consider one minimal departure from orthodox continuous physics which is available if we 

have more than continuum points, and which clearly allows us to employ the formalism of 

continuous physics unchanged. Suppose, for specificity, we have ℶ2 (i.e. 2c) many points 

which we will treat as the ultimate components of spacetime. Sort them into continuum-many

12 It may make a difference in gunky settings, where we may wish to define a measure directly on regions: 
though most commonly the mathematical equivalent of points are constructed from infinite sets of regions 
through a method due to Tarski, and the measure is defined on them.
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(ℶ1) equivalence classes, each containing ℶ2 many points. Let us call these equivalence 

classes "bunches". Now apply a measure such that, within a bunch, all the members of it are 0

distance from each other. Start with a standard continuous distance measure, m1 on the 

bunches as if each bunch were a point in ordinary continuum-spacetime, and adapt that 

measure to yield a measure, m2, on the points within bunches as follows: when points x and y

belong to distinct bunches b1 and b2, so that the "distance" between b1 and b2 is r, then the 

distance between x and y according to m2 is also r. (i.e. the length of a line connecting the 

two is r: and extend this in the obvious way to areas, volume, etc.) That is, every member of a

bunch agrees with its bunch-mates on its distances to all points. (If you wish, extend all the 

other measures from your favourite physical theory in the same way: define a measure on 

bunches that matches your original measure, and then apply it to the members of the bunches 

mutatis mutandis.)

If the measure on ℶ2 points is constructed in this way, it is easy to see that we can carry over 

our physics with little change. Even though the ultimate measure on points is our m2, for 

almost any theoretical purpose we can ignore distinctions between distinct members of 

bunches and treat our spacetime as if it were composed of ℶ1 points. (Equivalently, we could 

use our measure m1 on bunches to do our calculations and predictions, even though our 

model tells us bunches are not atomic but are sets with ℶ1 members.)

Without further stipulations, this model is susceptible to an unusual form of indeterminism. If

a point particle moves one meter in one direction and one meter back, it will end up 0 

distance from where it was. But there is no guarantee it will end up at the same point it started

from: all that we will be able to show, given the laws of motion, is that it is at one of the 

points in the bunch that its starting point belongs to. In general, laws of motion expressed in 

terms of distance travelled will not distinguish between points within the same bunch. We 

could of course search for additional constraints that do distinguish between co-bunched 

points, but it is hard to see how any of these could make an empirical difference. Perhaps this 

indeterminism is a mark against such bunch theories, over and above the additional structure 

they posit: that will depend on whether there is anything per se preferable about deterministic

theories over indeterministic ones. Even if it is a factor to be considered in theory evaluation 

over and above simplicity considerations, it seems to me that this form of indeterminism, at 

least, would be little to be concerned about.
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I anticipate one potential objection to any version of this bunching strategy which may be a 

weightier concern. Why describe the strategy as one according to which our measure is 

defined over bunches, rather than this just being a theory according to which the points 

themselves are identical to the bunches, and it is just that the points of spacetime have some 

surprising internal structure? This objection is not obviously fatal: the ℶ2 objects are the 

partless parts of spacetime, and are plausibly its fundamental constituents in such a theory, so

they have some claim to be considered the true points, even if the bunches play some of the 

roles orthodoxy assigns to points. Nevertheless, it would be good to be able to avoid this 

concern by constructing models where the putative points are non-zero distances from each 

other. Fortunately this is also straightforward.

To construct a slightly more complex model that handles this concern, we can tweak the 

above construction so that the members of the bunches are a little less differentiated. 

Consider a measure that agrees with the one just constructed about points from distinct 

bunches: as above, when x and y are any two points such that x belongs to one bunch b1 and y

belongs to a distinct bunch b2, x and y stand in a distance, according to m2, equal to the 

distance between the bunches specified by m1. (And make the obvious associated stipulations

for lengths, areas, volumes etc.) However, we add to this a further specification for points 

within a bunch. Let every point be 0 distance from itself, and let distinct points within a 

bunch stand in an "infinitesimal" distance d, defined so as to be greater than 0 but less than 

any distance represented with a greater-than-zero real number by our metric.

There are some more mathematically sophisticated approaches than either of the bunching 

strategy I have just described. Real-valued measures can be applied directly to sets of sets of 

points where there are more than ℶ1 points. This is rarely done for sizes of points such as ℶ3 

or  , but there are no very serious obstacles here. There does not seem to be anything gained

either for the purposes of physical theory: the additional complexity would be entirely 

needless. Still, without some form of parsimony consideration, why not indulge in needless 

complexity? At the very least, these variations on a standard continuum-points account of 

continuous spacetime seem just as good as the orthodoxy, parsimony aside.

Some high levels of infinity might even be particularly appealing for applying the measures 

associated with space and time. As mentioned above, the standard mathematical continuum, 
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with continuum many points, has an awkward feature that it is mathematically impossible to 

assign all of its subsets a measure between zero and one, while keeping other desirable 

features of a measure. This is why the orthodoxy about metrics on space, time or spacetime is

that such a metric maps a distinguished set of subsets of points to real numbers. This is 

sometimes recognised as an undesirable feature of these measures (e.g. Forrest 2004 p 361-

363), but it is often accepted as a mathematical fact of life. However, if we are willing to 

postulate enough points, we can ensure every set of points receives a measure as well.

Some larger cardinal numbers, it turns out, can support a function which has as its domain all

of the subsets of a set of points to the range of real numbers 0-1, which also satisfies the usual

conditions to be a genuine measure. These cardinalities are known as measurable cardinals 

(and if we want to impose the extra condition that we can have a measure from the subsets of 

the set to arbitrary real numbers, real-value measurable cardinals are needed, which is 

slightly more demanding). However, measurable cardinals must be very large, at least in ZFC

set theory: they must be strongly inaccessible cardinals, but it must also be true that a 

measurable cardinal M must be larger than the first M inaccessible cardinals.13 These sizes go

well beyond the sizes required for the smallest models of ZFC. Nevertheless, it is widely 

supposed they are consistent postulates.

Even though real-value measurable cardinals have this attractive feature, I have not been able

to find any physicist or philosopher proposing that we should therefore take the cardinality of

spacetime points to be a real-value measureable cardinal. This may merely be because 

relatively few people working on the structure of spacetime have thought very much about 

various large-cardinal axioms. But I suspect another contributing reason is that theorists are 

reluctant to postulate such a mind-boggling cardinality of spacetime points even for the 

advantage of having a theory that fits at little better with some of our starting intuition about 

the sizes of regions: namely, that every set of points comes with a volume, zero or non-zero. 

If this is right (for some or all such theorists) this would be evidence that parsimony is 

functioning as more than a mere tie-breaker: theorists seem willing to avoid quantitative 

extravagance even when something of theoretical value is purchased by the postulation of 

additional ontology.

13 I have not been able to find an accessible proof of this result, though see Fremlin 2009 p 24 for some relevant 
results.
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Even if we postulate strongly-inaccessibly many spacetime points, or even that the spacetime 

points are as many as a real-valued measurable cardinal, there are plenty of models of infinite

cardinals of much greater size still to be exploited by potential theories of spacetime. Indeed, 

we can push beyond all of these and postulate a proper-class of spacetime points. If there are 

a proper-class of spacetime points, then there will be more spacetime points than there are 

members of any set, at least given Choice. (In that sense that for any set, its members can be 

put into one-one correspondence with a set of points, but there is no set which all the points 

can be put in one-one correspondence with.) If we postulate that there is a proper class of 

spacetime points in ordinary regions of space or time with finite measures (for example in a 

centimeter of length or a second of time), then spacetime will be divided to an immeasurably 

greater degree than the pedestrian spacetime of ordinary continuum models. Incidentally, a 

model of space containing proper-class many points in finite volumes is one natural way to 

understand Charles Peirce's remarks about space: see Putnam 1995 for details. 

Note that if we reject the existence of spacetime points, and instead endorse only the 

existence of spacetime regions with greater than zero magnitude, we face a similar range of 

options. The most usual models of so-called "gunky" spacetime only have continuum-many 

regions of gunk in a finite volume. But again, here, there are a dizzying range of theoretical 

options of postulating higher and higher cardinalities of gunky regions in a finite volume. 

There is nothing stopping us theorising about gunky spacetime with more than 2c regions, or 

more than ℶ regions, or more than inaccessibly many regions, or a real-value-measurable-

cardinal of regions, or even proper-class many regions. In many cases, we can provide 

models of gunky space with a Tarski-like construction, starting with a point space with a 

cardinality C, and constructing a space of regions corresponding to certain privileged sets of 

those points. (Extending this to gunky spacetime will require resources analogous to those 

mentioned at the start of section 4.) One limitation of this particular method of construction is

that we must ensure that the cardinality of points we start with has a square root that is also a 

cardinal (in other words, that there is an n such that the cardinality C we start with is 2n): but 

while not every cardinal meets this condition, there are arbitrarily large cardinals that do. This

is not the only method of constructing models of gunk with large cardinalities: I mention it 

only as one relatively simple way to translate from certain "pointy" models to gunky ones.
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The final option, to postulate a proper class of regions of spacetime, is the postulation of a 

form of "hypergunk". See Nolan 2004 for a defence of the possibility of hypergunk, and 

Reeder 2020 for a recent development of this strategy for space employing a measure theory 

based on surreal numbers. Reeder's interesting construction gives us extra reason, it seems to 

me, to see spacetime with proper-class many regions in any finite volume as a coherent 

option, and since a physical theory based on it can yield predictions that are observationally 

equivalent to our best continuous physics, it is reasonable to ask for a principled theoretical 

reason to reject it, especially if we allow that ordinary gunky theories are live theoretical 

options.

While an infinite range of possibilities opens up here for theories with higher and higher 

cardinalities of points of space, or of time, or of spacetime, I imagine many philosophers and 

physicists will not find these new rivals to standard theories of continuous spacetime 

appealing. I predict (hope?) that they will find this additional unnecessary structure 

unappealing and at least faintly absurd in the absence of any particular reason to invoke it. (I 

do not expect this repugnance will be universal: some have a taste for making things as 

complex as possible.)14 Even the fact that measurable cardinals have a pleasing property that 

might be intuitive for space and time (that every sub-region of points can receive a size, even 

if it is zero) does not seem to be enough reason to overcome the pull of parsimony: 

mathematicians have been aware of real-valued measurable cardinals since 1930, but they are

not standard in theories of continuous space. Indeed, as far as I know this is the first 

discussion of the proposal that physics might replace continuum-sized space and time with 

spacetime with real-value-measurably-many points.15

Note that if we do invoke parsimony in order to justify a preference for space with 

continuum-many points rather than one of the higher cardinalities, the kind of parsimony we 

14 Rudy Rucker has recently expressed a preference for theories of space that take the parts of space to be 
absolutely infinite (roughly, that there are a proper class of points): see the preface of Rucker 2019. I do not see 
an argument for this theory beyond an appeal to "the traditional philosophical Principle of Plenitude", but it 
seems that he does not feel the attraction of parsimony in this domain. And the Peirceian doctrine of the absolute
infinite of points of space, discussed in Putnam 1995, is another example of a view that goes for the most points,
rather than the least needed.
15 The closest I have found is Sładkowski 1996. When discussing a slightly different structural issue about 
spacetime, and whether we can assume the structure is less rich than one that would require measurable 
cardinals to represent, he says "The existence of measurable cardinals cannot be proven in the standard axioms 
of set theory. Even if they do exist they must be so huge that it is unlikely that the spacetime is so 'potent'" (p 
10). As soon as Sładkowski brings up an option for spacetime requiring it to have this rich a structure, he sets it 
aside on what looks like parsimony grounds.
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will need to invoke will be quantitative parsimony and not merely qualitative. The additional 

points only need to be more of the same kind of thing as the points postulated by traditional 

theories of continuous space and time. The only difference is that there are many more of 

them, and (in some models) they stand in slightly more elaborate spatiotemporal relations to 

other points. So if we are to justify standard continuum conceptions of space and time, it 

seems we will need to employ a parsimony principle strong enough to take cognisance of 

quantitative parsimony as well, presumably, as qualitative.

6. Conclusion

Parsimony considerations arise if we are to try to justify any of the typical positions about the

structure of space and time. That is not to say that every theory among the currently popular 

options is equally well supported by parsimony considerations: plausibly, discrete spacetime 

is more parsimonious than standard gunky spacetime (with continuum-many regions), which 

is in turn more parsimonious than standard pointy spacetime (with continuum-many points 

and 2c-many regions). But crucially, each of these standard options have cousins which share 

the same general features but differ primarily in their lack of parsimony. Discrete theories 

have cousins with much smaller ultimate pieces of spacetime, as well as variants with 

continuous spacetime but only spatiotemporal phenomena which have their spatiotemporal 

features quantised. Gunky theories are arguably more parsimonious than their corresponding 

pointy ones, but also can be formulated in a vast infinity of rivals, each differing primarily in 

what order of cardinality the gunky regions come in. Finally, continuous pointy theories can 

be formulated in a huge range of infinite sizes, at the size of the continuum or higher, with 

nothing much to choose between many of the alternatives than parsimony considerations. 

(Indeed, even when some alternatives have intuitive advantages, such as those that postulate a

real-measurable cardinal of points, those alternatives still seem inferior on parsimony 

grounds.)

We might employ parsimony considerations to add something to the scales in favour of 

discrete spacetime over gunky or (continuous) pointy spacetimes, or to prefer gunky 

spacetime to pointy spacetime. But even if we do not, or do not think in the end those 

considerations can bear much weight, we should think that parsimony gives us a reason to 

prefer the simpler discrete, gunky or pointy spacetimes to their gratuitously unparsimonious 
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cousins. Or so it seems to me: but even if you do not think that is the right verdict, there are 

still some potential lessons in considering these cases.

There are a range of potential reactions to the presence, or apparent presence, of parsimony 

considerations in our theorising about space, time and spacetime. If you think parsimony is 

methodologically worthless, in general or in metaphysics in particular, then you should make 

sure parsimony is not smuggled in somewhere in the case for your preferred theory: that the 

appeal of discrete spacetime can be articulated in a way that does not, at some point, invoke 

parsimony-like considerations; that gunky theories are not being motivated by the thought 

that points seem otiose once we have the regions; and that continuous theories have some 

reason for supposing there are only continuum-many points in space, or time, or spacetime, 

rather than vastly many more. I think this third task will be the hardest: it is hard to see how 

we could get direct empirical evidence for their being exactly continuum many (ℶ1) points 

rather than, say ℶ2, in a meter of space or a second of time; and it would strain even the 

ingenuity of philosophers to come up with an a priori proof that space and time were one way

rather than the other.

On the other hand, if you are inclined to trust that the more parsimonious options are 

preferable ones in each of these cases, that should lead you to have more sympathy for 

parsimony principles in general. In particular, given that the cases for discrete spacetime, 

ordinary gunky spacetime, and ordinary continuous spacetime all seem to be a matter of 

quantitative parsimony, you should likely be sympathetic to quantitative parsimony playing a

role in at least some cases. Considering those options against their alternatives does not just 

give us insight into what reasons are at work here, but gives us methodological lesson to be 

applied more broadly.

The main focus on this paper has been to argue that whether a theorist inclines to discrete 

spacetime, gunky spacetime or continuous spacetime, parsimony seems to be helpful, or even

needed, to justify their theory over some less appealing rivals. But there is a challenge lurking

here for those who would impose more structure on spacetime than discrete theorists. Once 

you accept that parsimony is a legitimate consideration, and a powerful enough 

methodological principle to rule out some rivals, the question arises why your preferred view 

is better than its more parsimonious rivals: and indeed why its other features make it 

sufficiently better to overcome your parsimony disadvantage. No doubt those who adopt 
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gunky or continuous frameworks already think their frameworks superior to discrete ones. 

But explaining why the virtues of their preferred views outweigh the ontological costs is 

something those theorists have rarely done explicitly to date, so I will end my discussion by 

urging them to do so.16 
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