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Abstract To date researchers planning experiments have always lived by the
mantra that ‘using equal sample sizes gives the best results’ and although
unequal groups are also used in experimentation, it is not the preferred method
of many and indeed actively discouraged in literature. However, during live
study planning there are other considerations that we must take into account
such as availability of study participants, statistical power and, indeed, the cost
of the study. These can all make allocating equal sample sizes difficult, and
sometimes near impossible. This, some might say, means that the study would
not adhere to rigorous statistical standard (Rosenbaum and Rubin, 1985).
However, here we present evidence that, not only is this a false assumption,
but that we may actually gain more power in the study by actually using
unequal groups. Here, data from a Sepsis Biomarker study is used, in which
the aim is to predict, by biomarker level and presence, whether the patient
would go on to develop sepsis. It was found that larger control groups may give
more power to studies looking for an effect in the mid range but not for large
or small effects. This study shows merit in the hypothesis that more power
can be achieved when a larger control group is used.

Keywords Unequal sample sizes · Power of a study · Sepsis · Biological ·
Medical · Biomarker

1 Introduction

It is often difficult in observational clinical studies to achieve the numbers of
treatment samples needed (Sharma et al., 2019; Guo and Luh, 2013; Dibao-
Dina et al., 2014). This then impacts the power of the analysis making it
difficult to detect a scientifically meaningful difference of interest (Dibao-Dina
et al., 2014).

Address(es) of author(s) should be given
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The rational behind this study was that the rarity of clinical subjects re-
sulted in difficulties obtaining a sample large enough to conduct biomarker
profiling. Therefore, the methods in this paper were examined in order to find
a reasonable way forwards with clinical experimentation on rare subjects.

The power of a test is defined as 1 − β = P (accepting H1 given H1 true);
this is also called the sensitivity (Lan and Lian, 2010). To be able to detect
a minimum difference (for example, between two means) with a given signif-
icance level, it is therefore necessary to have a sufficiently powered test. In
reality, this means that the sample size must be sufficiently large, as noted
above. Given a specified significance level (often 5%) and power (often 80%) it
is possible to calculate the sample size required to allow detection of a stated
minimum significant difference. Power is the probability of rejecting a false
null hypothesis and is equal to 1 − β. β is the probability of a type-II 1 error,
which occurs when a false null hypothesis is not rejected. In this procedure, a
type-II error occurs when you fail to reject the null hypothesis of nonequivalent
means when in fact the means are equivalent.

The current approach of using equal groups can be problematic from a
cost and study design perspective, i.e. being able to afford enough subjects
or even being able to obtain enough subjects. Cohen (1988) noted that “One
does not ordinarily plan to use samples of unequal size (since equal sample
sizes are optimal) but unequal n’s can occur in planning when. . . one sample’s
size is necessarily fixed by circumstances, so that the researchers freedom in
setting sample size is restricted to only one of the two samples”. As stated
by Hsu (1993) “. . . the availability of a very large second sample may not
compensate for a constraint in the size of the first sample”. It is possible
though, that a larger control group may compensate somewhat for the smaller
size of the treatment group. This type of problem is particularly relevant to
medical studies, especially when only a small percentage may go on to develop
a condition in question. If a larger control group could be used, it could have
implications on cost and design of studies and this could be exploited in clinical
studies. This leads to discussion of ethics in relation to this type of study.

This paper examines the hypothesis that, in some cases, the use of a large
control group may provide a study with a greater power than equal sample
sizes could. The assumption here is that sample sizes and, indeed treatment
and control ratios may be varied for better performance and that increasing
the control group gives more power (Tichy and Chytry, 2006). This way for-
ward is supported by Guo and Luh (2013) in the following statement: “Equal
allocation design is popular because of convenience and efficiency, but it is not

1 Type I Error: In a hypothesis test, a Type I error occurs when the null hypothesis is
rejected when it is in fact true; that is, H0 is wrongly rejected. A Type I error is often
considered to be more serious, and therefore more important to avoid, than a Type II error.
The hypothesis test procedure is therefore adjusted so that there is a guaranteed ‘low’
probability of rejecting the null hypothesis wrongly; this probability is never 0. A Type I
error can also be referred to as an error of the first kind.
Type II Error: A Type II error occurs when the null hypothesis H0, is not rejected when it
is in fact false. This is frequently due to sample sizes not being large enough to identify the
falseness of the null hypothesis (especially if the truth is very close to hypothesis).



Unequal sample sizes 3

practical”. In the next two sub sections we discuss areas where unequal sample
sizes have been more appropriate within studies and why this is the case.

The rest of the paper is organised as follows. Firstly, an overview of the
area in which this paper sits is presented. Experimentation is then conducted
to evaluate the claim of this paper. The findings are presented and a discussion
is conducted around recent work in this area. This paper then concludes with
a discussion about limitations and possible extensions of this work.

1.1 Unequal randomisation in studies

Dibao-Dina et al. (2014) conducted a study to discover what the most im-
portant reasons were for unequal randomisation, i.e. when there are unequal
numbers of patients in each group. This study went further to discuss whether
sample size calculations had been performed and whether they were clear
enough to be understood. This was examined in the area of Medical Research.

Dibao-Dina et al. (2014) states that statistical power is “usually maximal
with equal groups”. However, this is not substantiated with analysis or refer-
ence. Due to the nature of medical trials, unequal randomisation could lead
to more patients being allocated to the experiment rather than the control
group. This could influence the response in the placebo group. This response
may then appear exaggerated in comparison to an equal balanced design and
produce bias in the effect estimate. This can be caused by psychological factors
where patients were conscious that they were more likely to receive an active
ingredient than a placebo. A major problem with unequal randomisation can
be that that the experimental group is larger than the control. What happens
in the opposite circumstance where it is not possible to have a large treatment
group?

Dibao-Dina et al. (2014) states that the most common justification for
unequal randomisation in the review by (Dumville et al., 2006) was “gaining
experience with treatment”. As safety issues (i.e. side effects of the drug such
as adverse events, withdrawals due to adverse events and severity data) are
relatively rare this is another reason why unequal randomisation may be cho-
sen. Industry was the main sponsor of many of the studies cited in this paper
and 12% of the studies were related to infectious diseases. Of 106 reports from
the medical area: 29.2% did not give a sample size calculation and in a further
4.7% the calculation was unclear. Among the 70 reports for which a sample
size calculation was reported, unequal randomisation was not reported to have
been taken into account in 18 (25.7%) and in a further 4, (5.7%) the calcu-
lation was unclear. In the 70 reports for which a sample size calculation was
reported , the authors explicitly stated that they considered only equal size
groups for the sample size calculation. 77.4% did not report any justification
for using unequal randomisation (Dibao-Dina et al., 2014) This is an extremely
worrying set of statistics – especially in the field of medicine. This could point
to a lack of understanding of study planning or, indeed, that older statisti-
cal work has been taken on face value and applied without the assumptions
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having been examined. Below are listed the justifications given where unequal
randomisation was used.

In the 24 of 106 reports that justified their use of unequal randomisation,
the major justifications were (Dibao-Dina et al., 2014):

– Provide safety data (48.8%)
– Patient acceptability (26.8%)
– Only 4 trials had more patients in the control group and the justifications

were cost (2 studies) and patient acceptability (1 study); one study had no
justification for their design.

Dibao-Dina et al. (2014) Among the reports for which obtaining safety data
was a justification for using unequal randomisation, four reports did not report
on adverse events and seven did not describe one or more adverse events,
severity data or withdrawals due to adverse events.

Unequal randomisation occurs here mostly when there appears to be a
bias towards including more people in the treatment group, possibly in the
hope that more treatment samples may give a “more robust result or make
the treatment seem more effective” (Lan and Lian, 2010). It does not appear
that the basic assumptions of power and sample sizes have been looked at
in the context of an overall experiment, where any group number could be
changed to give more power. It appears that that the treatment group can be
over inflated in a bid to attain the required number of subjects to determine
whether a drug is safe or to include more people into the treatment group
to influence patient acceptability. As stated in Dibao-Dina et al. (2014) the
patients were “aware of a greater probability of receiving an active treatment
than a placebo”. These are very different aims from the ones purported to have
been tested in the studies themselves. Had the study set out a primary aim of
testing a drug for patient safety, that would be a completely different study
plan to one which tested the efficacy of a drug. Here it could be seen that two
aims are being merged into one but this could lead to a waste of resources
when two mini studies would be more cost effective and provide more useful
results (Dibao-Dina et al., 2014).

1.2 The impact of cost on group sizing

“When conducting research with controlled experiments, sample size is one of
the most important decisions that researchers have to make” (Guo and Luh,
2013).

Allocation of sample size in the case of maxmin2 theory (Guo and Luh,
2013) is not well explored in literature. The maxmin theory examines the fi-
nancial cost of subjects for a study and allocates the groups in an optimal
manner according to cost as a constraint. When financial costs and weight-
ings of samples come into play, analysis is needed that takes this into account

2 in this context, this would be maximizing the power whilst minimizing the cost or group
sizes.
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when allocating samples. For example, if a particular subject is rare Pisano
et al. (1998), then this may be associated with a high financial cost. When
cost is not considered and adequate preparation and analysis is not under-
taken, it can be seen that “insufficient or excessive sample sizes” will result
(Guo and Luh, 2013). As noted in previous sections, some studies can “re-
sult in less power or greater cost” (Levin, 1997). Within experimentation one
would prefer the sample size to provide maximal precision with minimal re-
sources. Also, groups with expensive treatments or rarity of subjects, and/or
patients, would inherently contain fewer subjects than the control. Lan and
Lian (2010) discuss using affordable groups but do not enter into analysis on
cost of subjects/patients.

Guo and Luh (2013) again make the point that existing analysis concerns
homogenous groups and raise the point that groups with heterogeneous vari-
ances need to be analysed also. When costs are included in an experiment
then equal allocation may no longer be feasible. In the case of medical trials
this can certainly be the case. Four scenarios were considered in Guo and Luh
(2013):

– Fixed research budget
– Fixed statistical power
– Fixed total sample size
– Uneven incremental costs

For costs and/or weightings to be applied a maxmin concept (concerning
the minimisation of cost and maximisation of group sizes, or subjects) was
used in order to maximise the power whilst minimising the cost. The resulting
allocation should:

– Minimise total sample sizes
– Minimise variable cost for designated power
– Maximise results for a fixed cost

To compare the effects by using different allocation ratios, two sample size
tables (see Figure 1 and 2 below) were produced by considering:

– The number of groups as two different sizes, as 4 and 6 (with subset a
being equal variance and b being unequal variance)

– The variance pattern
– The cost for each observation
– The designated power as 0.8 and 0.9.

Guo and Luh (2013) used two equations (Equation (7) and Equation (8) in
their paper) for calculating the efficient sample size allocation ratio. For ease,
these equations are reproduced below:

γj =
nj
n1

=
sj
s1

√
c1
cj

(7)

where j is the sample/group index, γj represents the allocation ratio, n1 and nj
are the sample/group sizes, s1 and sj are the standard deviations of the groups
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Fig. 1 Group size, total cost, total sample size, and the corresponding Type I error and the
simulated power for cost ($1, $1, $2, $5) and ($1, $1, $2, $2, $5, $5) (Guo and Luh, 2013).

Fig. 2 Group size, total cost, total sample size, and the corresponding Type I error and the
simulated power for cost ($5, $2, $1, $1) and ($5, $5, $2, $2, $1, $1) (Guo and Luh, 2013).
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and cj is the cost of obtaining a single observation from group j (similarly c1
is the cost of obtaining a single observation from group 1).

γj =
sj
s1

(8)

where γj represents the allocation ratio and s1 and sj are the standard devia-
tions of the groups. This is a special case of Equation (7) when c1 = cj for all
j (Guo and Luh, 2013).

Based on the research purpose, the allocation ratio was presented to min-
imize the total cost (based on Equation (7)) or to minimize the total sample
size (based on Equation (8)), respectively Guo and Luh (2013).

In the case of minimal total cost, the resulting cost is generally less than
the cost of minimal total sample size as expected. For example, in Figure 1,
when power = 0.8 and the variance = (1, 1, 4, 4, 9, 9), the cost is $520 by using
Equation (7) , whereas the cost is $576 by using Equation (8), which wastes
10.77%( (576− 520)/520 = 10.77%) of the cost. For all the conditions studied
in figure 1, the average waste of the cost is about 10.56%. Finally, in regard to
the total sample size, the resulting size by using Equation (8) is smaller than
the size by using Equation (7), as expected. The average waste of subjects if
Equation (7) is used is about 10.85% across conditions. Therefore, the impact
of selecting different allocation ratios is clearly shown in these two tables, and
especially, substantial cost savings are noted (Guo and Luh, 2013).

In Figure 1, it is not always the case that equal group sizes produce a
higher power in a study. The examples in this study show that, based on the
above constraints and parameters, unequal group sizes can both cost less and
generate a higher study power. The difference between equal variances (sub-
script a) and unequal variances (subscript b) further compounds the analysis.
Tests using unequal variances invariably needed a larger sample size to attain
the desired power; equal variances did not.

In Figure 2, the costs have changed but quite similar patterns can be
seen, overall the costs are lower, the Type I error is generally reduced but the
power overall is lower in this figure. This seems to be as a result of changing
configurations of the groups. However, there are changes in the desired power
level too.

It is not clear how the experiment has been conducted in its entirety as
the following statements show.

– The more expensive the cost for each observation, the smaller the group
size allocated.

– If the variances are unequal, the larger the variance, the larger the group
size allocated.

– If the large variance is concurrent with large cost the allocated group size
is moderated to being relatively not too large

– When the large variance is concurrent with small cost; the allocated size
is moderated to relatively large.

Guo and Luh (2013)
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In statement two there appears to be an assumption that a larger variance
requires a larger group. This does not seem to have been explored in the
analysis. The statements surrounding moderation of the group have no further
explanation within the paper. Therefore it is difficult to conclude what has
actually been done by the researcher. The paper is very in depth and it would
benefit from further explanation surrounding any assumptions made earlier
on in the paper. The work looks promising but in order to critique it fairly a
more detailed experiment would need to be run.

1.3 Study Assumptions

Due to the complexity and number of factors that could be accounted for
within this study, a number of assumptions have been used to constrain this
investigation.

– This study will be generic in that complex sampling designs will not be
considered and will therefore not take into account methods such as clus-
tering/stratifying etc.

– This study will be based on a simple data set where treatments are added
or not added to individual patients. This may produce results that will not
work with groups.

– Treatment effects discovered on subgroups may not be indicative of the
entire population or behaviour of the population.

– The results will only be valid for the range of data points considered.
– As this was a simulation study, the results are specific to the conditions

investigated. While a range of likely values and variables were included in
conducting the simulations, not all ranges or variables could be modelled.

2 Experimental Scenario

The scenario here was that Porton Down3 wanted to test sepsis patients and
determine if there was a way of forecasting the likelihood of a patient becoming
septic based on biomarker profiles. The data is very rare (von Knebel Doeberitz
and Lacroix, 1999), due to patients either becoming septic quickly or the signs
not being spotted in time in order to take a sample from the patient. Addi-
tionally there are relatively few patients across the UK who do become septic.
This led to discussions of the ’cost’ or ’rarity’ of the samples that we were
able to obtain in order to do the study. The debate focused around whether
a larger control group or unequal size groups would alleviate this issue but it
was determined that the power might be affected in such a way as to produce
a poor power thereby negatively affecting the study and potentially causing
poor results. This assumption was a very useful one for the experiment at

3 The UK’s centre for Chemical, Biological, Radiological and Nuclear defense (CBRN),
part of the Defence Science and Technology Laborator (DSTL) and the Ministry of Defence
(MOD)
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hand. However, it challenged fundamental statistical theory. Therefore, it was
thought prudent to produce an investigation into this area. As patients for this
study are rare (Yeh et al., 2009), this analysis was conducted through a sim-
ulation study. Data and original study are not available due to experimental
sensitivity at Porton Down.

2.1 Methodology

In examining the utility of a larger control group to lend more power to a study,
the t-test 4 and Fisher’s test 5 were chosen as common tests that are used in
this area of experimentation by dstl. The experiments were set up to show the
power gained by a study as the control group increases. In this experiment
the control group was increased by iterations to simulate the movement form
equal to unequal group sizes. The panels of each graph show the different effect
sizes sought. The following experiments were conducted using R.

2.2 t-test experiment

As stated in Zimmerman and Zumbo (1993) the t-test is robust with hetero-
geneous variances provided that the sample sizes are equal. According to their
paper, the Type I error becomes hugely inflated by unequal variances. In cases
where population distribution is normal but variances are unequal there have
been many suggestions of modifications to the t-test by a number of authors
such as Satterthwaite (1946), Smith (1938), Welch (1938). The modifications
these authors proposed however, all have problems controlling the Type I error
in non normal distributions.

A T-test is a statistical examination of two population means (Horne,
1998). A two-sample t-test examines whether two samples are different and is
commonly used when the variances of two normal distributions are unknown
and when an experiment uses a small sample size.

4 A T-test is a statistical examination of two population means. A two-sample t-test
examines whether two samples are different and is commonly used when the variances of
two normal distributions are unknown and when an experiment uses a small sample size.

5 Fishers test is designed to test if two population variances are equal. It does this by
comparing the ratio of two variances. So, if the variances are equal, the ratio of the variances
will be 1. All hypothesis testing is done under the assumption the null hypothesis is true.
(Hoffman, 2015)
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In Figure 3 the following is represented:

– Orange indicates the lowest number of control subjects (10) and Purple
the highest (50);

– Power is represented on the vertical;
– The horizontal titles on each panel indicate the change in effect size. In

each panel, as the size of the control group is increased, the effect on the
power is shown.

The t-test experiment results displayed in Fig. 3 show the following:

– It can be seen that the smaller the effect size the lower the power and the
larger the effect size the higher the power

– Label A denotes the area where it can be seen that it may be useful to
increase the control group slightly. After this level there is no real increase
in power per increase in control group

– Label B denotes where it can be seen that it could be extremely useful
to increase the control group to obtain a better power level and that the
control could be increased substantially

Fig. 4 T-test graph for effect size of 0.5. The multiplier represents the increase in the
control group and the levels indicate the colour bar representing each group

This methodology could produce a higher power for the study. The t-test
experiment (see Fig. 3) shows that small effect sizes may not particularly
benefit from increasing the control group, neither do large effect sizes. But
effect sizes that are in the panels representing 0.4, 0.5 and 0.6 may benefit
from some increase in the control group. The larger and smaller effect sizes
show very little or no increase in power for the increase of the control group.
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2.3 Fishers Test experiment

In order to visualise what might happen to power during Fisher’s test 6 when
group sizes changed an experiment was used to produce a generic output.
The experiment had examined the change in power as the control group is
increased, in Fig 5.

Fig. 6 Fisher test graph for showing increases in power for proportions of 0.5 and 0.2. The
multiplier represents the increase in the control group and the levels indicate the colour bar
representing each group

Power is represented on the vertical. The horizontal axes on each panel
indicate the effect size and corresponding proportions. It can be seen, in each
panel, as the size of the control group is increased, what happens to the power.
It can be seen that the smaller the effect size the lower the power and the larger
the effect size the higher the power. Blue indicates the lowest number of control
subjects (10) and yellow the highest (50).

In Figure 6 the following is represented:

– Blue indicates the lowest number of control subjects (10) and yellow the
highest (50);

– Power is represented on the vertical;
– The horizontal titles on each panel indicate the proportions and the change

in effect size as the multiplier is increased. If we examine Graph A we do
not see an improvement on power related to group size but on Graph B we
see an improvement on Power in relation to a larger control group size.

The Fisher’s test experiments displayed in Fig. 5 indicate the following:

– Label A denotes the area where it can be seen that it may be useful to
increase the control group slightly. After this level there is no real increase
in power per increase in control group

6 The F-test is designed to test if two population variances are equal. It does this by
comparing the ratio of two variances. So, if the variances are equal, the ratio of the variances
will be 1. All hypothesis testing is done under the assumption the null hypothesis is true.
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– Label B denotes where it can be seen that it could be extremely useful
to increase the control group and that it could be increased substantially.
This could produce a higher power for the study

The results above relate only to the experiment above and may not apply to
any study in particular. However, it is a worthwhile illustration that shows that
where there are medium effect sizes it could be useful to increase the control
slightly but after a certain point there is no further benefit to increasing the
size of the control group.

This shows that in certain circumstances there may be merit in increasing
the size of the control group but as with other studies, this study has a list
of assumptions, which mean that the results would have to be applied very
carefully and with justification.

3 Discussion

Ethics is clearly a large part of any trial or live study and the main questions
arising from this paper are, why do so few papers carry well discussed reasons
for choosing their methods, why is power not frequently used to determine the
size of the effects that can be expected within the study and what is the stance
of ethics on high risk studies on rapidly deteriorating patients? (Suresh and
Chandrashekara, 2012). This is concerning, as is the claim that a lot of studies
are performed under the guise of “safety”. There is investigation required here
to determine the circumstances surrounding statistical studies and what can
be done to improve them.

The Welch and t-test have been investigated as popular tests and De Win-
ter (2013), Ahad and Yahaya (2014), Rusticus and Lovato (2014) all describe
similar results. Equal size groups under positive pairing with homogeneous
variances can be analysed by the t test and Welch test with a robust error
rate. However, negative pairing, heterogeneous variance and heterogeneous
group size lead to an inflated Type I error. This leads to the question, what
theory is out there or being developed to address this issue, as it is uncommon
to have a ‘nice’ data set. Guo and Luh (2013) are looking at this issue and
also looking at the financial implications of studies.

The studies of the t-test and Fisher’s test indicated the benefits of increas-
ing the size of the control group where the effect size is in the middle range.
This hypothesis should be investigated in an actual trial to determine whether
the conclusions from the simulated results are valid. The experiment study
showed the sample size at which the benefits of an increase in the control
group were no longer as clear cut due to diminishing returns. This hypothesis
should also be validated through running trials. It is certain that, with fur-
ther research, this area of statistics will flourish and provide the community
with tools that have not been seen before and that are able to solve more
of our problems that either cannot currently be solved or are solved in an
unsatisfactory manner.
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Many studies have published results of large effect sizes but lack the pre-
cision to detect differences of interest. Such shortcomings have led some to
argue for reform of current sample size conventions in order to avoid misin-
terpretation of completed studies and harm to scientific research as seen in
Jia and Lynn (2015). This statement is extremely important for the future
of the work contained within this paper. There must be an investigation into
current practise and indeed education on current practise. The risk of this not
happening is that truly misleading information could be disseminated to the
public or into important decisions for business and government.

Bacchetti et al. (2011) states “conventional power calculations provide pre-
cise sample sizes – but only using precise assumptions”. Another important
issue is that many, if not all, statistical tests are based on assumptions, as
is much of mathematics. Therefore the practitioner must be acutely aware
of the data they have and how tests can be used to provide the answers they
seek. Blindly applying theory or partially understood theory can lead to errors
that put the study at risk of being misleading or completely incorrect. The
chosen theory/test should be investigated fully i.e. the assumptions and pre
requisites for using a particular theory are extremely important when applying
theory to practise. It may be that the theory does not fit the application and
new theory may need to be sought out. As the t-test and Welch test are very
commonly used tests the question is are they being applied correctly to the
correct situations? It has been seen in previous work that mistakes have been
made in applications of theory or indeed the theory has not been applied at all
(Dibao-Dina et al., 2014) (Blanchin et al., 2013). If this is the case with two
of the most commonly used tests then action must be taken by professional
bodies to generate guidance to ensure that this does not continue (Bradley
and Schaefer, 1998).

4 Positioning within recent work

The impact of sample size is shown to impact power and Type 1 error rates
in a study by Ahad and Yahaya (2014). The experimental work in this paper
is beginning to formalise issues that have been found in other work. The fact
that Fishers test and t-tests are impacted by the choice of sample sizes and
the resulting power does not appear to have been considered overmuch due to
the theory of using equal sample sizes as being the best practice. Looking at
the Welch test is another example of how group sizes can impact a standard
statistical test in potentially large, and undesirable ways. If, as is found in the
study by Ahad and Yahaya (2014), power and Type 1 error rates are affected
then the power of the study may not be suitable for the objective and, even
worse, there may be errors that significantly affect the results. This has the
potential to render a very expensive study either worthless or misleading to a
point that it may not be used or relied upon.

In this section two studies will be analysed that show:

– The impact of sample size and variability on power and Type 1 error rates
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– The impact of group sizes on a Welch Test

4.1 Impact of sample size and variability on power and Type I error rates

Bacchetti et al. (2005) states that “The average projected burden per partic-
ipant remains constant as the sample size increases, but the projected study
value does not increase as rapidly as the sample size if it is assumed to be pro-
portional to power or inversely proportional to confidence interval7 width.”
This implies that the value per participant declines as the sample size in-
creases and that smaller studies therefore have more favourable ratios of pro-
jected value to participant burden. The reality is that researchers are far from
the “mega trial of 10,000 subjects”, Ioannidis (2013). Due to restrictions on
“time, budget or ethical considerations”, De Winter (2013) large samples may
not be accessible. The main issue with using a small sample is the higher risk
of Type I or Type II errors. A small sample size can imply low statistical power
or high Type II Error. This puts the researcher at risk of a false positive result,
Cohen et al. (1965).

Siegel (1956) states that traditional parametric tests should not be used
with small sample sizes due to the underlying required assumptions:

– t-test requires observations to be drawn from a normally distributed pop-
ulation

– Two sample t-test requires that the two populations have the same variance

Siegel (1956) stated that these assumptions cannot be tested when there is
a small sample size. Therefore, the t-test should be avoided in favour of a non
parametric test when dealing with small samples. Intuitively we would believe
that a small sample size would only be able to show large effects within the
data, not smaller size effects due to a lack of data points. With small samples
low statistical power must therefore be accepted in this situation. Studies have
been conducted that counter this assertion. Siegel counters this argument in
Siegel (1956).

In the following output from a study conducted by De Winter (2013) ex-
periments have been conducted to determine the statistical power and Type
I error rate of the one and two sample t-tests, De Winter (2013). The experi-
ments were carried out for effect sizes (D) between 0 (i.e. Null Holds) and 40
(i.e. alternative hypothesis holds with large effect) and for N8=2, N=3, N=5.
Each case was simulated 100,000 times.

7 The confidence level describes the uncertainty associated with a sampling method. Sup-
pose we used the same sampling method to select different samples and to compute a
different interval estimate for each sample. Some interval estimates would include the true
population parameter and some would not. A 90% confidence level means that we would
expect 90% of the interval estimates to include the population parameter; A 95% confidence
level means that 95% of the intervals would include the parameter; and so on.

8 sample size
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The study also investigates the following scenarios:

– Unequal variances
– Unequal sample sizes
– Unequal sample sizes and unequal variances

Only the t-test and Welch Test columns (t-test 1 sample, t-test 2 sample
& Welch) are relevant here.

In Figure 7 the group sizes are very small and it is debatable whether,
using group sizes of 2 would actually yield these results in live trials. For the
one sample t-test, acceptable statistical power (1-Type II error rate ¿80%) is
reached for D ≥ 15. The t-test provides acceptable power for small sample
sizes, provided the effect is large. The Welch 2 sample test indicates an in-
creased ability to detect effects as the group sizes increase. This shows that
there comes a point at where more effort yields nominal results. The results
are summarised below.

Fig. 8 Proportion of 100,000 repetitions yielding p < 0.05 for various mean distances D.
Equal sample sizes, (De Winter, 2013)

It can be seen that the larger the group, the easier it is to detect small
effects. When the group is smaller then it would be expected that we would
only be able to see the largest effects. However, by using a two sample experi-
ment rather than a one sample there is a greater chance of detecting medium
to small effects with lower samples sizes.

For unequal groups (N=2, M=5) acceptable statistical power is reached at
D ≥ 4, for unequal variances the corresponding figure is D ≥ 6. It can be seen
that unequal variances have more of an effect on whether the power can be
correctly calculated than unequal groups. The Welch test begins to perform
poorly under unequal group sizes and variances. Indeed the t-test performs
better here.

For the case N=2 with small variance and M=5 with large variance the
t-test reaches acceptable statistical power at D ≥ 6. For the case N=5 (small
variance) and M=2 with large variance the t-test reaches acceptable power at
D ≥ 4. The Welch Test out performs the t-test in the first case but fails con-
siderably in the second. Therefore the best case scenario for detecting smaller
effects, i.e. the case where the highest power is observed, is a large group with
small variance compared with a smaller group with larger variance. It seems
that variance has a much larger effect on all of the tests above than group size.
Ahad and Yahaya (2014) suggest that the t-test can be unsatisfactory with
regard to Type I error rates when data are from populations with unequal
variances. experiments conducted with N=3, D=0 for estimating the Type I
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Fig. 9 Proportion of 100,000 repetitions yielding p¡0.05 for various mean distances D. (Left)
- Unequal Sample Sizes, (Right ) Unequal Variances, De Winter (2013)

Fig. 10 Proportion of 100,000 repetitions yielding p¡0.05 for various mean distances D
(Left) - Unequal Sample Sizes (Right ) Unequal Variances, De Winter (2013)

error rate and D=2 was used for estimating statistical power, (De Winter,
2013).

Figure 11 shows that the Type I error rate is quite low in this study but
the Type II error rate can get quite high for the t-test. A high Type I error
was observed for unequal variances combined with unequal sample sizes. The
experiments further clarified that when the sample size is extremely small,
Type II errors can only be avoided if the effect size being detected is large.
The high Type I error rate for the t-test is caused by the pooled standard
deviation being mostly determined by the larger sample size having the lower
variability, while the difference in sample size is determined mostly by the
smaller sample size having the higher variability. Therefore “the t statistic is
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Fig. 11 Type I error rate and Statistical Power (1- Type II error rate) for paired t-test.
experiments conducted with N=3, D=0 for estimating the Type I error rate and D=2 was
used for estimating statistical power, De Winter (2013)

inflated”, De Winter (2013). Consequently, conducting a t-test with a small
sample size is acceptable providing the effect size is large. The study also found
that there could be a high false positive rate on the one sample t-test on non-
normal data. This means that the high false positive rate could also affect
conclusions drawn from the data and render them misleading. The primary
take away from this analysis is that it is important to know the characteristics
of the data and the assumptions attached to the tests. If this is not known
then the wrong test can be chosen or a test chosen that does not suit the
parameters of the data, thereby invalidating the experiment. In the case of
experiments with costly or rare subjects, this can end the experiment with
poor, or misleading conclusions.

4.2 Welch Test (Heterogeneous variances and group sizes)

The following analysis by Ahad and Yahaya (2014), looks at the robustness
of the Welch test when variances are unequal and also under the alternative,
the Chi Squared. The Welch test is used to compare means between two inde-
pendent groups without assuming equal population variances. The Welch test
however is not robust in the following circumstances:

– Distribution is non-normal
– Variance is heterogeneous and unequal size groups occur together

In these cases the Type I error will inflate. This is supported by the earlier
analysis in sub section 4.1, Impact of sample size and variability on power and
Type I error rates.
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In the investigation by Ahad and Yahaya (2014), various conditions such
as sample sizes, types of distributions and unequal group variances were ma-
nipulated. Normal distribution was used and for non normal chi squared was
chosen. Alpha9 was set at 0.05 and 0.8 was used as a desired power level. Dif-
ferent ratios of positive and negative pairings were examined. Positive meaning
the variance and sample sizes are directly associated, negatively paired being
inversely associated.

Fig. 12 Power of Welch test when group size (5,15) (Ahad and Yahaya, 2014)

Fig. 13 Type I error rates of Welch test when group size (5,15) (Ahad and Yahaya, 2014)

In Figure 12, it is illustrated that only large effects can be detected at
a statistically significant power level when the variances are the same in the
case of varying group sizes. In all other cases where there is heterogeneity
of variance and group size, not even large effects can be detected with any
certainty. When the normal criterion is violated it can be seen again that only
in the case of equal variances that any effect can be detected and the only effect

9 This option specifies one or more values for the probability of a Type-I error. A Type-I
error occurs when a true null hypothesis is rejected. In this procedure, a Type-I error occurs
when you reject the null hypothesis of nonequivalent means when in fact the means are
nonequivalent. Values must be between zero and one. Historically, the value of 0.05 has
been used for alpha. This means that about one test in twenty will falsely reject the null
hypothesis. A value is chosen for alpha that represents the risk of a type-I error you are
willing to take in your experimental situation.
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that can be detected is a large one. The test showed lower rates of performance
under variance heterogeneity, failing faster with negatively paired under the
chi squared.

Fig. 14 Power of Welch test when group size (10,20) (Ahad and Yahaya, 2014)

Fig. 15 Type I error rates of Welch test when group sizes (10, 20) (Ahad and Yahaya,
2014)

Figure 15, shows that as the groups come closer to being the same size:

– In the case of homogeneous variance more medium sized effects are de-
tected. In the case of heterogeneous variance larger effects are detected.

– Where large differences in variance are seen, still no effect can be detected
with any certainty

In the chi square test the same results are seen. In the Type I error table
the test is robust for all but the Chi Squared distribution under negatively
paired conditions, with heterogeneous variance. This demonstrates that there
could be a clear cut off point for the performance of the test.

Figure 15 shows results that seem to suggest that an optimal sample size
comparison has been reached. The Welch test produced robust Type I error
rates for all combinations of group sizes and variances, under chi squared the
test appears robust under homogeneous variances and positive pairings. How-
ever, when the variance heterogeneity increased with unequal groups under
negatively paired conditions, the test produced higher Type I error rates. In
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Fig. 16 Power of Welch test when group sizes (15,25) (Ahad and Yahaya, 2014)

)

Fig. 17 Type I error rates of Welch test when group sizes (15,25)) (Ahad and Yahaya,
2014)

this experiment Welch’s test produced a consistent Type I error rate for all
combinations of group sizes and group variances, Ahad and Yahaya (2014).

In De Winter (2013) it can be seen that only large effects were able to
be detected when using the t-test, where the groups were small but as the
groups reached the size N=M=5 smaller effects could be detected. Smaller
sample sizes affected the performance of the test negatively. In the following
cases the test performed poorly: small samples sizes, unequal variances, un-
equal group sizes and unequal variance with unequal group sizes. De Winter
(2013) investigated the Welch Test under the same conditions as the t-test and
found that it performed well under assumptions of homogeneous variances and
group sizes but as the group sizes and variances became more heterogeneous
the test performed poorly. The Welch test simulation in Ahad and Yahaya
(2014) performed well under the normal and chi squared distributions when
variance was homogenous and groups were similar in size under positively
paired conditions. The test performed poorly under the conditions of hetero-
geneous variance, heterogeneous group size and under the condition of negative
pairing. The two studies support each other’s findings with De Winter (2013)
perhaps being the most informative in this investigation as a comparison vi-
sual was produced for the t-test and Welch test. This, along with the study
within this paper shows that equal sample sizes may not be possible, desirable
or even optimal. Indeed, under varying conditions it is prudent to determine
your exact experimental conditions, such as cost or difficulty in obtaining a
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sample, the same or unequal variances for groups, same or unequal sample
sizes for groups, etc (Schulz and Grimes, 2002), and then choose your method
of analysis and examine the potential power calculation based on the charac-
teristics of the experiment. As we have seen within the experimental analysis
part of this paper, the power calculation can be optimised purely on group
size and as we have seen in (Guo and Luh, 2013) the calculation can also be
optimised for cost or rarity of subject. Therefore, it is worth considering the
aims and the study conditions intently before starting a study.

5 Ethical Concerns

For a study to be ethical in its design, its projected value must outweigh the
projected risks to participants (Bacchetti et al., 2011). Does this mean that if
these conditions are met then the study is ethical?

As we have entered the territory of patient acceptability and medical trials,
it seems prudent that a discussion on ethics should take place. Ethics is an ex-
tremely important consideration when running any trial and it is what keeps a
trial within the bounds of acceptability in terms of pain, safety and acceptabil-
ity, to name but a few parameters. Patient acceptability is a term that could
be used to suggest that patients have no possibility of access to treatment un-
less included in study and randomised to treatment. Another reason for using
the justification of a larger treatment group was to expose fewer patients to
inferior treatment,(Dibao-Dina et al., 2014). Neither of these reasons can be
seen as ethical as they “presuppose a high degree of certainty regarding risks
and benefits of the intervention, (Dibao-Dina et al., 2014). Indeed Dibao-Dina
et al. (2014) states that “adverse events were not fully reported in about half
of the reports for which safety issues were the justification”. One would ex-
pect to see a full report of any safety or safety related issues should this be
the aim of the study and especially where this was given as justification for
altering the parameters of the study. However Dibao-Dina et al. (2014) stuck
to the familiar adage that “statistical power is usually maximal with equal
sized groups” and raised this as a concern with the studies examined.

Another ethical consideration is when unequal randomisation leads to al-
locating more patients to the experimental group than the control group. This
could influence the response in the control group. Dibao-Dina et al. (2014)
stated that “the placebo response could then be exaggerated... inducing a bias
in the treatment effect estimate”. The result may be explained by patient ex-
pectations: “they tend to expect a good treatment response with the un- equal
randomization because they were aware of a greater probability of receiving
an active treatment than a placebo” (Dibao-Dina et al., 2014).

Dibao-Dina et al. (2014) reports that the unequal randomisation method
in 96.2% of cases recruited more patients to the intervention than the control
and this was taken into account in the sample size calculation in 46.2% of
reports. This is concerning as every statistical plan should be fully explained,
not just where it is envisaged that a departure from the usual approach has
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taken place. Bacchetti et al. (2005) counters this by stating “we see no valid
ethical argument against small, high risk/high payoff studies as have been
recently advocated for rapidly fatal disease...a more legitimate ethical issue
regarding sample size is whether it is too large”. This relates to the balance
between the value of a study and the burdens accepted by the patients, as the
burden would not necessarily improve as the sample size increased. This is an
extremely valid point in the world of ethics; however, this may not counteract
the need for well designed statistical studies in cases other than rapidly fatal
diseases.

Bacchetti et al. (2011) states “conventional power calculations provide pre-
cise sample sizes – but only using precise assumptions”. In this paper it is ar-
gued that if the precise assumptions cannot be met then the study should not
be rejected out of hand as there may still be value to it. The question here is
whether this view is truly ethical. Bacchetti et al. (2005) makes the argument
that in first time intervention studies or studies requiring nonhuman primate
participation, to increase the size of the study in the quest for power would
then make the study inherently unethical. Here the point can be raised again
that each statistical study is unique and will have its own set of characteristics
and assumptions. While most will be amenable to power calculations, some
may not. What matters is that the study is taken on its own merits, conducted
in an ethical manner and robust analysis is conducted with whichever method
is the most appropriate. There is a very important lesson here that despite the
current furore surrounding power and analysis – it may not always be relevant
to the study.

6 Conclusion

The question of whether unequal groups is a useful route to take is a complex
one. This paper has investigated the work surrounding this area and produced
experiments to investigate the results.

This study was used to move forward modelling on sepsis patients at Porton
Down. The rarity of these patients, and indeed, ones who were in the first
stages of sepsis, was such that it was extremely hard to get a sample from them
and this led to small sample sizes overall. In order to conduct a meaningful
study, the results of this paper have shown that we can obtain more power
in some circumstances by using a larger control group of unequal size groups.
This enabled the research to be designed in a cost effective way and also in a
way where small sample sizes could be used but not to the detriment of the
study.

However, this is not to say that this could be applied to any live study.
It would be extremely useful to apply this theory to live trials to investigate
whether the experiments and conclusions drawn here stand up in reality. There
are some limitations to this study as the results are specific to the conditions
investigated. The results from the individual papers discussed also adhere to
a set of assumptions and particular conditions. The initial question this paper
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set out to answer was “Can more power be gained from a study by increasing
the control group?”. It has been determined that, dependent on the following
points, more power could potentially be gained from a study by using a larger
control group:

– Has the theory been correctly applied?
– Does the data have the correct format for the tests in the study?
– Has an initial power calculation been done and aims of the study deter-

mined?
– Has an exploratory data analysis been conducted on the data?

Further work needs to be done in this area as it is stated frequently that
equal sample sizes perform the best in many papers. This may be true but
this luxury is not always available and cost is always a factor in any study.
Much research is being done currently on developing theory such as minimax
in statistics, tests that can deal with heterogeneity of variances and unequal
sample size. This is promising but worrying that it is only now that this issue
is being recognised. The theories put forward here will have lasting impact on
the way study design is done and indeed on medical and educational papers
where statistics is concerned. More needs to be done to make sure that –
especially in a trials field- the relevant theory is applied correctly. Where it is
necessary, power analysis should be applied and used correctly.

It is fair to conclude that small sample sizes and/or unequal variances will
render studies unable to detect all but the largest effects and in the case of
the two occurring together it is possible that no effect at all may be detected.
This must be addressed when initial calculations are being made to determine
the nature and construct of the study. Cost and sample size is a new area that
is evolving and allowing us to maximise gains whilst minimising cost and/or
group size. This has applications in most areas as studies can become extremely
expensive and provides a precision not seen before by merging Operational
Research and Statistics in a beautiful way. Further work could be undertaken
to investigate the areas explored in this paper.
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