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Revisiting the two predominant statistical problems: the

stopping-rule problem and the catch-all hypothesis problem

Yusaku Ohkubo∗,∗∗,∗∗∗

Abstract

The history of statistics is filled with many controversies, in which the prime

focus has been the difference in the “interpretation of probability” between Fre-

quentist and Bayesian theories. Many philosophical arguments have been elabo-

rated to examine the problems of both theories based on this dichotomized view

of statistics, including the well-known stopping-rule problem and the catch-all hy-

pothesis problem. However, there are also several “hybrid” approaches in theory,

practice, and philosophical analysis. This poses many fundamental questions. This

paper reviews three cases and argues that the interpretation problem of probabil-

ity is insufficient to begin a philosophical analysis of the current issues in the field

of statistics. A novel viewpoint is proposed to examine the relationship between

the stopping-rule problem and the catch-all hypothesis problem.
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1. Introduction

Statistics has been an indispensable tool for scientific inquiry. It is also a field

characterized by intense controversy among researchers and philosophers. In the his-

tory of statistics and the philosophy of statistics, the focus of the most intense conflict

has been two schools of statistical thought1: Frequentist (or error statistician) and

Bayesian.

The Frequentist-Bayesian conflict has taken place at three different levels:
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methodology, epistemological justification, and interpretations of results. For a his-

torical example, Neyman and Pearson refused to set prior probability (methodological

level), assumed an expected property under a “true” distribution to show validities of

a statistical method (epistemological justification level) and took results as optimal

decision rules (interpretation level). In contrast, Savage applied Bayes’ theorem with

prior probability, based on an axiom of the rational agent, and took results as a “de-

gree of belief” of this rational person (see later sections for details). These positions

have been the influential bases of many philosophical works and textbooks.

Currently, however, as discussed later, many “hybrid” approaches have been

proposed at different levels; some “Bayesian” statisticians reject subjective interpre-

tation and adopt Frequentist properties to justify their procedures. Additionally,

some “Frequentists” reject that the results of their method should be interpreted in

the sense of long-run properties. Dichotomizing statistical theories based on Frequen-

tist/Bayesian methods might be inappropriate for analyzing the current practice of

statistics because these “hybrid” approaches complicate the relationships between the

three different levels. In this paper, I examine the relationship between two schools

of statistics—Frequentist and Bayesian—and propose a novel point of view to clarify

the connection between the two schools of statistical thought. I then argue that the

two well-known problems among philosophers of statistics—the stopping-rule prob-

lem and the catch-all hypothesis problem—are merely different sides of the same coin

when approached from the proposed perspective.

The rest of the article is organized as follows. In sections 2 and 3, the stopping-

rule problem of Frequentist theory and the catch-all hypothesis problem of Bayesian

theory are reviewed, respectively. Then, it is argued that both problems pose serious

difficulties in the practice of science and that they have still not been solved. In

section 4, a revision is discussed of the dichotomized account of Frequentist/Bayesian

methods that is needed to overcome them and consider the status of a recent “hy-

brid” statistical approach as a natural candidate to do so. In section 5, it is argued

that this alternative is not the solution and in showing why not, a novel perspective

of statistics is proposed through which the two problems are mirror image of the

same problem. Finally, in section 6, the article is concluded, and the implications for

practice are discussed. Even though a complete solution to the stopping-rule problem

and the catch-all hypothesis problem is not presented, a possible direction for future

work is examined.

2. The Frequentist and the stopping-rule problem

Frequentist statistics have been the predominant approach to data analysis

among scientists. Its scope includes point estimation, interval estimation, hypoth-

esis testing, model selection, model averaging, and so on. These procedures are, as

— 24 —



Revisiting the two predominant statistical problems: the stopping-rule problem and the catch-all hypothesis problem 25

its name suggests, justified on the frequency properties of a method; that is, a per-

formance of the method when it is repeatedly applied to a data. Take the maximum

likelihood estimator (MLE), for example.

Suppose we have a collected data x. Frequentist methods are based on the as-

sumption that there exists an unobservable probability distribution of X, called the

“true distribution”, and that x is a random sample from it2. Then, MLE is defined

as

θMLE = argmaxL(x;θ),

where L( ) is the likelihood function of the parameter θ ∈ Θ given the model. In

other words, MLE is the value at which the likelihood of the given model is maxi-

mized. Under some conditions (Wald 1949; Huber 1967), MLE is known to satisfy

the following asymptotic property:

√
n(θTrue − θMLE ) ∼ Normal(0, I−1),

where θTrue is the unknown true value, which we want to estimate by a finite sam-

ple at hand, Normal(μ,Σ−1) is the normal distribution with mean vector μ and

variance-covariance matrix Σ, and I is a metric called Fisher Information. Thus,

Ex∼X [θTrue − θMLE ] = 0,

where Ex∼X [ ] is the expectation over x. Note that each x is a finite random sample

from a (typically unknown) probability distribution. The above property shows that

even though the MLE could produce a “wrong” estimation of the true value because

the MLE is a random variable, it is still a “good” guess of the true value because the

relative frequency of the MLEs, which correctly specifies the true value, is highest

among other MLEs when we repeat the process of data sampling and estimation. It

is why the MLE has a Frequentist justification3. Even though there exist many other

Frequentist methods and each of them requires elaborating mathematical analyses,

their main argument is similar to this strategy (take Akaike Information Criterion

for example; Sec. 4.2 below).

This strategy is the ground of a typical claim that the Frequentist inference

merely offers a “behavioristic rule” or is based on a “long-run performance”. Now,

we see in what sense Frequentist inferences have been seen as “behavioristic” or a

“long-run” performance, although this interpretation is reconsidered later. Suppose

a 95% confidence interval (CI), which is a Frequentist method of interval estimation

of a parameter θ. Typically, it takes the form

2 This metaphysical commitment would be another point where Frequentist and
Bayesian theories does not agree, although this is beyond the scope of this article.

3 Note that MLE would have other justifications. See section 5 below.
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θMLE − 1.96 ∗ SE < θ < θMLE + 1.96 ∗ SE,

where SE is the standard error of the estimator. A commonly held “correct” inter-

pretation of a CI, regardless of whether one is Frequentist or Bayesian, is that, if

we repeat the process of obtaining the data of size n, estimating the unknown pa-

rameter, and calculating the 100 − alpha% CI, then the proportion of the interval,

which covers the true value will be 100 − alpha (as long as the specified model is well

designed). A particular interval of a CI encountered in scientific works is a realization

of this stochastic event. Thus, the following typical statement is a “misinterpreta-

tion”: “The specific 95% confidence interval presented by a study has a 95% chance

of containing the true effect size” (Greenland et al. 2016; p.343), although many

practitioners commit this fallacy (as found in an empirical study about psychologists

conducted by Hoekstra et al. 2014). This claim comes from the fact that, for strict

Frequentist, “it no longer does, once we insert numerical values for the endpoints.

Then, no probability (except 0 or 1) can be attached to the event that the interval

contains the parameter: either it does or it doesn’t (Pratt 1961; p.165)” because, for

Frequentists, a probability is defined only as a relative frequency of an event. This is

in contrast to the Bayesian confident interval.

The above argument also applies to hypothesis testing problems. Suppose a re-

searcher conducts experiments to examine the treatment effect of a newly developed

drug. She randomly assigned n people into two groups where she prescribed the new

drug for the treatment group and a placebo for the control group. Using the obtained

data, she needs to decide which hypothesis

H0 : θ = 0, H1 : θ �= 0,

should be accepted where θ, the true effect of the new drug. She conducts hypoth-

esis testing to decide whether a null hypothesis should be rejected or accepted. In

the Frequentist hypothesis testing framework, originally established by Neyman and

Pearson (1928 a, b)4, we can control error probabilities of this testing when this pro-

cedure is applied to repeatedly collected data, but we cannot talk about how strongly

each particular hypothesis is rejected or accepted.

Frequentist methods, however, have been criticized by Bayesian proponents. The

stopping-rule problem is one of the major arguments against Frequentist statistics in

this hypothesis testing situation (Lindley 1957, Edwards et al. 1963, Berger and

Wolpert 1988, Royall 1997, Sober 2008). Suppose, again, a hypothesis testing sce-

nario of a developed drug. For example, when the experimenter finished collecting

4 Fisher developed another Frequentist framework called “significance testing”. The
stopping-rule problem matters for both hypothesis testing and significance testing as
long as these methods violate the Likelihood Principle (see below for more about this
principle).
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100 samples for each group and submitted the whole dataset to a statistician, it was

still not possible to calculate the correct error probability and decide whether the null

hypothesis should be rejected as long as the statistician did not know the stopping

rule of this experiment, that is, whether she had determined the sample size to be

100 before the experiment and conducted the experiment accordingly or whether she

changed the plan for some reason (e.g., she continued experimenting and obtained

more data when the first results did not support her desired hypothesis). Frequen-

tists have argued that the results of testing should be adjusted if she decided when

the experiment is to be stopped, because the nominal error probability would not be

satisfied in this case. If she had this option, the experiment is considered an “op-

tional stopping” case, for which Frequentists argue that the significance level/error

probability must be adjusted to account for the optional stopping.

One problem of this adjustment is that a stopping rule is just an intention in the

experimenter’s mind (Berger and Wolpert 1988). Although some theoretical studies

have formulated adjustment rules for optional stopping (e.g., Armitage 1958), they

might not work well as long as it is not possible to access the exact predetermined

plan, which is not always feasible. Although some scientific journals are introducing

preregistration systems and it would be helpful to enhance the transparency of data

collection protocols, this type of system may not be suitable for some fields of research

(e.g., medical doctors of a rare disease may find it difficult to predict the number of

available subjects at the time they started a new research project). Worse, the pre-

registration approach cannot prevent unethical scientists from hiding the existence of

the actual data at hand, which is used to dredge hypotheses and deceive editors as

if the “predetermined” plan is still not carried out5. Establishing a formal statistical

framework that is indifferent to the stopping rules may provide practical benefits.

Bayesians have argued that Bayesian statistics offer such a framework. Accord-

ing to them, the source of these problems is the fact that the Frequentist procedure

violates the Likelihood Principle (LP). The LP is a normative statement that “[t]he

information brought by an observation x about θ is entirely contained in the like-

lihood function L(θ|x). Moreover, if x1 and x2 are two observations depending on

the same parameter θ, such that there exists a constant c satisfying L1(θ|x1) = c

L2(θ|x2) for every θ, they then bring the same information about θ and must lead to

identical inferences” (Robert 2007, p. 16; notations modified to the subscript).

This principle has played a central role in the history of Bayesian statistics since

it was first formulated by Birnbaum (1962) and generalized by Berger and Wolpert

(1984). According to the LP, any statistical inferences should depend only on what

has happened. Adjusting based on a stopping rule, however, means that adequate

5 One might argue that this is a kind of data fabrication and that any statistical account
cannot prevent this case. This is partly true, but cheating a data collected date is
easier than misrepresentations of the dataset itself, and harder to detect.
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inferences are determined by the experimental design and its sample space. In other

words, Frequentist inferences are based not only on what happened but also on what

could have happened. Berger and Wolpert (1984) discussed the virtue of the LP

and concluded that the Frequentist’s dependency on the stopping rule seems “very

strange” because they are unable to analyze data even when they already have the

data at hand.

This poses another related problem in the practice of science: the need to consider

that stopping rules hinder the flexibility and simplicity of data analysis (Edwards,

Lindman and Savage 1963). Rouder, an empirical phycologist, argues that:

there is a sense in which optional stopping seems like a smart thing to do. We

seemingly should monitor our results as they come in, and we should end early

when the results are clear and perhaps keep going when they are not. (Rouder

2014, p.301)

In any case, dynamic increases in empirical data are a fundamental nature of

scientific inquiry because “[i]n practice, of course, we typically receive data in succes-

sive stages” (Bernardo et al. 1994; p.47). Bayesians have argued that incorporating

a formal account of “update-by-data” into statistics is needed in the scientific com-

munity and that Bayesian philosophy offers these dynamics in a straightforward and

coherent manner.

In summary, the stopping-rule problem poses serious difficulties for the Frequen-

tist theory of statistical inference, and its solution has not been attained on its own

grounds. Indeed, typical responses by Frequentists are to simply dismiss the issue or

to try to construct arguments that dependence on a stopping rule is required (Mayo

2018) to control the error probability. Although several procedures for controlling risk

induced by optional stopping have been proposed, they restrict the applicability and

flexibility of the Frequentist methods within the limited fields of scientific practice.

Worse, these procedures are not the answer to the critics’ concerns that the exact

stopping rule, which is required for the correct adjustment of the significance level,

is merely an intention in the experimenter’s mind and not accessible in general.

3. The Bayesian and the catch-all hypothesis problem

Bayesian statistics , as previously mentioned, is another school of statistics and

is becoming more popular among scientists. Bayesian statistics offers formal proce-

dures for point estimation, interval estimation, hypothesis testing, model selection,

and model averaging, but with a different justification; at least historically, subjec-

tive Bayesian theory has played a central role. Here, we briefly review some basic

concepts of this theory.

Suppose a researcher wants to evaluate how a hypothesis, H, is plausible given
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her prior degree of belief in H, and collected observations Data. The Bayes theorem

gives how she should update her belief on H:

P (H|Data) =
P (Data|H)P (H)

P (Data)
,

where P (H|Data) is the posterior probability of H given Data, P (Data|H) is the

“likelihood”, P (H) is prior probability and P (Data) is the probability of total ev-

idence. Unlike Frequentist methods, it offers a direct way to evaluate a scientific

hypothesis at hand, in the sense that probability gives quantitative plausibility of

this hypothesis; according to Bayesian theory, elaborated arguments6 have tried to

guarantee a rationale to express epistemic uncertainty by a probability function. From

this perspective, Bayes’ theorem describes the dynamics of changing uncertainty and

thus acts as a common ground to express the plausibility of a hypothesis before/after

data are obtained. Bayesianism argues that these coherent natures are appealing to

scientists.

There exists, however, the catch-all hypothesis problem, which is an argument

against the Bayesian approach, in which a posterior probability of a hypothesis H

is not calculable in many cases of scientific practice. When the set of candidate hy-

potheses is finite and known, P (Data) can be “decomposed” in the following manner:

P (Data) =
∑
i

P (Data|Hi)P (Hi).

In scientific practice, however, it is not straightforward to determine how we

should apply this rule. Suppose the posterior probability that the general theory of

relativity (GTR) is true (Sober 2008). According to Bayes’ Theorem,

P (GTR|Data) =
P (Data|GTR)P (GTR)

P (Data|GTR)P (GTR) + P (Data|¬GTR)P (¬GTR)
.

A set of “nonGTR′′ theories contains all possible theories rather than GTR and

is called a catch-all hypothesis. It includes a theory that no one had come up with

thus far. How can we obtain P (Data|¬GTR), the likelihood of data under the catch-

all hypothesis? This is called the catch-all hypothesis problem (Sober 2008). Again,

as discussed about the stopping-rule problem, we see why the catch-all hypothesis

problem matters. In practice, the emergence of a novel theory is a fundamental way

by which scientific inquiry is driven. It is not realistic to assume that all the candidate

hypotheses are known and that their likelihood is calculable. Some might reject the

claim that the probability of total evidence is not calculable. Even when a researcher

6 For example, the Dutch-book argument by de Finetti; 1972 or an axiomatized ratio-
nality by Savage; 1954. See, for example, Sprenger and Hartmann 2019 for a brief
review.
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cannot exactly obtain P (Data|¬GTR), she might elaborate an approximation, which

is conditional on all the known non-GTR hypotheses. However, it does not give a

solution because, as Fitelson (2008) pointed out, a seemingly improbable (very low

likelihood) hypothesis could have a huge influence on the catch-all likelihood, and

thus a finite approximation of the catch-all likelihood is not reliable.

Some might respond that a catch-all likelihood is calculable in the practice of

statistical analysis when the set of hypotheses is well defined on the space of parame-

ters of a statistical model. Suppose θ ∈ Θ is the parameter of interest. The catch-all

likelihood is exactly defined as

P (Data) =

∫
P (Data|θ)P (θ)dθ,

even though some numerical problems are known to solve the integrations. This

is called the marginal likelihood and plays a great role in model selection, model

averaging, and hypothesis testing in Bayesian theory.

Again, it is not a promising approach. To interpret the posterior based on this

form as the degree of belief that the hypothesis is true, it is necessary that the true

value exists in Θ. In other words, the supposed class of model Θ is true. However,

this is not realistic because, in the practice of statistical analysis, many researchers

believe the model at hand is not true, even as an approximation. Rather, Bayesians

admit there would be a case where one has several candidate models but no one

candidate model is assumed to be true (some have called this situation an “M-open

case”). Constructing useful statistical inferences in such scenarios is a focus of both

theoreticians and practitioners (e.g., Bernardo et al. 1994; Walker 2013; Kelter 2021).

While the catch-all hypothesis problem is avoided in these cases, because P (Data)

is exactly defined as the marginal likelihood, it comes with a dilemma; we cannot

interpret a posterior distribution as “the degree of belief that the hypothesis is true”

at face value (see also Vassend 2019). This poses a serious problem for the traditional

account of the subjective Bayesian method.

In summary, the catch-all hypothesis problem is also the source of serious trou-

bles for Bayesians and is still not solved. While the typical statement “the posterior

probability gives the degree of the belief that a hypothesis is true” has been the

foundation of the traditional Bayesian philosophy, this virtue will be lost as soon

as it is apparent that the catch-all likelihood cannot be calculated. Even though

current practitioners appear to avoid this problem by limiting the set of hypotheses

and obtaining the marginal likelihood, this comes with another difficulty: to make the

catch-all likelihood calculable is not the same thing as solving the catch-all hypothesis

problem nor keeping the validity of the “degree of belief” interpretation intact.
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4. Motivating examples (case studies from recent theories of statistics

and the philosophy of statistics)

There are, as discussed above, differences in strategy between how Frequentists

and Bayesian methods are justified, and we considered the stopping-rule problem

and catch-all hypothesis problem separately. We observed that these two problems

pose serious difficulties for each Frequentist and Bayesian method and concluded

that neither is still solved within their own traditional philosophical foundation. As

both problems have practical consequences, some treatment is needed. To do so re-

quires a revision of the predominant account of statistics that regards Frequentist

and Bayesian methods as exclusive and/or conflicting.

A natural idea for this revision is to articulate unified methodologies of statis-

tics. Indeed, philosophers have good reasons for thinking seriously about this matter.

First, there are some hybrid methods of Frequentist and Bayesian statistics in the

recent theory of statistical analysis. Second, even some philosophers of statistics have

cast doubt on a traditional view of the one-to-one relationship between interpreta-

tions of probability and schools of statistics. These facts pose a fundamental question:

how should we interpret the presumed dichotomy of Frequentist and Bayesian statis-

tics? How do these facts affect the implications of two problems in the practice of the

scientific community? In this section, some cases of hybrid methods are introduced,

which will, in turn, be a motivating case for section 5. Some philosophical works are

also discussed later.

4.1. Several insights from recent methodologies

First, we consider insights from recent discussions by practitioners. We focus

on Frequentist aspects of recent Bayesian methods. Some Bayesian statisticians do

not accept the traditional “update-of-degree-of-belief” interpretation of probability

and statistical methods. For example, Gelman and Shalizi (2013) discussed, from a

practitioner’s view, that,

a Bayesian inference was not for computing the posterior probability that any

particular model was true – we never actually did that. (Gelman and Shalizi

2013, p.13)

Furthermore, prior distributions used in applied work represent statisticians’

states of knowledge and beliefs before examining their data (ibid. p.19) because,

according to them, it is “like a regularization device” (ibid, p.19; i.e., a statistical

method to stabilize an estimate). In fact, some Bayesian methods adopt a “Frequen-

tist” justification for parameter estimation and model selection.
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4.1.1. Parameter estimations

Suppose, for example, a linear regression model to investigate the relationship

between an objective variable and explanatory variables.

y ∼ Normal(Xβ, σ2
y),

where y is the data (n-dimensional vector) of the objective variable, β is the d-

dimensional vector of the parameters to be estimated by the data, X is the data

matrix of explanatory variables (n× d), and σy is the SD of y given X. This regres-

sion is one of the most basic models and has been widely applied among practitioners.

To estimate β and to evaluate its uncertainty, both the MLE and Bayes estimator

with a prior is applicable.

However, technical problems arise when d is very large, the so-called high-

dimensional case. In particular, the MLE is not uniquely defined when n < d,

although many practical scientists demand this situation. For example, biologists

want to explore which single nucleotide polymorphism (SNP) is relevant to the devel-

opment of a disease. While a set of candidate SNPs (explanatory variables) contains

> 10,000 sites, the number of subjects can be no more than ≈ 100. Establishing a

valid statistical estimator in such cases is an active research field.

Carvalho et al. (2010) proposed the Horseshoe prior distribution for these situa-

tions. This prior puts a very large mass around β = 0 but has heavy tails. From the

subjective Bayesian point of view, this prior distribution represents the prior belief

that most of the candidate variables are irrelevant to y, but some of them might take

a large value. A Bayes estimate with this prior gives a unique estimate of β even

when the MLE is not obtained. Some researchers, however, found that this prior

has desirable properties even in the Frequentist sense. Van der Pas et al. (2017)

found that the Bayesian credible interval obtained by this prior has good “frequentist

coverage” (Van der Pas et al. 2017, p.1221) properties, as does the 95% CI of usual

cases. This can be viewed as a Frequentist justification of a Bayesian method.

Furthermore, the fact that they take a hybrid approach (a mixture of Frequen-

tist and Bayesian) is explicitly stated by some authors of high-dimensional statistics

studies. Castillo et al. (2015) considered another type of prior and explained their

proposal as follows:

We study a Bayesian approach based on priors that set a selection of coeffi cients

βi [an element of the vector β] a priori to zero; equivalently, priors that distribute

their mass over models that use only a (small) selection of the col umns of X.

Bayes’s formula gives a posterior distribution as usual. We study this under

the “frequentist” assumption that the data Y has in reality been gen erated

according to a given (sparse) parameter β0 [the true value]. The expecta tion
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under the previous distribution is denoted Eβ0 . (Castillo et al. 2015, p.1986;

double-quotation original)

We see that the same strategy is adopted to justify a parameter estimation

method to the MLE of section 2 (the expected performance of a method under the

“replication” of true data distribution).

4.1.2. Model comparisons by information criteria

Another example of a hybrid Bayesian method is found in research field on infor-

mation criteria. Suppose a researcher has multiple statistical models to be deployed

and wants to select the “best” model. This type of task is called the model selec-

tion problem. One way to select a model is to compare the predictive performance

(typically, it is defined as the Kullback-Leibler divergence between the model and

the true data generating distribution) when these models are applied to unobserved

future data. Varieties of information criteria offer a tool to examine prediction accu-

racy without obtaining actual future data (Konishi and Kitagawa 2008). The most

well-known criterion is the Akaike information criterion (AIC; Akaike 1974):

AIC = −2 ∗ log[L(x;θMLE )] + 2k,

where k is the dimension of the parameters for which the maximum likelihood es-

timator is applied. Akaike (1974) showed that AIC is a good measure to compare

the prediction performance among different models because Ex∼X [AIC] is an asymp-

totically unbiased estimate of the Kullback-Leibler divergence up to a constant (this

constant is irrelevant to model comparisons). Note that, again, the expectation is

over x, the true data generating distribution. We see, again, that the Frequentist

strategy is applied to evaluate the method, as in the maximum likelihood method

above.

Some Bayesian statisticians have adopted this strategy in exchange for the loss

of their traditional justification of Bayesian theory. Sprenger (2013) reviewed the

mathematical backgrounds of three major information criteria for Bayesian models—

Minimum Massage Length, Bayesian Information Criterion, and Deviance Informa-

tion Criterion—and pointed out that they lack the fundamentals of “Bayesian phi-

losophy”. The deviance information criterion (DIC; Spiegelhalter et al. 2002, 2014)

was, for example, one of the most applied information criteria among practitioners

for comparing hierarchical Bayesian models.

DIC = D + pD,

where D is the posterior mean deviance Eθ|y[−2 log p(y|θ)], and pD is the “posterior

mean deviance - deviance of posterior means”, defined as
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Eθ|y[−2 log{p(y|θ)}] + 2 log[p{y|θ̃(y)}],

where θ̃(y) is a point estimator of θ using data y (typically, posterior mean). This

criterion aims to give a measure of predictive performance when AIC is not use-

ful because 1) the model structure is too complex (e.g., hierarchical model) and 2)

the Bayesian method (not the maximum likelihood estimator of AIC) is applied to

estimate unknown parameters. Again, the objective of DIC is to construct an unbi-

ased estimate of predictive accuracy (defined in terms of Kullback-Liebler divergence)

given a particular model.

Having considered these issues, Sprenger (2013) pointed out the implicit as-

sumption “that Bayesian model selection is firmly anchored in Bayesian philosophy

is usually not satisfied” (Sprenger 2013, p. 113); that is, the model selection is usually

conducted outside the scope of the subjective Bayesian theories and that “ideas and

techniques from different philosophies [. . . ] may be mixed” (ibid. p.112) in DIC. In

other words, many pragmatic rationales rather than the subjective Bayesian theo-

ries play an indispensable role in justifying this “Bayesian” procedure, including the

Frequentist approach.

After Sprenger’s work, statisticians have pointed out several limitations of DIC

(reviewed in Spiegelhalter et al. 2014) and a novel criterion from a machine learn-

ing literature gained popularity among some practitioners (e.g. Widely Applicable

Information Criterion; Watanabe 2010, Gelman et al. 2013). Nevertheless, the main

rationale behind the model selection is similar to DIC in the very sense that its ob-

jective is to provide a measure of the predictive performance of a Bayesian model

based on the Kullback-Liebler Divergence.

4.2. Philosophical grounds of the Neyman-Pearson framework revisited

The second reason to reconsider the traditional interpretations of Frequentist-

Bayesian relationships is found in some philosophical works. Recently, some philo-

sophical works of statistics have cast doubt on a common view of a one-to-one rela-

tionship between interpretations of probability and schools of statistics. Take Mayo

(2018), for example., who has long defended the Neyman-Pearson framework of hy-

pothesis testing, which we mentioned as a Frequentist method in section 2 (Mayo

1996, 2018). However, she adopts a two-stage strategy to accomplish her objective.

The first approach is to criticize Bayesian philosophy. She starts her argument by the

formulation of an abstract principle named the “(weak and strong) severe require-

ment”:

Severity Requirement (weak): One does not have evidence for a claim if nothing

has been done to rule out ways the claim may be false. If data x agree with a

claim C but the method used is practically guaranteed to find such agreement,

and little or no capability of finding flaws with C even if they exist, then we have
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bad evidence, no test. (Mayo 2018, p.5)

Severity Requirement (strong): We have evidence for a claim C just to the extent

[that] it survives a stringent scrutiny. If C passes a test that was highly capable

of finding flaws or discrepancies from C, and yet none or few are found, then the

passing results, x is evidence for C. (ibid. p. 14)

These two requirements represent intuitive concepts regarding what kind of prop-

erty is desired for scientific investigation (including statistical methods). The former

weak version posits a qualitative concept of evidence: for an extreme case, it is nat-

ural to say you cannot trust a statement that claim C, according to method f , is

probably true if f produces the same results for everything. The latter strong ver-

sion posits the quantitative concept of evidence: if we have an objective measure of

the stringency of method f , then this measure is useful to measure the strength of

evidence for C given data. For most scientists, if not all, it seems natural to accept

these two requirements.

Based on these concepts, she argues that the Bayesian philosophy of statistics

violates the severe requirement. Note that she does not reject Bayesian methods, ad-

mitting that Bayesian statistics are useful and valid in many scientific applications.

For example, she examined the argument considered above by Gelman and Shalizi

(2013). She concluded that “[t]here is no difficulty with prior” as long as its role

is pragmatic like “a regularization device” to smooth the likelihood7. Even though

there can be counterarguments against such a “pragmatic Bayesian”, a subjective

Bayesian must consider the fact that at least some practitioners consider their prior

distribution, not their subjective belief. Mayo claims that these methods should not

be based on Bayesian philosophy or interpreted as a rational degree of belief, although

most Bayesians try to do so. Rather, she argues that such methods should be based

on the severe testing concept.

The second approach to defend the Neyman-Pearson framework is to reconsider

well-accepted views, which have even been accepted by Frequentist philosophers and

statisticians. As described above, this framework is usually construed as a method

that gives a binary result (a hypothesis is accepted or rejected) and has valid meanings

as long as the procedure is applied repeatedly (i.e., long-run performance). However,

why does the fact that a method is justified on a property of expectation over x,

the true distribution, yield the claim that the results of a Frequentist method are

meaningless for each particular case? She rejects the prevailing long-run performance

view of the Frequentist method and argues that the severe requirement gives another

meaning to these procedures: if the Neyman-Pearson framework has high severity

7 Mayo (2018, p.435). Shimatani (2021) showed another pragmatic virtue of the
Bayesian statistics like convenience to construct a complex model and to conduct
numerical optimizations. See this special issue.
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(i.e., has a high probability of finding an error, if there are any), then a particular

hypothesis that passes this framework is probably a well-justified claim.

5. Relationships between the two theories and problems

In the previous section, we saw three cases to reconsider a dichotomized view

of statistics. There exists a “hybrid” Frequentist-Bayesian approach in terms of

both theoretical and philosophical studies. Some might argue that since Frequen-

tist/Bayesian distinctions are meaningless, so are their alleged problems; that is, the

stopping-rule and catch-all hypothesis problems are irrelevant to any current statis-

tical theory or practice. Alternatively, with more cautiousness, she might discuss

that, hopefully, these “hybrid” approaches will be applied to simultaneously solve

the two problems. However, there exists good reason to doubt this kind of statement

because the philosophical status of these methods is not fully clarified and, thus, its

relationships with the stopping-rule problem and the catch-all hypothesis problem

are not obvious. Indeed, whether Bayesian methods are irrelevant to a stopping rule

is recently attracting a renewed focus of practitioners since “Bayesian” methods are

becoming popular as a remedy for replication crises (e.g., Erica et al. 2013; Rouder

2014). How should we place the stopping-rule problem and the catch-all hypothesis

problem? To integrate the two theories of statistics and to solve both problems, the

“hybrid” methods described above are not sufficient, and an integrated viewpoint is

needed to see how these problems arise.

It is important to distinguish between a method itself and its justification. For

example, the justification of the MLE method is not necessarily based on Frequentist

philosophy; for Bayesian theory, the MLE may be an acceptable approximation of the

posterior estimate when the prior is almost negligible. Likewise, the distinction be-

tween a method and its justification gives a more precise meaning of the case studies

in the previous section. The first two cases of section 4, the high-dimensional estima-

tion and the model selection, can be seen as a Frequentist justification of a Bayesian

method because these methods adopt prior probability but show “good” performance

in the sense of the coverage probability and the expected prediction performance. The

third example, Mayo’s severe testing account, tried to provide grounds for a common

justification for both Frequentist (Neyman-Pearson hypothesis testing) and Bayesian

methods based on her severe requirement. Establishing a relationship between the

stopping-rule problem and the catch-all hypothesis problem based on how statistical

justifications work would be a starting point to obtain philosophical insights and to

make productive suggestions for both theorists and practitioners of statistics. In this

section, the relationship between Frequentist and Bayesian statistics is examined from

a novel viewpoint of “evaluation”. It is then argued that the stopping-rule problem

and the catch-all hypothesis problem are just the mirror image of the same problem
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from this viewpoint.

Let us leave specific statistical procedures aside for the moment and consider a

more general problem: what is the fundamental problem of an evaluation? Suppose

you evaluate a target X on a condition of Y. Such a type of evaluation takes place

in various scenes of our daily life (e.g., inspecting a malfunction of home appliances),

public probes (e.g., investigating a suspicious politician), and scientific inquiries. In

these cases, the results of the evaluation depend on Y and thus change when a dif-

ferent situation is assumed; if a condition Y changed to Y’, then the evaluation for X

would also change (from X conditional on Y to X conditional on Y’). In this sense,

we can compare how the evaluation of X changes assuming various hypothetical sit-

uations of Y. However, things are completely different if the target X changed. Even

when Y is exactly the same, the meaning of Y also changes because how Y affects

the evaluation depends on the purpose for which Y is used. Thus, the continuous

update of the evaluation (from X conditional on Y to X’ conditional on Y) might not

be possible even when we have the same Y.

Now let us turn back to our objective, the examination of statistical methods:

in the context of statistical analysis, what is the target of evaluation and what is the

condition? A Frequentist strategy of justification is achieved by an evaluation of data

based on a set of parameters. If the target of an evaluation is data, you can compare

whether a certain data is likely under different sets of parameters but cannot change

the data itself. A Frequentist justification cannot allow the continuous update of data

because the target of the evaluation is the data itself. This is the very reason that

the stopping-rule problem arises within the Frequentist strategy of statistics. Even

when one uses a “hybrid Bayesian” method, as discussed in section 4, the curse of the

stopping rule is inevitable as long as they adopt this strategy for their justification

of inferences. For Bayesians, on the other hand, methods are based on the poste-

rior probability distribution, which is an evaluation of hypotheses. Various inferences

include point estimation (e.g., posterior mean, posterior median, maximum a posteri-

orti), confidence interval, and hypothesis testing. Here, the inference is based on the

evaluation of parameters conditional on a set of data. If the target is a hypothesis,

the set of hypotheses to be considered cannot be changed. Such a situation induces

the catch-all-hypothesis problem.

6. Discussion and conclusion

In this paper, two well-known problems are reviewed, namely, the stopping-

rule problem and the catch-all hypothesis problem of the Frequentist approach and

Bayesianism, respectively. I argued that some treatments for both of the problems are

required because they impose practical impacts. Then, I examined how recent stud-

ies, from both statistics (parameter estimation in high-dimensional cases and model
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selection by information criterion) and the philosophy of statistics, pursue “hybrid”

approaches of Frequentist/Bayesian statistics and posed a question of whether these

“hybrid” approaches could be a panacea for the current issues. Since the traditional

account of the Frequentist-Bayesian distinction based on the interpretation of prob-

ability is not enough for this project, I propose a novel viewpoint to examine the

differences between the two theories.

Using this concept, I revisited the relationship between the stopping-rule prob-

lem and the catch-all hypothesis problem and concluded that they are just a mirror

image of the same problem. Furthermore, the analysis in this paper shows that the

recent “hybrid” approach does not give the solution because, according to our anal-

ysis, the two problems stem from the fundamental difference in strategy rather than

differences in technical details; that is how, or on what grounds, do we justify a sta-

tistical inference. As long as the current strategy of epistemological justification is

taken for Frequentist/Bayesian methods, the two problems are inevitable. Thus, if

we want to choose just one strategy of either the Frequentist or Bayesian justifica-

tion, then we would have to abandon either the updating of data or the updating of

the hypothesis. Of course, both of them are essential to the nature of science, and

something that allows “bridging” the two evaluations are needed.

One approach to bridge them is the posterior predictive distribution. Gelman

and Shalzi (2013) discussed how the traditional “belief updating by data” account

of Bayesian analysis is problematic and how checking the model by the posterior

predictive distribution plays an important role. According to them, the current prac-

tice of Bayesian data analysis involves a “goodness of model” assessment to ensure

that the model accurately captures the characteristics of the data at hand. If not

accurate enough, the structure of the model would be modified, and then the data

would be reanalyzed by this new model and the Bayesian estimate. In practice, not

only the parameters but also the set of models (i.e., a set of hypotheses) would be

updated, which would open the possibility of both an update-of-data and an update-

of-hypothesis. However, model checking by posterior predictive distribution suffers

from several problems. Although Gelman and Shalzi (2013) stressed the role of qual-

itative checking (e.g., plotting the raw data and fitted regression curve), quantitative

approaches would be preferred. While they also proposed a more quantitative ap-

proach by posterior predictive p-value (ppp) to decide whether to reject the model

or not, it would cause the problem of an arbitrarily chosen threshold, which many

researchers have pointed out with usual significance testing.

Another approach to fill the gap is marginal likelihood. Usually, marginal likeli-

hood has been considered a Bayesian quantitative index of a model, by which various

statistical inferences, including hypothesis testing, model selection and model aver-

aging, are made (Kass and Raftery 1995). However, recent theoretical studies have

revealed that it is also related to Frequent properties of prediction error (e.g., Fong
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and Holmes 2020).

There is still a long way to go, but surely we need to find some way to fill this

gap not only for the sake of the theories but also for the sake of statistical practice.

Nevertheless, we must first recognize the true difference between Frequentism and

Bayesianism, as discussed in this paper.
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