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The Display Problem Revisited 

Tyke Nunez' 

Abstract 

In this essay I give a complete join semi-lattice of possible 
display-equivalence schemes for display logic, using the stan­
dard connectives, and leaving fixed only the schemes governing 
the star. In addition to proving the completeness of this list, I 
offer a discussion of the basic properties of these schemes. 

1 Introduction 

In this e"ay I will build on the work begun in (Belnap, 1996). In his 
essay Belnap presented various options for how to set up the display 
equivalences of display logic, a refinement of Gentzen's sequent calcu­
lus.' Belnap describes most ofthe schemes I will deal v.ith, although 
I will complete the list he presents, using his connectives, and leaving 
fixed only the schemes governing the star, as he does2 

Even so, I hope that having a complete lattice of display equiv­
alence schemes will allow a more systematic understanding of the 
properties these give to the structural-connectives, whose meaning 
seems not to be well understood. These properties will be similar to 
the properties introduced by structural rules, the other kind of rule 

"'Thanks to audiences at Logica 2010 and the University of Pittsburgh, espe­
cially Nuel Belnap, Shawn Standefer, Kohei Kishida and Kathryn Lindeman, for 
comments on the presentation associated with this essay as well as this essay itself. 

1 (Gentzen, 1969). Regrettably, 1 am unaware of an 'easy introduction' to dis­
play logic. Belnap's original paper (Belnap, 1982), and its subsequent slightly 
updated version in §62 of (Anderson, Jr, & Dunn, 1992) are, I think, the best 
places to start. 

2Where it isn't a detriment to clarity I will take up Belnap's names for the 
schemes and skip over points he has already made. 
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in display logic governing the structural-connectives. The chief dif­
ference between these rules and the equivalence schemes is that the 
latter must secure the display property, which is, roughly, that any 
structure can be 'displayed' alone as either the entire antecedent or 
consequent of a consecution display equivalent to the original one.3 

This property, the defining feature of display logic, sets a restriction 
on the possible schemes of display logic; securing this property is what 
Belnap dubs 'the display problem'. 

2 Structural-connectives & star scheme 

Display logic replaces Gentzen's polyvalent comma with a bivalent cir­
cle, X 0 Y. Like the comma, the 0 means "something like" conjunction 
on the left and "something like" disjunction on the right of the turn­
stile. Display logic also has a single place star connective, * X, that 
allows one to flip structures from one side of the turnstile to the other 
and back again. Its meaning is often thought of as 'something like' 
negation. Although display logic has other structural connectives, this 
essay will focus on these two. 

Strictly speaking, the generic un-indexed structural-connectives 
(like the un-indexed formula,.connectives), are functions that map each 
family index (S4, r, e, h, b, etc.) into a specific structural connective 
of the family associated with that index. For the most part, however, 
I will suppress these indices and give generic un-indexed formulations 
of schemes of display equivalences. I hope the reader will not lose 
sight of them entirely, however, because much of the motivation for 
canvassing the possible schemes and their properties lies in the greater 
control this will afford logicians working in display logic over the basic 
properties they build into the connectives of their langnages. 

Every scheme I will deal with treats negative structuring~ *, when 
it appears alone, in the same way. Star in each scheme has full con­
traposition and double star elimination. Consecutions on the same 

3 A more precise formulation of this property is that "each antecedent part X of 
a consecution S can be displayed as the antecedent (itself) of a display equivalent 
consecution X f- W; and the consequent W is determined only by the position of 
X in S, not by what X looks like. Similarly for consequent parts of S." (Anderson 
et aI., 1992, p. 301) 
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line below are display equivalent (Le. interderivable): 

Xf-Y 

X f-*Y 

*X f-Y 
... X ... 

* Y f- *X 

Y f- *X 

*Yf-X 

. .. **X ... 

Xf-**Y 
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**Xf-Y 

The last line is intended to convey general intersubstitutability, which 
follows from the first line only, in the presence of the other schemes 
granting the display property. We can think of the scheme as a set 
of display equivalence classes. Since schemes are sets of classes, in 
order to make things easier on the eye I will use square brackets to 
mark equivalence classes and reserve curly brackets for other sets. For 
example, leaving out the last line, the scheme in the above table is: 

{[XI-Y, *Yf-*X, Xf-**Y, **Xf-y], 

[X f- * Y, Y f- * XJ,[* X f- Y, * Y f- Xl}4 

Consecutions of the form of one member of a class are interderivable 
with corresponding consecutions of the form of the other members of 
the class. 

Although there is nothing essential about this treatment of nega,. 
tive structuring, having a connective that allows structure to be moved 
from one side of the turn-style to the other is of obvious use in se­
curing the display property. In part this is because in every scheme 
(as well as every structural rule) antecedent [consequent] structures 
remain antecedent [consequent] parts, which gnarantees that the same 
structure cannot be displayed both on the left and on the right. 

3 The display problem 

Because structural variables are schematic, restricting the components 
of the display equivalence classes only to antecedent parts does not 
result in a loss of generality, although it does prevent redundantly 

4In what follows I will present the equivalence classes in set notation, but in 
order to make this notation more legible I will adopt Belnap's graphic method 
of presentation, in which consecutions on the same line axe members of the same 
equivalence class. Although at the moment this may sound awbvard, when it 
comes up below I think it will feel naturaL 
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treating the same scheme in two different fonns. To see this consider 
a consecutioll, X 0 Y ~ * Z, composed entirely of antecedent parts and 
another version of the same consecution with consequent parts, e.g. 
_ X 0 Y I- _ Z. It is obvious that because each variable ranges over 
both X and _ X, treating both consecutions in our schemes would 
lead to redundancy. As such, for simplicity and readability in the rest 
of the essay I will use only antecedent parts.5 

What will differ between the schemes is how the star interacts with 
the binary circle. Since the largest arity connective in the formulation 
of display logic we are dealing with is binary, the schemes will at most 
contain three structural variables. Now given that I have proposed 
to deal only with star and circle and that the schemes for star alone, 
which involve only two variables, are presented above, what is left are 
the schemes involving three variables. 

Formulating the consecutions only with antecedent parts, there 
are twelve that will be involved in the rest of our schemas. These are 
grouped by which variable is displayed:6 

Z(XY) group: 

(1) ZI-_Xo*Y 
(2) Z I- * Yo_ X 
(3) Z I- *(X ° Y) 
(4) Z I- *(Y ° X) 

X(YZ) group: 

(5) X I- * Yo_ Z 
(6)XI-*Zo*Y 
(7) X I- *(Y ° Z) 
(8) X I- *(Z ° Y) 

We can think of these groups as sets. 

Y(ZX) group: 

(9) Y I- * Z 0 _ X 
(10) Y I- _ X 0 _ Z 

(11) Y I- _(Z ° X) 
(12) Y I- _(X ° Z) 

With the exhaustion of the relevant consecutions in this list, the 
display problem becomes specified: each of the display equivalence 
classes in a scheme must have at least one member of each of the 
three groups. 

An important related corollary of this condition that Belnap 
doesn't explicitly mention is that every complete scheme of display 
equivalences must include all twelve consecutions, although portions 
of the schemes can be largely independent of one another. This follows 

5Belnap's reasons for treating only antecedent parts are different. (Belnap, 
1996, p. 85) 

6r have altered Belnap's numbering slightly because a more systematic number­
ing makes the relations between the schemes easier to notice. Belnap dubs these 
groups the Z(XY), X(YZ), Y(ZX) 'families' (not to be confused with language 
families). To avoid the ambiguity, I'll instead use 'group'. 
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from the fact that if one of the twelve did not belong to an equivalence 
class, the display property would fail. 

A re-lettering of a set of consecutions is obtained by exchanging 
every instance of a variable or variables with the same variable. Re­
lettering will be an oft used strategy for figuring out how the schemes 
work and why the semi-lattice of schemes I am about to present is 
complete within the bounds set, so having a precise idea of it is im­
portant. Let a, (3 E {X, Y, Z} and a i' (3. Then an aj (3 re-lettering 
of a set of consecutions will involve exchanging all of the instances of 
a with instances of (3 and all instances of (3 with instances of a. 

For example, the Z(XY) group is an XjZ re-lettering of the 
X(YZ) group. We can see this because exchanging X with Z in 
(1) yields (6), in (2) yields (5), in (3) yields (8), and in (4) yields (7). 
Similarly the Z(XY) group is an YjZ re-Iettering of the Y(ZX) group 
and the X(YZ) group is an XjY re-lettering of the Y(ZX) group. 
When letters are not specified, any of the possible re-letterings will do. 

Not including one of the consecutions in any display equivalence 
class would mean not including any of its re-Ietterings in an equiva­
lence class. I explain this in detail in §6. 

4 The schemes 

In this section I will present all of the possible schemes. In the next I 
will discuss their properties. In §6 I will argue that this list is complete 
and that it forms a join semi-lattice. As above, all consecutions on 
the same line are in the same equivalence class. 

There are three basic types of schemes. The first (the GA, A, 
AI, B, C" and Cb SChemes) have three or six consecutions in each 
equivalence class. The second (the P, pi, Q and QI schemes) have 
four consecutions in each class. And the third type (which includes 
only the easy scheme) has all twelve consecutions in the same class. 

All of the schemes of the first type are built out of the equivalence 
classes of the GA Scheme = { GAl., GAlb, GA2., GA2b} 

GAl. = [(3) Z I- *(X ° Y), (7) X I- *(Y ° Z), 

GAlb = [(2) ZI-*Yo*X, (6) XI-*Zo*Y, 

GA2• = [(4) Z I- *(YoX), (8) X I- *(Z ° Y), 

GA2b = [(1) Z I- * X 0 * Y, (5) X I- * Yo * Z, 

(11) Y I- *(Z oX)] 

(10) Y I- *X ° *Z] 

(12) Y I- *(X ° Z)] 

(9)YhZo*X] 
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The equivalence classes of the G A scheme are the bases for three 
six-six schemes: 

A scheme ={AI,A2} 

Al =[ GAIa U GAlb] 

A2 =[ GA2a U GA2b] 

AI scheme ={ Ai, A;} 

Ai =[GAlau GA2b] 

A; =[GAlb U GA2a] 

B scheme ={ Ba, Bb} 

Ba =[GAla U GA2a] 

Bb =[GAlb U GA2b] 

Two six-three-three schemes based on the equivalence classes of 
the Band G A schemes are also possible: 

Co, scheme ={ Ba, GAlb , GA2b} Cb scheme ={ B b, GAIa, GA2a } 

There are only four schemes of the second type: 

P scheme = {PI, P2 , P3 } 

PI = [(3), (5), (6), (12)] 

P2 = [(4), (7), (9), (10)] 

P3 = [(1), (2), (8), (11)] 

Q scheme = {QI, Q2, Q3} 

QI = [(2), (7), (8), (9)] 

Q2 = [(1), (6), (11), (12)] 
Q3 = [(3), (4), (5), (10)] 

pi scheme = {pi, P~, Pf} 

Pi = [(4), (5), (6), (11)] 

P~ = [(3), (8), (9), (10)] 

pi = [(1), (2), (7), (12)] 

QI scheme = { Qi, Q;, Q~ } 

Qi = [(1), (7), (8), (10)] 

Q; = [(2), (5), (11), (12)] 

Q~ = [(3), (4), (6), (9)] 

The final scheme is just the easy scheme. It has one equivalence class 
that contains (1)-(12) so: 

easy scheme ={[(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12)]} 

5 Properties of the schemes 

Wlille I doubt all these schemes will be equally useful, I will prescind 
from passing judgment here on whether a scheme will likely find a use 
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or not. Rather, my aim will be to point out what seem to be their 
interesting properties, which will help in iny argument that the list of 
schemes is complete. 

A basic feature that shapes the properties of the schemes of the 
twelve component consecutions is that they divide into those with an 
antecedent circle, and those with a consequerit circle. If the circle 
occurs within an even [odd] number of stared parentheses on the left, 
then it is an antecedent [consequent] circle because when it is. not 
contained within a star it will be on the left [right] side of the turn­
style. As Belnap points out, the circle in the antecedent and circle 
in the consequent are independently specifiable connectives.7 With 
the techuique of re-lettering, we can explain this by noting that when 
we re-letter consecutions, an antecedent circle never becomes a con­
sequent circle and vice versa. 

We can cut back the number of schemes which deserve attention by 
pointing out that all of the prime schemes are only notational variants 
on the schemes of which they are the primes. We can easily define 
a circle governed by a primed scheme with a circle governed by the 
corresponding unprirned scheme, or vice versa. As Belnap points out 
in relation to the A and A' scheme, "one could obtain the A' scheme 
by starting out with the A scheme and defining a new operation 0

1 

in consequent position by X Of Y =df Y 0 X" 8 The QI scheme is 
derivable from the Q scheme in exactly the same way. And the pi 
scheme is derivable from the P scheme by defiuing a new operation Of 

in antecedent position by X 0
1 Y = Y 0 X. 

This means that the basic distinction between the four-four-four 
schemes is whether the circle commutes in the antecedent (Q schemes) 
or consequent (P schemes)'" These are also two important properties 
for the G A based schemes and seem to be two of the most potentially 
interesting properties the schemes can have. Neither of the A schemes 
have either property, nor does the GA scheme. But the Co, scheme 
commutes in the antecedent, while the C b scheme commutes in the 
consequent, and the B scheme is the only scheme besides the easy 

7 (Belnap, 1996, p. 89) 
8(Belnap, 1996, p. 90) 
9The further distinction between the scheme and its prime describes how the 0 

interacts with negation. The Q scheme (P scheme) is distinguished from its prime 
by whether a structure being moved from the left to the right (right to left) side of 
the turn-style goes on the inside or outside of the previously displayed structure. 
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scheme that commutes in both. 

Although the A schemes lack commutativity, if we wanted to press 
the truth-functional analogy, the equivalence classes of the A scheme 
allow something like a structural De Morgan's rule. That is, they 
postulate that a negated circle in the consequent disjoining two struc­
tures is equivalent to a circle in the antecedent conjoining those same 
structures negated. 

The G A scheme has the fewest properties built into it: it neither 
commutes in the antecedent nor consequent, nor does it have the 
De Morgan-like property. As such, it allows the most control over 
the properties of the languages built using it. Nonetheless, the GA 
scheme and all of the schemes built out of its classes, share a common 
form or technique by which they can be constructed, that the P and Q 
schemes lack. Accordingly, there may be languages that can be built 
out of the latter schemes that cannot be built from the G A scheme. 

The form or technique I have in mind is that each of the three 
members of any of the GA classes can be arrived at by taking one of 
the members, replacing X with Y, Y with Z, and Z with X twice, 
in order to get each of the other two members. (You can of course 
also go the other direction: replacing Y with X, Z with Y, and X 
with Z.) It is noteworthy that this technique of generating classes 
keeps the classes defining circle in the antecedent distinct from those 
defining circle in the consequent. 

Similarly, all of the classes of P and Q schemes also share an under­
lying form or technique for construction. First, take any consecution 
and Oi/ /3 re-Ietter it, for some Oi, /3. This will be the second member 
of the class. For the third member pick a consecution displaying a 
variable not displayed by either of the other two, which involves the 
kind of circle that the other two do not (since all of these schemes 
inter-define the antecedent and consequent circle). To get the fourth 
and final member of the class, for the same Oi and /3, Oi/ /3 re-Ietter it. 
Once you have one class, the way to arrive a.t the other three classes 
in the scheme is by re-lettering this class twice (this will be explained 
further below). 

The easy scheme has commutativity in the antecedent and con­
sequent, and the De Morgan like property. Because of this, it is the 
scheme in which circle most closely approximates disjunction in the 
antecedent and conjunction in the consequent. 
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6 The completeness of the list 

Although this is easy to verify through brute combinatorics, given 
that we only have twelve consecutions, in this section I will explain 
why this list exhausts the possible schemes using circle and star, while 
keeping the star scheme fixed. Before plunging i';, it will help to note 
that because the letters are schematic we can actually express each of 
the schemes more simply because many of their equivalence classes are 
actually identical. We can see, for example, that the three equivalence 
classes of the P scheme are identical through re-Iettering. An X/Y 
re-Iettering of P, yields P2 , and vice versa. An X/Z re-Iettering of 
P, yields P3 , and vice versa. A Y/Z re-Iettering of P2 yields P3 , and 
vice versa. A similar procedure can be followed with the rest of the P 
and Q schemes to show their classes are identical, and with the G A 
scheme to show GA'a is identical with GA2a and GA'b is identical 
"'ith GA2b· As a result many of the schemes can be expressed more 
simply, if not more perspicuously as follows: 

GA scheme = { GA'a, GA,b} 

P scheme = {P, } 

(And Similarly for the prime schemes.) 

A scheme = {A , } 

Q scheme = {Q, } 

This fact is relevant here because it points to how inflexible the 
schemes are. If we switched some of the consecutions in one equiv­
alence class with those of another in their scheme, then we would 
have to make corresponding s'\Ol-itches in the other equivalence classes. 
Otherwise, by re-lettering the altered equivalence classes we would 
get an equivalence class that is for the most part identical with the 
corresponding unaltered one, except for the consecution that is the 
re-Iettered newly introduced one. This consecution will belong to the 
other unaltered equivalence class, and so any consecution in either of 
the two unaltered equivalence classes will be inter-derivable from one 
another via the re-Iettered altered equivalence class. 

For example, suppose we switched (3) and (6) in the equivalence 
classes of the G A scheme to get the equivalence classes G A ta =df 

[(6), (7), (11)] and GAtb =df [(2), (3), (10)]. Now the X/Z re-Iettering 
of GAta has members of both GA2a and GA2b . Accordingly, using 
this re-Iettering and these two classes, we can derive any member of 
GA2a from a member of GA2b and vice-versa. Thus, on the hypothesis 
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GA2a and GA2b collapse into A2 • Then, using a re-lettering of A2 , we 
can derive any member of GAia from GAib and vice-versa, so these 
collapse together into A! and we have the A scheme. 

In general, the principle that this gives us is that the re-letterings 
of an equivalence class must be identical to another class (maybe 
themselves) already in the scheme. Otherwise, the scheme is unstable 
and we can use the re-lettered equivalence classes to collapse other 
equivalence classes together. With this principle what remains to be 
shown, in order to show the completeness of the list, is that these 
schemes are the only stable ones. 

For this, it will help to have another principle governing the classes: 
if two members of a class are some kind of CY./ (3 re-lettering of one an­
other, then there must be at least two other members of the class that 
are that same kind of re-lettering of one another. The schemes of the 
second type (P, Q, etc.) exhibit this rule, but now it can be shown 
as a corollary of the above principle. Take two consecutions that are 
some CY./ (3 re-lettering of one another. To these, at least one conse­
cution displaying a not yet displayed variable must be added for the 
class to secure the display property. Now if we CY./ (3 re-letter all three 
members, the re-lettered first will be identical to the non-re-lettered 
second, and vice-versa, but the Ie-lettered third will be a Ilew COH::ie­

cution that is an CY./ (3 re-lettering of the original third. But since the 
a / (3 re-lettering and the original proposed class share members, they 
collapse together by the above, and the principle is shown. For exam­
ple, since (4) is a Y/Z re-lettering of (ll) let GAta =df [(4), (8), (ll)l· 
Its Y/Z re-lettering will be: (4), (7), (ll). Since (4) is shared, the 
two classes collapse together, and the original class must include (7) 
as well. 

To see that the schemes canvassed are the only stable ones first 
note that no other schemes can be built from the classes of the GA, 
P, and Q schemes. Since there is only really one equivalence class in 
the A, P, and Q schemes adding an additional class to any of these 
would cause them to collapse into the easy scheme. Otherwise we have 
built all of the schemes it is possible to build from the G A scheme 
alone. This is because there are oniy really two distinct classes in that 
scheme, and the oniy scheme with more than one class that resuits 
from taking their unions is the B scheme, the classes of which are 
then used to build the C schemes. 

Now the G A scheme and the schemes of the second type (P, Q, 
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etc.) are minimal solutions!D to the display problem in that there is 
no further refinements of either of them that also solve it. If there 
were other stable schemes then either they would have to be minimal 
solutions to the display problem, or be built by joining the classes of 
some other minimal solution to the display problem. So in order to 
show that the list of schemes presented is complete, it suffices to show 
there are no more minimal solutions to the display problem. 

Since the circle in the antecedent or consequent can be defined 
independently, there will be those minimal schemes that define them 
separately (the GA scheme) and those that don't (the second type 
schemes). If a proposed new minimal solution defined them separately, 
then it would have to have at least two non-identical classes, deal­
ing with the six consecutions governing each circle separately. These 
classes could either be composed of six or three members, because if 
they were composed of four or five they would be obviously unstable. 
If they were composed of all six consecutions, then they would not 
be minimal because they could be divided into the classes of the G A 
scheme. If they were composed of three member classes, however, 
then they must be those of the G A scheme because otherwise two of 
the members would be a/ (3 re-letterings of one another, for some a 
and some (3, which would entail that a fourth member belonged to 
the class by the above corollary, but this would cause collapse. 

If the proposed minimal solution defined the two circles together, 
then it would have to include consecutions governing each circle in at 
least one of its classes. This class, like any, must solve the display 
problem, and so must have at least one member displaying each of 
the three variables. Either the third member of the class will be an 
CY. / (3 re-lettering of one of the other members or it will not be. If it 
is, then by the above corollary there will be a fourth member of the 
class which is an a/ (3 re-lettering of the third, for the same a and 
(3. Now since the class defines the antecedent and consequent circles 
Simultaneously, it is obvious from this and the technique I gave for 
generating the schemes of the second type, that the possible classes 
which could ground those schemes are the same as the ones that satisfy 
this description, and all of the schemes that could be generated out 
of these have already been discussed. 

If, however, the third member of the class is not an a / (3 re-lettering 

lOBorrowing the term from (Belnap, 1996, pp. 89-90). 
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of one of the other members, it at least must be the same kind of circle 
(antecedent or consequent) as one of the other members. Since it is 
not an a / f3 re-Iettering of this consecution, however, of the other five 
consecutions with this same kind of circle there are only two consecu­
tions it could be, and it will be in the same class of the G A scheme 
as this consecution. If we now re-Ietter this class in all three ways, 
in each re-Iettering we wiil have two out of the three consecutions in 
the other GA class governing the type of circle that two of the three 
members of the original class share, but which they are not themselves 
in. That this would be so should be clear from the fact that no mat­
ter how one re-letters a member of the GA classes, one always gets a 
member of the other G A class governing the same circle. From this 
fact it also follows that the three re-Ietterings of the third member 
of the class will all be different members of the same GA class. Now 
since these three classes all share members, they will collapse together 
and the resulting class will be the union of the two classes of the G A 
scheme that the first three consecutions do not belong to (which will 
be one of the A or A' scheme classes). 

An example will help. Suppose the class we start from is: 

GA;b=dd(l) ZI-*Xo*Y, (5) XI-*Yo*Z, (11) Yh(XoZ)] 

X/Y, Y/Z, and Z/X Re-Iettering this we get: 

GA~fY =dd(2) Z h Y 0 *X, (7) X I- *(Y 0 Z), (10) Y I- *X 0 *Z] 

GA~rz =dd(4) ZI-*(YoX), (6) XI-*Zo*Y, (10) YI-*Xo*Z] 

GA~tX =df [(2) Z I- * Yo *X, (6) X I- *Z 0 * Y, (12) Y I- *(X 0 Z)] 

Now since GA~fY & GA~rz share (10), and GA~rz & GA~tX share 
(6) the three classes will collapse together, yielding A;. 

Since the two classes of the A' (or A) scheme are identical by re­
lettering, this, or the A scheme, is the scheme we are committed to, 
given that in our original class both circles are present and the third 
member was not an a/ f3 re-Iettering of one of the other members. But 
the A and A' schemes are not minhnal solutions to the display prob­
lem, so there is no other minimal solution besides the ones canvassed. 
Thus, the list of schemes given is complete. 

Accordingly, this list forms a join semi-lattice on the twelve con­
secutions: 
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Easy Scheme 

A and A' B 

\iJ. 
GA P and P' Q and Q' 

7 Conclusion 

These properties of the behavior of the structural-connectives given 
the different schemes are, however, rather superficial. Since the lan­
guages formulable in display logic are individuated by the differences 
between the structural rules and display equivalences governing them, 
the deeper properties of the schemes (as well as the structural rules) 
are the ones they give the languages built using them. But so far I 
don't think anyone has a clear grasp on how each of the individual 
structural rules or schemes of equivalences effects the language fami­
lies they are a part of or the extent to which the specific properties of 
the families can be traced back to individual rules. Although this pa­
per has not tackled this difficult question, I hope that by providing a 
complete semi-lattice of display equivalence schemes for the standard 
connectives our understanding of the variety of structural resources 
within display logic for formulating interesting languages has been 
slightly improved. 
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Logic as Based on Incompatibility 

Jaroslav Peregrin* 

Abstract 

The aim of the paper is to tackle two related questions: Is 
it possible to reduce the foundations of logic to the mere concept 
of incompatibility? and Does this reduction lead us to a specific 
logical system? We conclude that the answers, respectively, 
are YES and a qualified NO (qualified in the sense that basing 
semantics on incompatibility does make some logical systems 
more natural than others, but without ruling out the alterna­
tives.) 

Can inference serve as a foundation of logic? 

Can we base the whole of logic solely on the concept of incompati­
bility? My motivation for asking this is two-fold: firstly, a technical 
interest in what a minimal foundations of logic might be; and sec­
ondly, the existence of philosophers who have taken incompatibility 
as the ultimate key to human reason (viz., e.g., Hegel's concept of 
determinate negation). The main aim of this contribution is to tackle 
two related questions: Is it possible to reduce the foundations of logic 
to the mere concept of incompatibility? and DOCB this reduction lead 
us to a specific logical system? We conclude that the answers, respec­
tively, are YES and a qualified NO (qualified in the sense that basing 
semantics on incompatibility does make some logical systems more 
natural than others, but without ruling out the alternatives. 

A search for the bare bones of logic generally leads one to the rela­
tion of inference (or consequence). This way is explored meticulously 
by Koslow (1992). He defines an implication structure as, in effect, 
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