Halting problem proofs refuted on the basis of software engineering ?

This is an explanation of a possible new insight into the halting problem provided in the
language of software engineering. Technical computer science terms are explained using
software engineering terms. No knowledge of the halting problem is required.

It is based on fully operational software executed in the x86utm operating system. The x86utm
operating system (based on an excellent open source x86 emulator) was created to study the
details of the halting problem proof counter-examples at the much higher level of abstraction of
C/x86.

typedef void (*ptr)Q;
int H(ptr p, ptr i); // simulating halt decider

¥oid P(ptr x)

int Halt_Status = H(x, X);
if (Halt_status)

HERE: goto HERE;
return;

int mainQ

output("Input_Halts = ", H(P, P));

When simulating halt decider H(P,P) simulates its input it can see that:

(1) Function H() is called from P().

(2) With the same arguments to H().

(3) With no control flow instructions in P preceding its invocation of H(P,P) that could escape
repeated simulations.

This is the same criteria used for infinite recursion detection that has been adapted so that it
does not need static local memory to see that the same function has been called with the
same arguments twice in sequence with no conditional-branch escape.

Because H knows its own machine address H need not see P call H(P,P) more than once
because H already knows that it was called with these same arguments. This eliminates the
need for H to have static local memory that communicates between different invocations of
itself.

The above shows that the simulated P cannot possibly (reachs it “return” instruction and)
terminate normally. H(P,P) simulates its input then P calls H(P,P) to simulate itself again. When
H sees that this otherwise infinitely nested simulation would never end it aborts its simulation
of P and rejects P as non-halting.

In computability theory, the halting problem is the problem of determining, from a
description of an arbitrary computer program and an input, whether the program will
finish running, or continue to run forever. Alan Turing proved in 1936 that a general
algorithm to solve the halting problem for all possible program-input pairs cannot exist.

S 07/25/22 09:01:24 AM

For any program H that might determine if programs halt, a "pathological" program P,
called with some input, can pass its own source and its input to H and then specifically
do the opposite of what H predicts P will do. No H can exist that handles this case.
https://en.wikipedia.org/wiki/Halting_problem

H and P implement the exact pathological relationship to each other as described above.
Because H(P,P) does handle this case the above halting problem undecidable input template
has been refuted.

When this halt deciding principle understood to be correct:
A halt decider must compute the mapping from its inputs to an accept or reject state on the
basis of the actual behavior that is actually specified by these inputs.

Within the common knowledge that the correct simulation of a program (or TM description)
accurately measures the actual behavior of this program:

Then (by logical necessity) this correctly implements the halting deciding principle:
Every simulating halt decider that correctly simulates its input until it correctly predicts that this
simulated input would never terminate normally, correctly rejects this input as non-halting.

H may or may not be an actual computable function. In any case H should at least apply to the
Termination analysis. It really seems that H is a Pure function thus implements a
Computable function Thus H is Turing computable.

A halt decider must compute the mapping from its inputs to an accept or reject state on the
basis of the actual behavior that is actually specified by these inputs.

It is common knowledge that a correct simulation of a program is a correct measure of the
behavior of this program. The concept of a Universal Turing Machine (UTM) is invalidated
unless it is accepted that the correct simulation of a machine description is computationally
equivalent to the underlying computation.

Example 03 shows the details of the execution trace of H(P,P) proving that this input would
never reach its "C:"return" or x86:"ret" instruction.

computation that halts ... the Turing machine will halt whenever it enters a final state.
(Linz:1990:234)

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D.
C. Heath and Company. (317-320)

S - 07/25/22 09:01:24 AM

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Computable_function
https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Termination_analysis

Example 01: HO correctly determines that Infinite_Loop() never halts

¥oid Infinite_Loop()

HERE: goto HERE;

int mainQ

output("Input_Halts = ", HOC(u32)Infinite_Loop));

“Infinite“Loog()ss

[00001102] (01 push ebp
[00001103] (02) 8bec mov ebp,esp
[00001105](02) ebfe jmp 00001105
[00001107](01) 5d pop ebp
[00001108](01) c3

Size in bytes:(0007) [00001108]

_mainQ)

[00001192](01) 55 push ebp
[00001193](02) 8bec mov ebp,esp

[00001195](05) 6802110000 push 00001102
[0000119a] (05) e8d3fbffff call 00000d72
[0000119f] (03) 83c404 add esp,+04
[000011a2] (01) 50 push eax
[000011a3] (05) 68a3040000 push 000004a3
[000011a8] (05) e845F3ffff call 0000042
[000011ad] (03) 83c408 add esp,+08

[000011b0] (02) 33cO xor eax,eax
[000011b2](01) 5d pop ebp

[000011b3](01) c3 ret

Size in bytes:(0034) [000011b3]

machine stack stack machine assembly
address address data code language
[00001192] [00101ef8] [00000000] 55 push ebp

[00001193] [00101ef8] [00000000] 8bec mov ebp,esp
[00001195] [00101ef4] [00001102] 6802110000 push 00001102
[0000119a] [00101ef0] [0000119f] e8d3fbffff call 00000d72

HO: Begin Simulation Execution Trace Stored at:2llfac

[00001102] [00211f9c] [00211fa0] 55 push ebp
[00001103] [00211f9c] [00211fa0] 8bec mov ebp,esp
[00001105] [00211f9c] [00211fa0] ebfe jmp 00001105
[00001105] [00211f9c] [00211fa0] ebfe jmp 00001105
HO: Infinite Loop Detected Simulation Stopped
if (current->Simplified_opcode == JIMP) // VP
if (current->Decode_Target <= current->Address) // upward
if (traced->Address == current->Decode_Target) // to this address
if (Cond1t1ona1 _Branch_count == 0) // no escape
return

[0000119f] [00101ef8] [00000000] 83c404 add esp,+04
[000011a2] [00101ef4] [00000000] 50 push eax
[000011a3] [00101ef0] [000004a3] 68a3040000 push 000004a3
[000011a8] [00101ef0] [000004a3] e845f3ffff call 000004f2
Input_Halts = 0

[000011ad] [00101ef8] [00000000] 83c408 add esp,+08
[000011b0] [00101ef8] [00000000] 33cO Xor eax,eax
[000011b2] [00101efc] [00100000] 5d pop ebp
[000011b3] [00101F00] [00000004] c3

Number of Instructions Executed(554) == 8 Pages

-3 07/25/22 09:01:24 AM

Example 02:
void Infinite_Recursion(int N)

Infinite_Recursion(N);

int mainQ)

H correctly determines that Infinite_Recursion() never halts

output("Input_Halts = ", H((u32)Infinite_Recursion, 0x777));

_Infinite_Recursion()
[000010F2](01) 55

push ebp

[00001101]
00001102]

_mainQ)

machine
address

[000010F3]
[000010f5]
[0000108]
[0000109]
[000010fe]

[000011b2]
[000011b3]
[000011b5]
[000011ba]
[000011bf]
[000011c4]
[000011c7]
[000011c8]
[000011cd]
[000011d2]
[000011d5]
[000011d7]
[000011d8](01) c3

Size in bytes:(0039)

8bec
8b4508

50
e8FAFFFFFF
(03) §3c404

(01) 55

8bec
6877070000
6812100000
e8aefdffff
83c408
(01) 50
68a3040000
e820f3ffff
83c408
33c0

5d

stack
data

stack
address

mov ebp,es

mov eax,[egp+08]

push eax

call 000010f2
add esp,+04
pop ebp

)
Size in bytes: (0017) [00001102]

push ebp

mov ebp,esp
push 00000777
push 000010f2
call 00000f72
add esp,+08
push eax

push 000004a3
call 000004f2
add esp,+08
Xor eax,eax
pop ebp

ret
[000011d8]

machine
code

assembly
language

[0000102]
[000010F3]
[000010f5]
[0000108]
[0000109]
[0000102]

[0000108]
[00001019]

[000011b2]
[000011b3]
[000011b5]

[0010139]
[0010139]

[00000000]
[00000000]

55

push ebp
mov ebp,es

[000011ba]
[000011bf]

[0000103]
[000010F5]

[00101F35]
[0010131]
[00101f2d]

H: Begin Simulation

[00111Fd1]
[00111Fd1]
[00111Fd1]
[00111Fcd]
[00111Fc9]
[00111Fc5]
[00111Fc5]
[00111Fc5]
[00111fc1]
[00111fbd]

[00000777]
[0000102]
[000011c4]

[00111Fd5]
[00111Fd5]
[00111fd5]
[00000777]
[000010Fe]
[00111Fd1]
[00111Fd1]
[00111Fd1]

[00000777]

[000010Fe]

8bec p,esp

6877070000 push 00000777
682100000 push 000010f2
e8aefdffff call 00000f72

Execution Trace Stored at:111fe5

55 push ebp
8bec mov ebp, esB
8b4508 mov eax [ebp+08]

50 push // push 0x777
§§f4ffffff call 000010f2 // call Infinite_Recursion
8bec

push ebp
8b4508
push 0x777

mov ebp, esB

mov eax [ebp+08]

50 ush e //

e8f4Affffff ca11 000010f2 // ca11 Infinite_Recursion

H: Infinite Recursion Detected Simulation Stopped

) Infinite_Recursion() is called twice in sequence from the same machine address of Infinite_Recursion() .

3) With no control flow instructions between the invocation of Infinite_Recursion() and the call to

(1
(2) With the same parameters to Infinite_Recursion()
(
I

nfinite_Recursion() from Infinite_Recursion()

[000011c4] [00101f39] [00000000]

83c408

[000011c7] [00101f35] [00000000] 50

[000011c8] [00101f31] [000004a3]
[000011cd] [00101f31] [000004a3]
Input_Halts
[000011d2][00101f39] [00000000]
[000011d5] [0010139] [00000000]
[000011d7] [00101f3d] [00000018]
[000011d8] [00101f41] [00000000]

68a3040000
e820f3ffff

83c408
33c0
5d

c3
Number of Instructions Executed(1118) =

07/25/22

add esp,+08
push eax

push 000004a3
call 0000042

add esp,+08
Xor eax,eax
pop ebp

ret

= 17 Pages

09:01:24 AM

Example 03:

¥oid P(ptr x)

int Halt_status_ = H(x, X);
if (Halt_Status)
HERE: goto HERE;

H(P,P) correctly determines that its input never halts

From a purely software engineering
perspective (anchored in the semantics of

return; the x86 language) it is proven that H(P,P)
correctly predicts that its correct and
int main(Q) complete x86 emulation of its input would
o " Tts = ", ’ : never reach the "ret" instruction (final state)
utput("Input Halts HCP, P2 of this input. Copyright 2022 PL Olcott
—PQ
[000013c6](01) 55 push ebp // Save Base Pointer register onto the stack

[000013c7](02) 8bec mov ebp,esp

|] // Load Base Pointer with Stack Pointer
[000013c9](01) 51 push ecx

/ Save the value of ecx on the stack

[000013ca] (03) 8b4508 mov eax, [ebp+08] // Load eax with argument to P

[000013cd] (01) 50 push eax // push 2nd argument to H onto the stack
[000013ce] (03) 8b4d08 mov ecx, [ebp+08] // Load ecx with with argument to P
[000013d1](01) 51 push ecx // push 1st argument to H onto the stack
[000013d2] (05) e82ffdffff call 00001106 // push return address on the stack; call simulated H
[000013d7]1(03) 83c408 add esB,+08 // remove call arguments from stack
[000013da] (03) 8945fc mov [ebp-04],eax // load Halt_status with return value from H
[000013dd] (04) 837dfc00 cmp dword [ebp-04],+00 // compare Halt_Status to O

[000013e1](02) 7402 jz 000013e5 // if Halt_Status == 0 goto 000013e5
[000013e3](02) ebfe jmp 000013e3 // goto 13e3

[000013e5](02) 8be5 mov esp,ebp // Load Stack Pointer with Base Pointer

[000013e7](01) 5d pop ebp
[000013e8](01) 3
Size in bytes:(0035) [000013e8]

// Restore Base Pointer value from stack
// return to caller

_mainQ)
[000013f6](01) 55 push ebp // Save Base Pointer register onto the stack
[000013f7](02) 8bec mov ebp,esp / Load Base Pointer with Stack Pointer

[000013f9] (05) 68c6130000 push 000013c6 // Push P (2nd argument to H) onto the stack
[000013fe] (05) 68c6130000 push 000013c6 // Push P (1nd argument to H) onto the stack

[00001403] (05) e8fefcffff call 00001106 // push return address onto the stack and call executed H
[00001408] (03) 83c408 add esp,+08 // remove call arguments from stack frame

[0000140b] (01) 50 push eax / Push return va ue from H onto the stack

/
[0000140c] (05) 6837050000 push 00000537 // " onto the stack
[00001411] (05) e870f1ffff call 00000586 //
[00001416] (03) 83c408 add esp,+08 //
[00001419](02) 33c0 Xor eax,eax //
[0000141b] (01) 5d pop ebp

Push address of "Input_Halts =
call output with its pushed arguments.
remove call arguments from stack frame
set eax to 0

/ Restore Base Pointer register from stack

[0000141c] (01)

c3 ret / return to 0 operating system
Size in bytes:(0039) [0000141c]

machine stack stack machine assembly

address address data code Tlanguage

[000013f6] [0010235f] [00000000] 55 push ebp

[000013f7][0010235f] [00000000] 8bec mov ebp,esp

[00001319] [0010235b] [000013c6] 68c6130000 push 000013c6 // Push P (2nd argument to H) onto the stack
[000013fe] [00102357] [000013c6] 68c6130000 push 000013c6 // Push P (lnd argument to_H) onto the stack
[00001403][00102353] [00001408] e8fefcffff call 00001106 // push return address; call executed H

H: Begin Simulation Execution Trace Stored at:11240b

Address_of _H:1106 i

[000013c6] 001123f7]=001123fb= 55 push ebp

[000013c7] [0011237] [001123fh] 8bec mov ebp,esp

[000013c9][001123F3] [001023c7] 51 push ecx // Save the value of ecx on the stack
[000013ca] [001123F3] [001023c7] 8b4508 mov eax, [ebp+08] // Load eax with argument to P

[000013cd] [001123ef] [000013c6] 50 push eax // push 2nd argument to H onto the stack
[000013ce] [001123ef] [000013c6] 8b4d08 mov ecx, [ebp+08] // Load ecx with with argument to P
[000013d1] [001123eb] [000013c6] 51 push ecx // push 1st argument to H onto the stack
[000013d2] [001123e7] [000013d7] e82ffdffff call 00001106 // push return address; call simulated H

H: Infinitely Recursive Simulation Detected Simulation Stopped

(1) Function H() is called from P().
(2) With the same arguments to H().
(3) With no control flow instructions in P preceding its invocation of H(P,P) that could escape repeated simulations.

[00001408] [0010235F] [00000000] 83c408 add esp,+08

[0000140b] [0010235b] [00000000] 50 push eax // Push return value from H onto the stack
[0000140¢]1[00102357] [00000537] 6837050000 push 00000537 // Push address of "Input_Halts = " onto stack
[0000141%][00182357][00000537] e870f1ffff call 00000586 // call output with its pushed arguments
Input_Halts =

[00001416] [0010235f] [00000000] 83c408 add esp,+08
[00001419][0010235f] [00000000] 33cO Xor eax,eax // set eax to O
[0000141b] [00102363] [00000018] 5d pop ebp

[0000141c][00102367][00000000] c3 ret

// return to 0 operating system
Number of Instructions Executed(987) == 15 Pages

5 07/25/22 09:01:24 AM

Halt Decider source-code

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <time.h>

#pragma warning (disable: 4717)
//#define OUTPUT_SIMULATED_LINE

#define u8
#define u32
#define ul6

#define s8
#define s16 intl6_t
#define s32 int32_t
typedef void (*ptr)Q;

uint8_t
uint32_t
uintlé_t

int8_t

Eypedef struct x86_Registers

u32 EIP;
u32 EAX;
u32 EBX;
u32 ECX;
u32 EDX:
u32 ESI;
u32 EDI;
u32 EBP;
u32 ESP;
u32 EFLG;
ulé Cs:
ulé SS;
ulé DS;
ulé ES:
ulé FS;
ulé GS;

} Registe?s;

#define JMP OXEB // Simplifed opCode for all forms
#define CALL OxE8 // Simplifed opCode for all forms
#define JcC Ox7F // Simplifed opCode for all forms
#define RET 0xC3 // simplifed opCode for all forms
#define PUSH 0x68 // Simplifed opCode for all forms
#define OTHER OXFF // Not a Control Flow Insrtuction
#define HLT OxF4 // Conventional OpCode for Halt

Eypedef struct Decoded

u32 Address;

u32 ESP; // current value of ESP

u32 TOS; // current value of Top of Stack
u32 NumBytes;

u32 simplified_opcode;

u32 Decode_Target;
} Decoded_Line_0f_cCode;

u8 BEGINI[]
u32 Heap_PTR
u32 Heap_END
u8 END[R

0x11111111;
0x22222222;
"END STATIC DATA";

// Required to

07/25/22 09:01:24 AM

of IMP

of CALL

of Jump on Condition
of Return

of PUSH

"BEGIN STATIC DATA"; // Required_to force allocation
// forces memory allocation
// forces memory allocation

force allocation

// Empty Stub Functions of Virtual Machine Instructions
// x86utm operating system calls

void outputString(char* s) {}

void output(char* s, u32 N) {}

u32* Allocate(u32 size) { return 0; }

void Savestate(Registers* state) {}

void LoadState(Registers* state) {}

u32 DebugStep(Registers* master_state,

Registers* slave_state, Decoded_Line_Of_Code* decoded) { return 0; }

void PushBack(u32 stdvector, u32 data_ptr, u32 size_in_bytes) {}
u32 sStackPush(u32* s, u32 M) { return 0; }
u32 get_code_end(u32 EIP){ return 0; }

u32 Infinite_Loop_Needs_To_Be_Aborted_Trace

}

(Decoded_Line_of_code* execution_trace, Decoded_Line_Of_Code *current)

Decoded_Line_of_Code *traced;
u32 conditional_Branch_Count = 0;

u32* ptr (u32*)execution_trace; // 2021-04-06

u32 size ptr[-1]; // 2021-04-06

u32 next2last = (s1ze/s1zeof(Decoded Line_Of_Code)) -2;
for (s32 N = next2last; N >= 0; N--)

traced = &execution_trace[N];
if (traced->Simplified_Opcode == 3CC) // 3CC
conditional_Branch_Count++;

if (current->Simplified_Opcode == IMP) // IMP
if (current->Decode_Target <= current->Address) // upward
if (traced->Address == current->Decode_Target) // to this address
if (Conditional_Branch_Count == 0) // no escape
return 1;
return 0;

u32 Infinite_Recursion_Needs_To _Be_Aborted_Trace

(Decoded_Line_of_cCode* execution_trace, Decoded_Line_Of_Code *current)

Decoded_Line_oOf_Code *traced;
u32 conditional_Branch_cCount = 0;

u32* ptr (u32*)execution_trace; // 2021-04-06

u32 size ptr[-1]; // 2021-04-06

u32 next2last = (size/sizeof(Decoded_Line_Of_Code)) -2;
for (s32 N = next2last; N >= 0; N--)

traced = &execution_trace[N];
if (traced->Simplified_Opcode == 3CC) // 3CC
conditional_Branch_Count++;

if (current->Simplified_Opcode == CALL)
if (current->Simplified_Opcode == traced->Simplified_Opcode) // CALL

if (current->Address == traced->Address) // from same address
if (current->Decode_Target == traced->Decode_Target)// to Same Function
if (Conditional_Branch_Count == 0) // no escape
return 2;
}
return 0;

S - 07/25/22 09:01:24 AM

u32 Infinite_simulation_Needs_To_Be_Aborted_Trace
(Decoded_L1ine_0f_Code* execution_trace,
Decoded_Line_of_cCode *current, u32 P, u32 I)

Decoded_Line_Of_Code *traced;
u32 Count_PUSH_Instructions

u32 Num_PUSH_Matched = 0;
u32 cConditional_Branch_Count = 0;
u32* ptr = (u32*)execution_trace; // 2021-04-06
u32 size = ptr[-1]; // 2021-04-06

u32 next2last = (size/sizeof(Decoded_Line_0f_Code)) -2;
Eor (s32 N = next2last; N >= 0; N--)

traced = &execution_trace[N];
if (traced->Simplified_Opcode == JCC) // 31CC
Conditional_Branch_Count++;

if (traced->Simplified_Opcode == PUSH) // PUSH
Count_PUSH_Instructions++;

if (traced->Simplified_Opcode == PUSH &&)
traced->Decode_Target == P & & Count_PUSH_Instructions == 1)
Num_PUSH_Matched++;

if (traced->Simplified_Opcode == PUSH &&)
traced->Decode_Target == I && Count_PUSH_Instructions == 2)
Num_PUSH_Matched++;

if (Num_PUSH_Matched == 2 & N == 0 && Conditional_Branch_Count ==

return 3;

return 0;

u32 Needs_To_Be_Aborted(Decoded_Line_Of_cCode* execution_trace,
u32 Address_of_H, u32 P, u32 I)

u32 Aborted = 0;

u32* ptr = (u32*)execution_trace; // 2021-04-06

u32 size = ptr[-1]; // 2021-04-06
//output("Needs_To_ Be_Aborted(s1ze) ", size);

u32 last = (size / sizeof(Decoded_Line_Of_Code)) - 1;

Decoded_Line_Of_Code* current = &execution_trace[last];

if (current->Simplified_Opcode == CALL)

if (current->Decode_Target == Address_of_H)

Aborted = Infinite_ S1mu1at1on Needs_To_Be_Aborted_Trace
] (execution_trace, current, P, I);
else

Aborted = Infinite_Recursion_Needs_To_Be_Aborted_Trace
(execution_trace, current);

}
else if (current->Simplified_Opcode == IMP)

Aborted = Infinite_Loop_Needs_To_Be_Aborted_Trace(execution_trace,

return Aborted;

8- 07/25/22 09:01:24 AM

0

current);

// This is called every time the a Tine ocf x86 code is emulated

u32 Decide_Halting(char* Halt_Decider_Name,
u32* execution_trace,
Decoded_Line_Of_Code** decoded,
u32 code_end,
Registers** master_state,
Registers** slave_state,
u32** slave_stack,
u32 Address_of_H, u32 P, u32 I)

u32 Aborted = 0;
¥h11e (Aborted == 0)

u32 EIP = (*slave_state)->EIP; // Save EIP of instruction to be executed
DebugStep(*master_state, *s1ave state, *decoded); // Execute this instruction
if (EIP == code_end) // last instruction of P "ret"

return 1; // input has halted

#ifdef OUTPUT_SIMULATED_LINE
output_becoded((u32)*decoded) ;

#endif

// When we are not recursively simulatng H we don't need this is statement

// if (EIP > Last_Address_of_Operating_System()) // Don't examine any 0S code
PushBack(*execution_trace, (u32)*decoded, sizeof(Decoded_Line_Of_Code));
Aborted = Needs_To_Be_Aborted((Decoded_L1ne_0f_Code*)*execution_trace,

Address_of_H, P, I);

}
}f (Aborted) // 2021-01-26 Must be aborted

outputstring(Halt_Decider_Name);
if (Aborted == 1)
OUtButStr1ng("Inf1n1te Loop Detected Simulation Stopped\n\n");
if (Aborted
OUtButStr1ng("Inf1n1te Recursion Detected Simulation Stopped\n\n");
if (Aborted ==
0utputStr1ng("Infin1te1y Recursive Simulation Detected "
"Simulation Stopped\n\n");
return 0;

return 1; // 2021-01-26 Need not be aborted

// This only works with ONE PARAMETER to the called function
void Init_slave_state(u32 P, u32 I, u32 End_Of_Code,
(Registers* slave_state, u32* slave_stack)

u32 Top_of_sStack;
u32 Capacity;
u32 Size;

StackPush(slave_stack, I); // Data for Function to invoke

Top_of_Stack
stackPush(slave_stack, End_Of_code); // Return Address in Halts()

Top_of_Stack

Savestate(slave_state); // Based on this point in execution
Capacity_= slave_stack[-2];
Size = slave_stack[-1];

P; // Function to invoke
Top_of_sStack;
Top_of_Stack;

slave_state->EIP
slave_state->ESP
slave_state->EBP

-9 07/25/22 09:01:24 AM

%32 H(ptr P, ptr I)

HERE:
u32 End_of_cCode;
u32 Address_of_H; // 2022-06-17

u32 code_end

get_code_end((u32)P);
Decoded_Line_Of_cCode *decoded

(Decoded_Line_of_code*)

Allocate(sizeof (Decoded_Line_Of_Code));

(Registers*) Allocate(sizeof(Registers));

Registers* slave_state (Registers*) Allocate(sizeof(Registers));

u32* slave_stack Allocate(0x10000); // 64k;

u32 execution_trace = (u32)Allocate(sizeof(Decoded_Line_Of_Code) * 10000);
/ 10000 Tines of x86 code

__asm lea eax, HERE // 2022-06-18

__asm sub eax, 6 // 2022-06-18

__asm mov Address_of_H, eax // 2022-06-18

—_asm mov eax, END_OF_CODE

__asm mov End_Of_Code, eax

Registers* master_state

Init_slave_state((u32)P, (u32)I, End_Of_Code, slave_state, slave_stack);

output("\nH: Begin Simulation Execution Trace Stored at:", execution_trace);
output("Address_of_H:", Address_of_H); // 2022-06-11
if (Decide_Halting("H: ", &execution_trace, &decoded, code_end, &master_state,

&slave_state, &slave_stack, Address_of_H, (u32)P, (u32)I1))
goto END_OF_CODE;
return 0; // Does not halt
END_OF_CODE :
outputstring("H: End Simulation Input Terminated Normally\n\n");
return 1; // Input has normally terminated

// bDummy Place holder needed to know where
// the x86utm operating system is located.
// THIS FUNCTION MAY BE OBSOLETE

¥32 Halts(u32 P, u32 I)

return 0;

¥oid P(ptr x)
int Halt_Status = H(x, x);
if (Halt_status)
HERE: goto HERE;
return;
int mainQ

output("Input_Halts = ", H(P, P));

-—10--- 07/25/22 09:01:24 AM

Appendix (Simulating halt decider applied to Peter Linz proof)

The following is the same idea a shown above this time it is applied to the Peter Linz Halting
Problem proof. It can only be undertood within the context of this proof.

A simulating halt decider (SHD) computes the mapping from its inputs to its own final states on
the basis of the behavior of its correctly simulated input.

All of the conventional halting problem counter-example inputs are simply rejected by a
simulating halt decider as non-halting because they fail to meet the Linz definition of halting:

computation that halts ... the Turing machine will halt whenever it enters a final state.
(Linz:1990:234)

USENET comp.theory: On 4/11/2022 3:19 PM, Malcolm McLean wrote:
> PQO's idea is to have a simulator with an infinite cycle detector.

> You would achieve this by modifying a UTM, so describing it as

> a "modified UTM", or "acts like a UTM until it detects an infinite

> cycle", is reasonable. And such a machine is a fairly powerful

> halt decider. Even if the infinite cycle detector isn't very

> sophisticated, it will still catch a large subset of non-halting

> machines.

The following simplifies the syntax for the definition of the Linz Turing machine H.
There is no need for the infinite loop after H.qy because it is never reached. The halting criteria
has been adapted so that it applies to a simulating halt decider (SHD).

Ago (A H*H (A (A) =*Aqy . .
If the correctly simulated input (H) (H) to H would reach its own final state of (H.qy) or (H.gn).

H.qo (H) —* H (A) (A) -* A.gn
If the correctly simulated input (H) (H) to H would never reach its own final state of (H.qy) or
(A.qn).

When H is applied to (H) // subscripts indicate unique finite strings
A copies its input (Fo) to (H+) then H simulates (o) (H1)

Then these steps would keep repeating: (unless their simulation is aborted)
Ao copies its input (A1) to (H2) then Ho simulates (A1) (H2)

A copies its input (H2) to (Hs) then H1 simulates (F2) (Hs)

H2 copies its input (As) to (Ha) then H2 simulates (Hz) (H)...

Since we can see that the simulated input: (Ho) to H would never reach its own final state of
(Ho.qy) or (Ho.qn) we know that it is non-halting.

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D.
C. Heath and Company. (317-320) this paper copyright 2022 by PL Olcott

w11 --- 07/25/22 09:01:25 AM

Infinite recursion / infinitely recursive emulation detection criteria

int H(ptr p, ptr i)
p(i);
}

void P(ptr x)
H(X, X);
return;

int mainQ

H(P,P);

If the execution trace of function P() called by function H() shows:

(1) Function H() is called twice in sequence from the same machine address of P().

(2) With the same parameters to H().

(3) With no control flow instructions between the invocation of P() and the call to H() from P().

Then the function call from P() to H() is infinitely recursive.
The exact same pattern applies when H() invokes simulate(p,i) with an x86 emulator.

When H is an infinite recursion detector it simply matches the above criteria in its execution
trace of P, aborts its simulation of its input and reports that its simulated input would never
reach its "return" instruction.

To avoid using static local memory for its stored execution trace H must know its own address
and see itself called from P with the same arguments that it was called with.

https://www.liarparadox.org/2022_07_22.zi
This is the complete system that compiles under:

Microsoft Visual Studio Community 2017
https://visualstudio.microsoft.com/vs/older-downloads/

It has not been recently compiled under UBUNTU
If a simulating halt decider continues to correctly simulate its input until it correctly

matches a non-halting behavior pattern then this SHD is necessarily correct when it
aborts its simulation and reports non-halting.

—12--- 07/25/22 09:01:25 AM

https://visualstudio.microsoft.com/vs/older-downloads/
https://www.liarparadox.org/2022_07_22.zip

Halt Decider and P
07/22/2022 07:05 AM 10,390 Halt7.c
07/22/2022 07:09 AM 3,989 Halt7.obj

x86utm operating system
07/22/2022 07:08 AM 72,499 x86utm.cpp
07/01/2022 03:40 PM 32,931 Read_COFF_Object.h

x86 emulator source-code

10/04/2020 07:44 pMm 17,240 api.c
05/03/2021 02:33 PM 58,872 decode.c
06/28/2020 05:22 pMm 20,495 mem.c
06/30/2020 12:06 AM 141,330 ops.cC
06/27/2022 11:15 AM 63,704 ops2.c
06/30/2020 12:09 AM 73,787 prim_ops.c
01/28/2020 06:19 AM 5,542 decode.h
02/17/2020 08:56 pPMm 18,558 getopt.h
01/28/2020 06:19 AM 1,859 mem.h
01/28/2020 06:19 AM 1,954 ops.h
01/28/2020 06:19 AM 6,133 prim_ops.h
02/09/2021 10:40 M 19,596 x86emu.h
10/04/2020 07:34 PM 4,996 x86emu_int.h

Compiles into x86utm.exe and takes Halt7.obj as its only argument

This is how we verify that the simulation is correct

In programming language theory, semantics is the field concerned with the rigorous
mathematical study of the meaning of programming languages.[1] It does so by evaluating the
meaning of syntactically valid strings defined by a specific programming language, showing the
computation involved. In such a case that the evaluation would be of syntactically invalid
strings, the result would be non-computation. Semantics describes the processes a computer

follows when executing a program in that specific language.]
https://en.wikipedia.org/wiki/Semantics_(computer_science)

We verify that the execution trace of the simulated input has the behavior that the simulated
x86 source-code specifies, line-by-line.

For any program H that might determine if programs halt, a "pathological" program P, called
with some input, can pass its own source and its input to H and then specifically do the
opposite of what H predicts P will do. No H can exist that handles this case.
https://en.wikipedia.org/wiki/Halting_problem

That when any TM or C simulating halt decider H correctly simulates any input matching the
above defined "pathological" input template P, that P presents the infinitely recursive non-
halting behavior pattern to H.

Furthermore H can correctly use this pattern match as its basis to abort its simulation and
correctly reject this input as non-halting.

WE STAY FOCUSED ON THIS POINT UNTIL FULLY UNDERSTOOD
It has been conclusively proven that the correctly simulated

input to H(P,P) correctly simulated by H cannot possibly

reach its "return" instruction.

13- 07/25/22 09:01:25 AM

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Semantics_(computer_science

[000013c6](01) 55 push ebp

[000013c7] (02) 8bec mov ebp,esp
[000013c9] (01) push ecx
[000013ca] (03) 8b4508 mov eax, [ebp+08]
[000013cd] (01) 50 push eax
[000013ce] (03) 8b4d08 mov ecx, [ebp+08]
000013d1](01) 51 push ecx

[000013d2] (05) e82ffdffff call 00001106
[000013d7](03) 83c408 add esB ,+08
[000013da] (03) 8945fc mov [ebp-04],eax

[000013dd] (04) 837dfc00 cmp dword [ebp -04],+00

[000013e1] (02) 7402 jz 000013e5
[000013e3](02) ebfe jmp 000013e3
[000013e5](02) 8be5 mov esp,ebp
[000013e7](01) 5d pop ebp

[000013e8] (01)
Size in bytes: (0035) [000013e8]

We have to do this at the C level.

goid P(ptr x)
int Halt_Status = H(x, x);
if (Halt_Status)
HERE: goto HERE;
return;
int mainQ

output("Input_Halts = ", H(P, P));

H(P,P) simulates its input then P calls H(P,P) to simulate itself

and if H did simulate it then the simulated P would call H(P,P) again
and if H did simulate it then the simulated P would call H(P,P) again
and if H did simulate it then the simulated P would call H(P,P) again
and if H did simulate it then the simulated P would call H(P,P) again
and if H did simulate it then the simulated P would call H(P,P) again

Can you see the repeating pattern ?

—14--- 07/25/22 09:01:25 AM

Example 05: P(P) halts because H(P,P) correctly determines that its input never halts

This conclusively proves that H(P,P) correctly simulates its input and that the behavior of the correctly simulated P
is very different than the directly executed P(P).

The correctly simulated P cannot possibly terminate normally by reaching its own "return" instruction. The
executed P does terminate normally and reaches its own "return" instruction.

If you are not an expert in the x86 language then you lack the basis to determine that the input to H(P,P) is not
simulated correctly. The strongest claim that you can make is that on the basis that you do not understand the x86
language you do not understand the proof.

typedef void (*ptr)Q;
int H(ptr p, ptr i); // simulating halt decider

void P(ptr x)
int Halt_Status = H(X, X);

if (Halt_status)
HERE: goto HERE;

return;
int main()
P(P);

}
—PQ i

[0000143b](01) 55 push ebp

[0000143¢c] (02) 8bec mov ebp,esp
[0000143e] (01) 51 push ecx
[0000143f] (03) 8b4508 mov eax, [ebp+08]
[00001442](01) 50 push eax
[00001443](03) 8b4d08 mov ecx, [ebp+08]
[00001446] (01) 51 push ecx
[00001447](05) e8affcffff call 000010fb
[0000144c] (03) 83c408 add esB ,+08
[0000144] (03) 8945fc mov [ebp-04],eax
[00001452] (04) 837dfc00 cmp dword [ebp—04],+00
[00001456] (02) 7402 jz 0000145a
[00001458] (02) ebfe jmp 00001458
[0000145a] (02) 8be5 mov esp,ebp
[0000145¢](01) 5d pop ebp
[0000145d](01) c3 ret

Size in bytes:(0035) [0000145d]
—main(Q)

[0000146b](01) 55 push ebp

[0000146c] (02) 8bec mov ebp,esp
[0000146e] (05) 683b140000 push 0000143b
[00001473](05) e8c3ffffff call 0000143b
[00001478](03) 83c404 add esp,+04
[0000147b] (02) 33cO Xor eax,eax
[0000147d] (01) 5d pop ebp

[0000147e] (01) ret

Size in bytes: (0020) [0000147e]

machine stack stack machine assembly
address address data code Tanguage
[0000146b] [00102428] [00000000] 55 push ebp
[0000146¢] [00102428] [00000000] 8bec mov ebp,esp

[0000146e] [00102424] [0000143b] 683b140000 push 0000143b // push P
[00001473][00102420] [00001478] e8c3ffffff call 0000143b // ca11 P with argument on stack

[0000143b] [0010241c] [00102428] 55 push ebp // enter executed P

[0000143¢c] [0010241c] [00102428] 8bec mov ebp,esp

[0000143e] [00102418] [00000000] 51 push ecx

[0000143] [00102418] [00000000] 8b4508 mov eax, [ebp+08] // 1oad eax with argument to P
[00001442] [00102414] [0000143b] 50 push eax ? P from eax

[00001443] [00102414] [0000143b] 8b4d08 mov ecx [ebp+08] // oad ecx with argument to P
00001446][00102410] [0000143b] 51 ush e // push P from ecx

[00001447] [0010240c] [0000144c] e8affcffff ca11 000010fb // ca11 executed H with arguments on stack

—15--- 07/25/22 09:01:25 AM

H: Begin Simulation Execution Trace Stored at:1124d4

Address_of_H:10

[0000143b]1[001124c0][001124c4] 55 push ebp // enter emulated P
[0000143c][001124c0] [001124c4] 8bec mov ebp,esp

[0000143e][001124bc] [00102490] 51 push ecx

[0000143F] [001124bc] [00102490] 8b4508 mov eax, [ebp+08] // 1oad eax with argument to P
[00001442]1[001124b8] [0000143b] 5 push eax ? P from eax
[00001443][001124b8] [0000143b] 8b4d08 mov ecx [ebp+08] // oad ecx with argument to P
[00001446] [001124b4] [0000143b] 5 push e push P from ecx

[00001447] [001124b0] [0000144c] e8affcffff call 000010fb // ca11 emulated H with arguments on stack
H: Infinitely Recursive Simulation Detected Simulation Stopped

When simulating halt decider H(P,P) simulates its input it can see that:

(1) Function H() is called from P().

(2) With the same arguments to H().

(3) With no instructions in P preceding its invocation of H(P,P) that could escape repeated simulations.

The above shows that the simulated P cannot possibly (reachs its “return” instruction and) terminate normally.
H(P,P) simulates its input then P calls H(P,P) to simulate itself again. When H sees that this otherwise infinitely
nested simulation would never end it aborts its simulation of P and rejects P as non-halting.

[0000144c] [00102418] [00000000] 83c408 add esB ,+08 // return to executed P

[0000144] [00102418] [00000000] 8945fc mov [ebp-04],eax // Tload Halt_status with return value
[00001452][00102418] [00000000] 837dfc00 cmp dword [ebp—04],+00 // if Halt_Status == 0

[00001456] [00102418] [00000000] 7402 jz 0000145a // goto 0000145a

[0000145a] [0010241c] [00102428] 8be5 mov esp,ebp

[0000145c] [00102420] [00001478] 5d pop ebp

[0000145d] [00102424] [0000143b] c3 ret // return from executed P to main
[00001478] [00102428] [00000000] 83c404 add esp,+04

[0000147b] [00102428] [00000000] 33c0 Xor eax,eax // set eax to 0

[0000147d] [0010242c] [00000018] 5d pop ebp

[0000147e] [00102430] [00000000] c3 ret // return from main to operating system

Number of Instructions Executed(998) == 15 Pages

-—16--- 07/25/22 09:01:25 AM

