
Prolog detects pathological self reference in the Gödel sentence

This sentence G ↔ ¬(F ⊢ G) and its negation G ↔ ~(F ⊢ ¬G) are shown to meet the 
conventional definition of incompleteness: Incomplete(T) ↔ ∃φ ((T ⊬ φ) ∧ (T ⊬ ¬φ)). 
They meet conventional definition of incompleteness because neither the sentence nor 
its negation is provable in F (or any other formal system). 

The first incompleteness theorem states that in any consistent formal system F within which a 
certain amount of arithmetic can be carried out, there are statements of the language of F which 
can neither be proved nor disproved in F. Raatikainen, Panu, "Gödel's Incompleteness 
Theorems",The Stanford Encyclopedia of Philosophy (Fall 2018 Edition) 

If Gödel's sentence is unprovable in Peano arithmetic (PA) only because PA is 
insufficiently expressive to prove this sentence and this sentence is a sentence of PA, 
then it would make perfect sense to say that PA is incomplete. 

If Gödel's sentence is unprovable in PA and the fact that it is unprovable in PA is (for 
example) provable type theory then we could say type theory proves that his sentence 
is not provable in PA. 

When we say that Gödel's sentence is true and unprovable we are actually saying that it
is true that it is unprovable in PA. If it was totally unprovable in every formal system then
it would simply be untrue.  

There is no formal system that can prove a sentence of this formal system only 
expressing its own unprovability because such a sentence is erroneous:  
“This sentence cannot be proven.” is semantically vacuous. “This sentence cannot be 
proven to be a box of chocolates.” can be proven to be true. 

The conventional definition of incompleteness: 
Incomplete(T) ↔ ∃φ ((T ⊬ φ) ∧ (T ⊬ ¬φ))

When we see that the following  Prolog expressions satisfy the above definition of 
incompleteness then we can see that they are equivalent to the Gödel sentence in the 
1931 incompleteness  proof. 

?- G = not(provable(F, G)). % G = ¬(F ⊢ G)   
?- G = not(provable(F, not(G))). % G = ¬(F ⊢ ¬G)   

When we test the above pair of expressions we find that neither of them are are 
provable in the Prolog formal system: (SWI-Prolog (threaded, 64 bits, version 7.6.4)



?- unify_with_occurs_check(G, not(provable(F, G))).
false.

?- unify_with_occurs_check(G, not(provable(F, not(G)))).
false.

Thus fulfilling the conventional definition of incompleteness, and proving equivalence to
the 1931 Gödel “Incompleteness” sentence. The 1931 Gödel Incompleteness theorem 
correctly concludes that neither G nor ¬G are provable in F. The key detail that it leaves 
out is that neither G nor ¬G are provable in F because both are erroneous cyclic terms 
that cannot be resolved in any formal system what-so-ever. 

BEGIN:(Gödel 1931:39-41)
...there is also a close relationship with the “liar” antinomy,14 ...

We are therefore confronted with a proposition which asserts its own unprovability.15 

14 Every epistemological antinomy can likewise be used for a similar undecidability proof.

15 In spite of appearances, there is nothing circular about such a proposition, since it begins by
asserting the unprovability of a wholly determinate formula (namely the q-th in the alphabetical 
arrangement with a definite substitution), and only subsequently (and in some way by accident) 
does it emerge that this formula is precisely that by which the proposition was itself expressed.
END:(Gödel 1931:39-41)

Gödel's footnote 15 is dodgy in that although it denies the circularity of his proposition he affirms
its circularity in the same paragraph that he denies it: 

Removing the dodgy words from the above. 
     a proposition...begins by asserting the unprovability of a wholly 
     determinate formula...this formula is precisely that by which the 
     proposition was itself expressed.

Paraphrasing the above using less clumsy words:
     a proposition asserts the unprovability of a formula that expresses 
     this same proposition: 

AKA the same pathological self-reference as this Prolog expression: 
G = not(provable(F, G)).

Prolog detects and reports pathological self-reference:
?- unify_with_occurs_check(G, not(provable(F, G))).
false.

Since Gödel says that: “Every epistemological antinomy can likewise be used for a similar 
undecidability proof.” (including the liar antimony AKA liar paradox) then we can analyze how 
Prolog handles the Liar Paradox: 



?- LP = not(true(LP)).
LP = not(true(LP)).

?- unify_with_occurs_check(LP, not(true(LP))).
false.

Because the Prolog Liar Paradox has an “uninstantiated subterm of itself” 
we can know that unification will fail because it specifies “some kind of infinite structure.”
The quotes come from: (Clocksin and Mellish 2003:255) (see below). If we simply take Gödel at 
his word: “Every epistemological antinomy can likewise be used for a similar 
undecidability proof.” then the Liar Paradox is equivalent to his own undecidable sentence. 

Godel, Kurt 1931. On Formally Undecidable Propositions of Principia Mathematica And 
Related Systems I, page 39-41. 

BEGIN:(Clocksin & Mellish 2003:254)
Finally, a note about how Prolog matching sometimes differs from the unification used in 
Resolution. Most Prolog systems will allow you to satisfy goals like: 

equal(X, X). 
?- equal(foo(Y), Y). 

that is, they will allow you to match a term against an uninstantiated subterm of itself. In this 
example, foo(Y) is matched against Y, which appears within it. As a result, Y will stand for 
foo(Y), which is foo(foo(Y)) (because of what Y stands for), which is foo(foo(foo(Y))), and so 
on. So Y ends up standing for some kind of infinite structure. 

Note that, whereas they may allow you to construct something like this, most Prolog systems 
will not be able to write it out at the end. According to the formal definition of Unification, this 
kind of “infinite term” should never come to exist. Thus Prolog systems that allow a term to 
match an uninstantiated subterm of itself do not act correctly as Resolution theorem provers. In 
order to make them do so, we would have to add a check that a variable cannot be instantiated to 
something containing itself. Such a check, an occurs check, would be straightforward to 
implement, but would slow down the execution of Prolog programs considerably. Since it would 
only affect very few programs, most implementors have simply left it out 1.                        

1 The Prolog standard states that the result is undefined if a Prolog system attempts to match
a term against an uninstantiated subterm of itself, which means that programs which cause
tills to happen will not be portable. A portable program should ensure that wherever an
occurs check might be applicable the built-in predicate unify_with_occurs_check/2 is used
explicitly instead of the normal unification operation of the Prolog implementation. As its
name suggests, this predicate acts like =/2 except that it fails if an occurs check detects an
illegal attempt to instantiate a variable.   END:(Clocksin & Mellish 2003:254)

Clocksin, W.F. and Mellish, C.S. 2003. Programming in Prolog Using the ISO Standard Fifth 
Edition, 254. Berlin Heidelberg: Springer-Verlag. 



G  := ∃X ~Provable(X, G)     // Written in Minimal Type Theory **
Automatically translated into a Directed Acyclic Graph by the MTT compiler

[01] G            (02)(04) 
[02] THERE_EXISTS (03) 
[03] X
[04] NOT          (05) 
[05] Provable     (03)(01) // cycle indicates 
                           // infinite evaluation loop

** x := y means x is defined to be another name for y
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The first incompleteness theorem states that in any consistent formal system F within which a 
certain amount of arithmetic can be carried out, there are statements of the language of F which 
can neither be proved nor disproved in F. Raatikainen, Panu, "Gödel's Incompleteness 
Theorems",The Stanford Encyclopedia of Philosophy (Fall 2018 Edition) 

If this expression is true then the Gödel sentence is false
~∃F ∈ Formal_Systems ~∃G ∈ WFF(F) (G ↔ (~(F ⊢ G) ∨ ~(F ⊢ ~G))) 
There are no WFF G of any Formal_System F such that G is materially equivalent to its own 
unprovability or irrefutability in F.    
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