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Abstract
We introduce a class of algebras, called twist-structures, whose members are built as special squares of an arbitrary residuated
lattice. We show how our construction relates to and encompasses results obtained by several authors on the algebraic
semantics of non-classical logics. We define a logic that corresponds to our twist-structures and show how to expand it with
modal operators, obtaining a paraconsistent many-valued modal logic that generalizes existing work on modal expansions
of both Belnap–Dunn logic and paraconsistent Nelson logic.
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1 Introduction and motivation

One of the latest and most challenging trends of research in non-classical logics is the attempt
to combine different non-classical approaches together, for instance many-valued and modal logic
[8, 9]. Such an interaction offers the advantage of dealing with modal notions like belief, knowledge,
obligations, in connection with other aspects of reasoning that can be best handled using many-
valued logics, for instance vagueness [5, 13] and inconsistency. If the ultimate aim is to model
human reasoning, it is obvious that all these aspects have to be dealt with at the same time, therefore
such study is especially interesting from the point of view of Theoretical Computer Science and
Artificial Intelligence.

One of the best-known logical systems proposed for handling inconsistent and also partial infor-
mation is the Belnap–Dunn logic [2, 3, 7]. This logic is based on four truth values, which can be
thought of as the two classical ones plus two additional values meant to represent, respectively, lack
of information and inconsistency (see the famous interpretation proposed by Belnap [2]). Such a
simple approach, later on generalized by Ginsberg [12] with the notion of bilattice, proved to be
very flexible and has been widely applied in different areas of Computer Science.

In [17] Odintsov and Wansing proposed a modal version of the Belnap–Dunn logic that aims at
extending Belnap’s treatment of partiality and inconsistency to a modal setting. In [18] this approach
is taken a step further, introducing a modal version of paraconsistent Nelson logic [1] that can also
be regarded as a generalization of Odintsov and Wansing’s.

In the present study we adopt an even more general approach, introducing a class of algebras
that can be used as a semantics for paraconsistent and many-valued modal logics, encompassing as
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special cases both the work done in [17] and in [18]. In our attempt to be as general as possible, it
is our hope to lay a theoretical framework that can be used for any future study of paraconsistent
modal logics.

We will first introduce through a concrete construction the algebraic structures we are interested
in, then we will show that this class of algebras can be abstractly presented as a variety and we will
discuss its logical counterpart.

The construction that we use is a generalization of the one known in the literature as twist-
structure, whose importance has been growing in recent years within the study of algebras related
to non-classical logics (see for instance [6, 11, 16, 19]). We believe that the generalization that we
present here, even if we restrict our attention to the non-modal language, may have an independent
interest for algebraists and logicians working on twist-structures and we hope that our work will
encourage them to further explore the potential of this construction.

This article is organized as follows. In Section 2 we introduce our generalized twist-structure
construction, by which we define algebras that are special second powers of residuated lattices.
The algebraic structures thus obtained have an involutive lattice reduct together with two basic
implication operations; for now there are no modal operators. We state some interesting properties
of these algebras and we explain in what sense our construction can be seen as a generalization
of existing work on twist-structures. In Section 3 we introduce an abstract equational presentation
for our twist-structures and prove that the algebras obtained through the concrete construction of
Section 2 are precisely those that satisfy our equations. In Section 4 we show how, starting with a
residuated lattice that has one or more modal operators, it is possible to add modal operators on the
associated twist-structure. We show that the class of modal twist-structures thus obtained can also be
abstractly presented as a variety. Section 5 contains an interesting result from a universal algebraic
point of view: namely, that the congruences of any (modal) twist-structure are isomorphic to those
of the associated residuated lattice (with modal operators). This is also a generalization of a result
that is known, for instance, for twist-structures defined over generalized Heyting algebras (those
considered in [16]). Finally, in Section 6 we associate two logics to, respectively, non-modal and
modal twist-structures, and we prove that our logics are algebraizable (therefore strongly complete)
with respect to the corresponding algebraic structures.

2 The twist-structure construction

As mentioned above, we start with a residuated lattice L to build a new algebra whose carrier set
is precisely the Cartesian product L×L and whose operations are defined in the first component
as in a direct product but are somehow twisted in the second component. The idea behind our
choice for a starting point is that residuated lattices are very general algebraic structures (encom-
passing Boolean algebras, Heyting algebras, fuzzy logics algebras, etc.) whose algebraic language
has nevertheless a straightforward logical interpretation (conjunction, disjunction, negation, impli-
cation).

By a residuated lattice we mean here an algebra L=〈L,�,�,·,\,/,1〉 such that 〈L,·,1〉 is a monoid,
〈L,�,�〉 is a lattice with associated order � and the following residuation properties hold: for all
a,b,c∈L,

(R) a·b�c iff b�a\c iff a�c/b.
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DEFINITION 2.1
Let L=〈L,�,�,·,\,/,1〉 be a residuated lattice. The full twist-structure over L is the algebra L	
=
〈L×L,∧,∨,⊃,⊂,¬,〈1,1〉〉 with operations defined, for all 〈a1,a2〉,〈b1,b2〉∈L×L, as follows:

〈a1,a2〉∧〈b1,b2〉 :=〈a1�b1,a2�b2〉
〈a1,a2〉∨〈b1,b2〉 :=〈a1�b1,a2�b2〉
〈a1,a2〉⊃〈b1,b2〉 :=〈a1\b1,b2 ·a1〉
〈a1,a2〉⊂〈b1,b2〉 :=〈a1/b1,b1 ·a2〉

¬〈a1,a2〉 :=〈a2,a1〉
A twist-structure over L is an arbitrary subalgebra A (with respect to the language
{∧,∨,⊃,⊂,¬,〈1,1〉}, where 〈1,1〉 is considered as a 0-ary operation) of the full twist-structure
L	
 such that π1(A)=L, where π1(A)={a1∈L : 〈a1,a2〉∈A}. We write A≤L	
 to mean that A is a
twist-structure over L.

As mentioned above, we notice that the name ‘twist-structure’ refers to the fact that the first
component of each binary operation is defined as in a direct product, while the second one is twisted
in some way. Let us also observe that the technical condition that π1(A)=L is meant to ensure
that the relation between a twist-structure and its associated residuated lattice is in some sense a
canonical one. This will be made precise later, when we will start with an abstractly defined class
of algebras and will prove that they coincide with the twist-structures defined above.

From Definition 2.1 it follows immediately that the reduct 〈A,∧,∨〉 of any twist structure A≤L	


is a lattice whose order ≤ is given by

〈a1,a2〉≤〈b1,b2〉 iff a1�b1 and b2�a2

for all 〈a1,a2〉,〈b1,b2〉∈L×L. Moreover, the unary operation ¬ (that we think of as a negation) is
involutive and order-reversing, i.e. it holds that ¬¬〈a1,a2〉=〈a1,a2〉 and

〈a1,a2〉≤〈b1,b2〉 iff ¬〈b1,b2〉≤¬〈a1,a2〉.
Thus, the reduct 〈A,∧,∨,¬〉 is a structure that is sometimes referred to in the literature as an
involutive lattice [19].

We introduce three derived operations in any A≤L	
 defined, for all a,b∈L×L, as follows:

a→b := (a⊃b)∧(¬a⊂¬b)

a←b := ¬a→¬b

a∗b := ¬(b→¬a).

As the notation suggests, one should think of all four operations ⊃,⊂,→,← as different kinds of
implications, while the ∗ operation can be regarded as a second type of conjunction besides the lattice
meet, the one that is sometimes called fusion or strong conjunction in the literature on substructural
logics (more on this below).

Applying the definitions, we have that, for all 〈a1,a2〉,〈b1,b2〉∈L1×L2,

〈a1,a2〉→〈b1,b2〉 = 〈(a1\b1)�(a2/b2),b2 ·a1〉
〈a1,a2〉←〈b1,b2〉 = 〈(a1/b1)�(a2\b2),b1 ·a2〉
〈a1,a2〉∗〈b1,b2〉 = 〈a1 ·b1,(b2/a1)�(b1\a2)〉.
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Notice that all the operations of the twist-structure except ¬,→ and← are defined, in the first com-
ponent, exactly as in a direct product (if we identify 〈∧,∨,⊃,⊂,∗〉 with 〈�,�,\,/,·〉, respectively).
This will turn out to be a key feature in our approach to the study of these structures.

The construction described in Definition 2.1 was inspired by the one introduced in [14]; see
also [19, Theorem 3.3] and [6, Theorem 2.3]. We are going to discuss the relationship with these
constructions below.

The following result also follows immediately from [14, Proposition 2.2].

PROPOSITION 2.2
Let A≤L	
 be a twist-structure over a residuated lattice L. Then 〈A,∗〉 is a semigroup (i.e. the
operation ∗ is associative) and, for all a,b,c∈A,

a∗b≤c iff b≤a→c iff a≤c←b.

Thus, in any twist-structure there are two residuated pairs and we see that the operation ∗
plays a similar role to the monoidal operation (fusion) in residuated lattices. Notice, however, that
〈A,∗,〈1,1〉〉 need not be a monoid, because 〈1,1〉 may not be the unit element. In fact, applying the
definitions, we have, for instance

〈a1,a2〉∗〈1,1〉=〈a1 ·1,(1/a1)�(1\a2)〉=〈a1,(1/a1)�a2〉.
Clearly, the equality (1/a1)�a2=a2 need not be satisfied in an arbitrary residuated lattice. In fact,
using this equality it is easy to check that 〈A,∗,〈1,1〉〉 is a monoid if and only if 1 is the maximum
element of the lattice order of L.

We are now going to state some interesting properties of twist-structures that will be used in the
next section to provide an equational axiomatization of this class of algebras, thus proving that they
form a variety.

Let A≤L	
 be a twist-structure over L. Let us define, for all a∈A,

a′ := ¬(a⊃〈1,1〉).
Letting a=〈a1,a2〉 and applying the definitions, we have that

〈a1,a2〉′ =〈a1,a1\1〉.
We can then consider the set A′ ⊆A defined as follows:

A′ := {〈a1,a2〉′ : 〈a1,a2〉∈A}={〈a1,a1\1〉 :a1∈L}.
For our purposes, the key feature of the function ′ : A→A′ is that it deletes the second component
of each element of A. Notice also that π1(A′)=π1(A). In fact, if A and B are twist-structures over
the same L (thus, π1(A)=π1(B)=L), then A′ =B′.

It is also easy to check that 〈a1,a2〉′ ≤〈b1,b2〉′ holds if and only if a1�b1. Thus, 〈a1,a2〉′ =〈b1,b2〉′
if and only if a1=b1. Note also that 〈1,1〉 is a fixed point of this function and that 〈a1,a2〉′′ =〈a1,a2〉′.

It is possible to endow the set A′ with algebraic operations, which will allow us to view A′ as the
carrier set of an algebra, as follows. For any operation of the twist-structure ◦∈{∧,∨,∗,⊃,⊂}, let
the operation ◦′ be defined, for all a,b∈A, as

a◦′b := (a◦b)′.
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Notice that, for any operation ◦∈{∧,∨,∗,⊃,⊂}, the following holds:

(a◦b)′ = (a′ ◦b′)′.
The previous equality reflects the fact that deleting the first component twice is the same as deleting
it just once.

Now we can consider the algebra A′ =〈A′,∧′,∨′,∗′,⊃′,⊂′,〈1,1〉′〉. Let us define a map h : L→A,
for all a1∈L, as h(a1)=〈a1,a1\1〉. Obviously h is bijective. Moreover, for each operation
◦∈{∧,∨,∗,⊃,⊂}, it holds that h(a1◦b1)=h(a1)◦′h(b1) for all a1,b1∈L. Thus h is an isomorphism
between L and A′. Hence, we also have, in particular, that A′ is a residuated lattice.

PROPOSITION 2.3
The map h defined by h(a1)=〈a1,a1\1〉 is a residuated lattice isomorphism from L to A′ for every
twist-structure A over L.

The above proposition implies the following. Let us take a term ϕ in the language of
residuated lattices 〈�,�,·,\,/,1〉. We can associate to ϕ another term ϕ′ in the language
〈∧′,∨′,∗′,⊃′,⊂′,〈1,1〉′〉 obtained by replacing any occurrence of �within ϕ with∧′, any occurrence
of � with ∨′ etc. It is then obvious that if a residuated lattice L satisfies the equation ϕ≈ψ for terms
ϕ,ψ , then the residuated lattice A′ will satisfy the equation ϕ′ ≈ψ ′.

A similar result has been shown in [19, Corollaries 3.5 and 3.6] for integral residuated lattices,
where a map ε is defined by ε(a1)=〈a1,1〉. It is easy to check that, when L is integral, we have
that h(a1)=ε(a1) (see also the definition of L̂� in [19, Corollary 3.5]). Hence, the isomorphism
established in Proposition 2.3 allows us to obtain the results of [19] as special cases.

If L is a generalized Heyting algebra, then by our construction we obtain exactly the eN4-lattices
considered in [6]. Note also that the equalities

x⊃y= (x∧〈1,1〉)→y

and

x⊂y=¬x→ (¬y∨〈1,1〉)

hold in a twist-structure if and only if the underlying residuated lattice L is integral (i.e. if and only
if 1 is the maximum of the lattice order of L). This means, in particular, that in the twist-structure
it is possible to define both operations ⊃ and ⊂ by using→ (cf. [6, Definition 4.5]).

It is also obvious by construction that our twist-structures of Definition 2.1 are precisely the
{∧,∨,⊃,⊂,¬,〈1,1〉}-subreducts of the ‘residuated bilattices’ introduced in [14].

3 T -lattices

In this section we introduce a variety of algebras that will be proven to coincide, up to isomorphism,
with the class of twist-structures considered in the previous section. We call the members of this
variety T -lattices, the letter T being meant to remind the reader that these algebras correspond to
the above-mentioned twist-structures.

We deal with algebras A=〈A,∧,∨,⊃,⊂,¬,e〉 of type 〈2,2,2,2,1,0〉, adopting the following
conventions: for all a,b∈A,

• a→b := (a⊃b)∧(¬a⊂¬b)
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• a←b :=¬a→¬b
• a∗b :=¬(b→¬a)
• a′ :=¬(a⊃e)
• A′ :={a′ :a∈A}
• a◦′b := (a◦b)′ for any operation ◦∈{∧,∨,∗,⊃,⊂,e}
• A′ :=〈A′,∧′,∨′,∗′,⊃′,⊂′,e′〉.

It is obvious that the above notation is consistent with the one used in Section 2 and it is indeed
intended to be suggestive of the way in which we will prove the announced correspondence result.

DEFINITION 3.1
A T -lattice is an algebra A=〈A,∧,∨,⊃,⊂,¬,e〉 such that:

(i) the reduct 〈A,∧,∨,¬〉 is an involutive lattice, i.e. a lattice (with associated order ≤) equipped
with a unary operation (called negation) that is involutive and satisfies De Morgan laws, i.e.
such that ¬¬a=a, ¬(a∨b)=¬a∧¬b and ¬(a∧b)=¬a∨¬b,

(ii) the algebra A′ =〈A′,∧′,∨′,∗′,⊃′,⊂′,e′〉 is a residuated lattice,
(iii) (a◦b)′ = (a′ ◦b′)′ for any operation ◦∈{∧,∨,⊃,⊂,∗},
(iv) for all a,b,c∈A:

((a∧b)→b)⊃ ((a∧b)→b)≤ (a∧b)→b (E1)

a⊃b≤ (a∧c)⊃b (E2)

((a⊃a)∧(b⊃b))⊃c≤c (E3)

a≤ (((b⊃e)→ (a⊃e))∧(¬(¬b⊃e)→¬(¬a⊃e)))⊃b (E4)

e=¬e (E5)

(¬(a⊃b))′ = (¬(¬a⊂¬b))′ = (¬(a→b))′ (E6)

We denote by T -Lat the class of T -lattices.

At first sight it may not be easy to understand the role and intuitive meaning of axioms (E1) to
(E6). These will be clarified in the proof of Proposition 3.3, and their sufficiency for obtaining our
Theorem 3.6 will be shown both in the proof of the theorem and in that of Lemma 3.4.

Notice that all the conditions of Definition 3.1 can be expressed by equations. This obviously holds
for (i), (iii) and (iv). As to (ii), recall that residuated lattices are an equational class [10, Theorem
2.7]. Therefore condition (ii) amounts to requiring that all elements of the algebra A′ satisfy the
equalities that axiomatize residuated lattices. If ϕ≈ψ is one of such equalities in the language of
residuated lattices, we consider its translation ϕ′ ≈ψ ′ defined as in the previous section. That is,
to any term ϕ in the language of residuated lattices 〈�,�,·,\,/,1〉 we associate the term ϕ′ in the
language 〈∧′,∨′,∗′,⊃′,⊂′,e′〉 obtained by replacing any occurrence of � with ∧′, any occurrence
of � with ∨′ etc. Then, we replace any variable x occurring in ϕ′ and ψ ′ by the term x′ :=¬(x⊃e).
Denote by ϕ•,ψ• the terms (which are obviously in the language of T -lattices) obtained in this
way. Then we have a new equation ϕ•≈ψ• that captures exactly the property of residuated lattices
expressed by our original ϕ≈ψ .

As an example, consider the equation 1\x≈x. First we replace 〈\,1〉 by, respectively, 〈⊃′,e′〉 and
obtain the equation e′ ⊃′ x≈x, which is really a shorthand for

¬(¬(e⊃e)⊃x)⊃e)≈x.
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Then by replacing x by x′, we have e′ ⊃′ x′ ≈x′, which is a shorthand for

¬(¬(e⊃e)⊃¬(x⊃e))⊃e)≈¬(x⊃e). (3.1)

We see thus that the requirement that a T -lattice A satisfy (3.1) is equivalent to requiring that
the algebra A′ =〈A′,∧′,∨′,∗′,⊃′,⊂′,e′〉, viewed as a residuated lattice, should satisfy the equation
e′ ⊃′ x≈x. Therefore, we have that

PROPOSITION 3.2
The class of T -lattices is a variety.

From Definition 3.1 (ii) it follows that, for any T -lattice A, the algebra (A′)	
 is a full twist-
structure. We are going to show that A is in fact embeddable into (A′)	
, thus proving that any
T -lattice A is isomorphic to a twist-structure over A′.

We start by checking that any twist-structure is indeed a T -lattice.

PROPOSITION 3.3
Every twist-structure A≤L	
 is a T -lattice.

PROOF. We have to check that the conditions of Definition 3.1 are satisfied. The first item is easily
proved (it also follows from known results on bilattices and twist-structures: see for instance [15]).
The second and third, as we have observed in the previous section, are also easy. We only check
the fourth.
(E1). Notice that the condition 〈a1,a2〉⊃〈a1,a2〉≤〈a1,a2〉 is equivalent to 1�a1. In fact, the former
amounts to

〈a1,a2〉⊃〈a1,a2〉=〈a1\a1,a2 ·a1〉≤〈a1,a2〉

i.e., a1\a1�a1 and a2�a2 ·a1. In any residuated lattice it holds that 1�a1\a1, hence we have that
1�a1. We have then to prove that the first component of (〈a1,a2〉∧〈b1,b2〉)→〈b1,b2〉 is greater
than 1. Applying the definitions, we have that such component is ((a1�b1)\b1)�((a2�b2)/b2). Both
members of this last conjunction are greater than 1 in any residuated lattice, therefore we reach the
desired result.
(E2). We have

((〈a1,a2〉∧〈c1,c2〉)⊃〈b1,b2〉)=〈(a1�c1)\b1, b2 ·(a1�c1)〉.

Therefore we have to check that a1\b1� (a1�c1)\b1 and b2 ·(a1�c1)�b2 ·a1. Both inequalities are
true in any residuated lattice [10, Lemma 2.6].
(E3). For evaluating

(〈a1,a2〉⊃〈a1,a2〉)∧(〈b1,b2〉⊃〈b1,b2〉)⊃〈c1,c2〉

we only need to compute the first component of

(〈a1,a2〉⊃〈a1,a2〉)∧(〈b1,b2〉⊃〈b1,b2〉)

which is (a1\a1)�(b1\b1). We have then to prove that

〈((a1\a1)�(b1\b1))\c1, c2 ·((a1\a1)�(b1\b1))〉≤〈c1,c2〉
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i.e., ((a1\a1)�(b1\b1))\c1�c1 and c2�c2 ·((a1\a1)�(b1\b1)). Both inequalities are true in residuated
lattices, since 1� (a1\a1)�(b1\b1), which implies that ((a1\a1)�(b1\b1))\c1�1\c1=c1 and c2=
c2 ·1�c2 ·((a1\a1)�(b1\b1)).
(E4). Let us use the following abbreviations:

〈x1,x2〉 := (〈b1,b2〉⊃〈1,1〉)→ (〈a1,a2〉⊃〈1,1〉)
〈y1,y2〉 :=¬(¬〈b1,b2〉⊃〈1,1〉)→¬(¬〈a1,a2〉⊃〈1,1〉).

We have to prove that 〈a1,a2〉≤ (〈x1,x2〉∧〈y1,y2〉)⊃〈b1,b2〉. We have

(〈x1,x2〉∧〈y1,y2〉)⊃〈b1,b2〉=〈x1�y1,x2�y2〉⊃〈b1,b2〉
=〈(x1�y1)\b1,b2 ·(x1�y1)〉.

Thus, we need to check that

a1� (x1�y1)\b1 and b2 ·(x1�y1)�a2.

We have

〈x1,x2〉=〈b1\1,1·b1〉→〈a1\1,1·a1〉
=〈b1\1,b1〉→〈a1\1,a1〉
=〈(b1\1)\(a1\1)�(b1/a1),a1 ·(b1\1)〉

〈y1,y1〉=¬(〈b2,b1〉⊃〈1,1〉)→¬(〈a2,a1〉⊃〈1,1〉)
=¬〈b2\1,1·b2〉→¬〈a2\1,1·a2〉
=〈b2,b2\1〉→〈a2,a2\1〉
=〈(b2\a2)�((b2\1)/(a2\1)),(a2\1)·b2〉.

Therefore,

x1�y1= (b1\1)\(a1\1)�(b1/a1)�(b2\a2)�((b2\1)/(a2\1)).

Notice that a1� (b1/a1)\b1 because, by residuation, this is equivalent to (b1/a1)·a1�b1, which is
equivalent to b1/a1�b1/a1. Obviously x1�y1�b1/a1, therefore (b1/a1)\b1� (x1�y1)\b1. Thus, we
have

a1� (b1/a1)\b1� (x1�y1)\b1

as desired. Similarly, it holds that b2 ·(b2\a2)�a2 because, by residuation, the latter is equivalent to
b2\a2�b2\a2. Since x1�y1�b2\a2, we obtain

b2 ·(x1�y1)�b2 ·(b2\a2)�a2.

(E5). Immediate.
(E6). Also easy. It is sufficient to notice that, according to the definitions of the operations ⊃,⊂
and → in twist-structures, the second component of 〈a1,a2〉⊃〈b1,b2〉 coincides with the second
component of ¬〈a1,a2〉⊂¬〈b1,b2〉 and of 〈a1,a2〉→〈b1,b2〉.
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Our next aim is to prove the converse of Proposition 3.3, i.e. that any T -lattice is indeed isomorphic
to a twist-structure over a residuated lattice. In order to prove this result, we will need the following
lemma.

LEMMA 3.4
Let A be a T -lattice and θ a congruence of A. Then, for all a,b,

〈a,b〉∈θ if and only if 〈a′,b′〉, 〈(¬a)′,(¬b)′〉∈θ.
PROOF. Given that x′ =¬(x⊃e) is a term in the language of T -lattices, it is easy to see that 〈a,b〉∈θ
implies 〈a′,b′〉, 〈(¬a)′,(¬b)′〉∈θ . To prove the converse, assume 〈a′,b′〉, 〈(¬a)′,(¬b)′〉∈θ . From
the former assumption we obtain 〈¬(a′),¬(b′)〉∈θ , from which we have 〈¬(b′)→¬(a′),¬(b′)→
¬(b′)〉∈θ . Similarly, from the latter assumption we can obtain 〈(¬b)′→ (¬a)′,(¬b)′→ (¬b)′〉∈θ .
Now we apply meet to obtain

〈(¬(b′)→¬(a′))∧((¬b)′→ (¬a)′),(¬(b′)→¬(b′))∧(¬b)′→ (¬b)′〉∈θ
In order to use a more compact notation, let us set x :=¬(b′)→¬(b′) and y := (¬b)′→ (¬b)′. We
can then rewrite the above as

〈(¬(b′)→¬(a′))∧((¬b)′→ (¬a)′), x∧y〉∈θ
from which we can obtain

〈((¬(b′)→¬(a′))∧((¬b)′→ (¬a)′))⊃b, (x∧y)⊃b〉∈θ.
Concerning the first element of the pair we have obtained, notice that

a≤ ((¬(b′)→¬(a′))∧((¬b)′→ (¬a)′))⊃b

is an instance of (E4). Concerning the second element, notice that x=¬(b′)→¬(b′)= (¬(b′)∧
¬(b′))→¬(b′), as the latter equality holds in any lattice. Hence, we see that x⊃x≤x is an instance
of (E1). Similarly, we have that y⊃y≤y. It follows then that (x⊃x)∧(y⊃y)≤x∧y. Applying (E2),
we have

(x∧y)⊃b≤ ((x⊃x)∧(y⊃y))⊃b.

By (E3), we have ((x⊃x)∧(y⊃y))⊃b≤b, so we obtain (x∧y)⊃b≤b. Thus, we have the following:

a≤ ((¬(b′)→¬(a′))∧((¬b)′→ (¬a)′))⊃b θ (x∧y)⊃b≤b.

From this we can obtain first

a=a∧(((¬(b′)→¬(a′))∧((¬b)′→ (¬a)′))⊃b) θ a∧((x∧y)⊃b)

and then

a∨b θ (a∧((x∧y)⊃b))∨b=b.

Thus, we have 〈a∨b,b〉∈θ . Applying the same reasoning, by symmetry, we can obtain 〈b∨a,a〉∈θ ,
which implies 〈a,b〉∈θ .
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Notice that, in fact, Lemma 3.4 holds not only for T -lattices but for any algebra that has a T -lattice
reduct. This observation will turn out to be useful when we expand the language of T -lattices with
modal operators. Since the equality relation is a congruence, the above lemma immediately implies
the following.

COROLLARY 3.5
For any T -lattice A and all a,b∈A,

a=b if and only if a′ =b′ and (¬a)′ = (¬b)′.

Although for the present section Corollary 3.5 would be enough, when we discuss the congruences
of T -lattices (Section 5) we will need the more general result stated in Lemma 3.4. Notice, however,
that using the fact that the class of T -lattices is a variety (hence, closed under quotients) it is not
difficult to prove that Lemma 3.4 also follows from Corollary 3.5, so the two statements are in fact
easily inter-derivable (we leave this as an exercise for the reader).

Let us also notice that Corollary 3.5 entails that every element a∈A is uniquely determined by
the pair a′ and (¬a)′. One might wonder whether a can actually be expressed in terms of these two
elements, that is, if there is a binary term t in the language of T -lattices such that t(a′,(¬a)′)=a for
every a∈A. This is not the case, as shown by the following example. Consider the four-element full
twist-structure B	
2 , where B2 is the two-element Boolean algebra (which we view as a residuated
lattice) with universe B2={0,1}. By Proposition 3.3, we have that B	
2 is a T -lattice. Now consider
the element 〈0,0〉∈B	
2 . We have that 〈0,0〉′ = (¬〈0,0〉)′ =〈0,1〉. It is easy to check that, if we close
the set {〈0,1〉} under under the T -lattice algebraic operations, we obtain the set {〈0,1〉,〈1,0〉,〈1,1〉}.
This implies that there is no term t in the language of T -lattices such that t(〈0,0〉′,(¬〈0,0〉)′)=〈0,0〉.

We are now able to prove the announced result.

THEOREM 3.6
Any T -lattice A is isomorphic to a twist-structure over A′ via the map ι : A→A′×A′ defined, for
all a∈A, as

ι(a) :=〈a′,(¬a)′〉.
PROOF. Injectivity of ι follows from Corollary 3.5. It is obvious that π1(ι(A))=A′. It remains to prove
that ι is a homomorphism. By (E5) we have ι(e)=〈e′,(¬e)′〉=〈e′,e′〉. As to negation, by involutivity
we have

ι(¬a)=〈(¬a)′,(¬¬a)′〉=〈(¬a)′,a′〉=¬ι(a).

Recall that, by definition, 〈a,b〉∧〈c,d〉=〈a∧′ c,b∨′d〉 for all a,b,c,d∈A′. Let us check the
case of ∧:

ι(a∧b)=〈(a∧b)′,(¬(a∧b))′〉
=〈(a∧b)′,(¬a∨¬b)′〉 by De Morgan laws

=〈(a′ ∧b′)′,((¬a)′ ∨(¬b)′)′〉 by Definition 3.1 (iii)

=〈a′ ∧′b′,(¬a)′ ∨′ (¬b)′〉
=〈a′,(¬a)′〉∧〈b′,(¬b)′〉
= ι(a)∧ι(b).
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The case of ∨ follows from the previous two since the De Morgan law a∨b=¬(¬a∧¬b) holds.
The case of ⊃:

ι(a⊃b)=〈(a⊃b)′,(¬(a⊃b))′〉
=〈(a⊃b)′,(¬b∗a)′〉 by (E6)

=〈(a′ ⊃b′)′,((¬b)′ ∗a′)′〉 by Definition 3.1 (iii)

=〈a′ ⊃′ b′,(¬b)′ ∗′a′〉
=〈a′,(¬a)′〉⊃〈b′,(¬b)′〉
= ι(a)⊃ ι(b).

And the case of ⊂ concludes our proof:

ι(a⊂b)=〈(a⊂b)′, (¬(a⊂b))′〉
=〈(a⊂b)′, (¬(¬¬a⊂¬¬b))′〉 by involutivity of negation

=〈(a⊂b)′, (¬¬b∗¬a)′〉 by (E6)

=〈(a⊂b)′, (b∗¬a)′〉 by involutivity of negation

=〈(a′ ⊂b′)′, (b′ ∗(¬a)′)′〉 by Definition 3.1 (iii)

=〈a′ ⊂′ b′, b′ ∗′ (¬a)′〉
=〈a′, (¬a)′〉⊂〈b′, (¬b)′〉
= ι(a)⊂ ι(b).

4 Adding modal operators

In this section we show how to add modal operators to our twist-structures. As before, we start
with a residuated lattice but we now assume that our lattice is endowed with one (or more) modal
operators, defined as follows.

Given a lattice L with associated order �, we will say that a unary function f : L→L is a modal
operator on L if it is monotone, i.e. if a�b implies f (a)� f (b) for all a,b∈L.

This rather minimal definition in terms of properties of f corresponds to our intention of being
as general as possible, so that we will be able to treat as a special case any other algebraic
modal operator enjoying stronger properties (for instance, any necessity-style operator satisfying
f (x�y)= f (x)�f (y)).

DEFINITION 4.1
Let L=〈L,�,�,·,\,/,f1,f2,g1,g2,1〉 be a residuated lattice with modal operators f1,f2,g1,g2. The
full modal twist-structure L	
=〈L×L,∧,∨,⊃,⊂,�,�,¬,〈1,1〉〉 is defined as follows:

(i) the reduct 〈L×L,∧,∨,⊃,⊂,¬,〈1,1〉〉 is the full twist-structure over the residuated lattice
〈L,�,�,·,\,/,1〉

(ii) the operations � : L×L→L×L and � : L×L→L×L are defined, for all 〈a1,a2〉∈L×L, as

�〈a1,a2〉 := 〈f1(a1),f2(a2)〉
�〈a1,a2〉 := 〈g1(a1),g2(a2)〉.
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A modal twist-structure over L is an arbitrary subalgebra A (w.r.t. to the language
{∧,∨,⊃,⊂,�,�,¬,〈1,1〉}, of L	
 such that π1(A)=L, where π1(A)={a1∈L : 〈a1,a2〉∈A}. We write
A≤L	
 to mean that A is a modal twist-structure over L.

Let us point out that in general one need not view � as some kind of necessity operator, nor
� as a possibility operator. Such an interpretation, which may be suggested by our notation, will
indeed make sense when we impose stronger properties on the modal operators of the associated
residuated lattice L. The same applies to the following abbreviations that we will use: �1 :=¬�¬
and �1 :=¬�¬.

The construction of Definition 4.1 is obviously a generalization of (and was inspired by) the
one introduced in [17, Definition 7] (see also [18]). Notice also that in our definition there is no
requirement on the interaction among the four modal operators on L. So, any two of them may
coincide. In particular, in the twist-structure constructions considered in [17] and [18] it is assumed
that f1=g2 and g1= f2. In such a case it is easy to check that, as happens with classical modal
Boolean algebras, the operator � is definable as ¬�¬. Thus, �=�1 and �=�1. Note also that our
definitions imply that all operators �,�1,�,�1 are monotone w.r.t. the lattice order of L	
.

Our next aim is to introduce an abstract equational presentation of a class of algebras that will turn
out to correspond exactly to our modal twist-structures. Following the same argument used in Section
2, we begin by observing that, for any modal twist-structure A≤L	
, we can define modal operators
on the algebra 〈A′,∧′,∨′,∗′,⊃′,⊂′,〈1,1〉′〉, which is defined as for non-modal twist-structures, as
follows. For all a∈A,

�′a := (�a)′ �′1a := (�1a)′

�′a := (�a)′ �′1a := (�1a)′.

It is then easy to check that the algebra

A′ =〈A′,∧′,∨′,∗′,⊃′,⊂′,�′,�′1,�′,�′1,〈1,1〉′〉
is a residuated lattice with modal operators �′,�′1,�

′,�′1. Moreover, A′ is isomorphic to L. Let us
also notice that the following properties hold, for all a∈A:

�′a=�′(a′) �′1a=�′1(a
′)

�′a=�′(a′) �′1a :=�′1(a
′).

We are now able to introduce our equational presentation for modal twist-structures.

DEFINITION 4.2
A modal T -lattice is an algebra A=〈A,∧,∨,⊃,⊂,¬,�,�,e〉 such that the reduct
〈A,∧,∨,⊃,⊂,¬,e〉 is a T -lattice and any operation ◦∈{�,�} satisfies, for all a,b∈A,

1. ◦(a∧b)≤◦b
2. (◦a)′ = (◦(a′))′
3. (◦1a)′ = (◦1(a′))′.
Consistently with our previous notation, we abbreviate a′ :=¬(a⊃e), �1a :=¬�¬a and �1a :=
¬�¬a for any element a∈A.

It is obvious from the definition that modal T -lattices form a variety. We have already observed
that any modal twist-structure satisfies all items of Definition 4.2, therefore we immediately have:
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PROPOSITION 4.3
Any modal twist-structure is a modal T -lattice.

It remains therefore to prove that any modal T -lattice can be represented as a modal twist-structure.
We adopt the same conventions used for non-modal T -lattices, except that now we denote by

A′ =〈A′,∧′,∨′,∗′,⊃′,⊂′,�′,�′1,�′,�′1,e′〉 the residuated lattice with modal operators associated
with the modal T -lattice A, where

◦′a := (◦a)′

for any operation ◦∈{�,�1,�,�1} and for all a∈A.

THEOREM 4.4
Any modal T -lattice A is isomorphic to a modal twist-structure over A′ via the map ι : A→A′×A′

defined, for all a∈A, as

ι(a) :=〈a′,(¬a)′〉.
PROOF. We know from Theorem 3.6 that the map ι is injective and a homomorphism w.r.t. to the
{∧,∨,⊃,⊂,¬,e}-reduct of A. We only need to check that ι respects the operations � and �. As to
the former, we have that, for all a∈A:

ι(�a)=〈(�a)′,(¬�a)′〉
=〈(�a)′,(¬�¬¬a)′〉 by double negation law

=〈(�(a′))′,(�1¬a)′〉 by Definition 4.2 (ii)

=〈(�(a′))′,(�1((¬a)′))′〉 by Definition 4.2 (iii)

=〈�′(a′),�′1((¬a)′)〉 by definition of �′ and �′1
=�〈a′,(¬a)′〉
=�(ι(a)).

The case of � is easily proved in the same way.

5 Congruences

In this section we look at congruences of (modal) T -lattices, which we now know to coincide,
up to isomorphism, with (modal) twist-structures. Our aim will be to characterize the lattice of
congruences of an arbitrary (modal) T -lattice in terms of the lattice of congruences of its associated
residuated lattice (with modal operators). In this way we will obtain a way of studying any universal
algebraic property of any class of (modal) T -lattices that depends on the structure of the congruence
lattice (e.g., congruence distributivity, subdirect irreducibility, etc.) by looking at the congruences
of the associated class of residuated lattices.

Let us first consider the case where A is a non-modal T -lattice. Consider the map H : Con(A)→
Con(A′) defined, for all θ ∈Con(A), as

H (θ ) :=θ∩(A′×A′). (5.1)

Given that all the algebraic operations of A′ are defined by terms in the language of T -lattices, it
is easy to check that θ∩(A′×A′) is in fact a congruence of the residuated lattice A′.

 at U
B

 B
ochum

 on June 23, 2014
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[13:44 31/5/2014 jzt043.tex] Paper Size: a4 paper Job: JIGPAL Page: 453 440–457

Modal twist-structures over residuated lattices 453

We claim that its inverse H−1 : Con(A′)→Con(A) is given, for all η∈Con(A′), by

H−1(η) :={〈a,b〉∈A×A : 〈a′,b′〉,〈(¬a)′,(¬b)′〉∈η}. (5.2)

Both H and H−1 are obviously monotone. Let us check that H−1 is well-defined.

PROPOSITION 5.1
For any congruence η of A′, the relation H−1(η) defined in (5.2) is a congruence of A.

PROOF. It is clear from the definition that H−1(η) is an equivalence relation. Also, compatibility
with negation easily follows from double negation law. Now assume 〈a,b〉,〈c,d〉∈H−1(η), i.e.,
〈a′,b′〉,〈(¬a)′,(¬b)′〉,〈c′,d ′〉,〈(¬c)′,(¬d)′〉∈η. We will make frequent use of property (iii) of Defi-
nition 3.1. We have

(a∧c)′ = (a′ ∧c′)′ =a′ ∧′ c′ η b′ ∧′d ′ = (b′ ∧d ′)′ = (b∧d)′.

Using De Morgan laws, we also have

(¬(a∧c))′ = (¬a∨¬c)′ = (¬a)′ ∨′ (¬c)′ η (¬b)′ ∨′ (¬d)′ = (¬b∨¬d)′ = (¬(b∧d))′.

Thus, 〈a∧c,b∧d〉∈H−1(η). Compatibility of H−1(η) with ∨ follows from the fact that a∨b=
¬(¬a∧¬b) for all a,b∈A. As to ⊃, we have

(a⊃c)′ =a′ ⊃′ c′ η b′ ⊃′ d ′ = (b⊃d)′.

Using (E6), we also have

(¬(a⊃c))′ = (¬c∗a)′ = (¬c)′ ∗′a′ η (¬d)′ ∗′b′ = (¬d∗b)′ = (¬(b⊃d))′.

Hence, 〈a⊃c,b⊃d〉∈H−1(η). A similar reasoning proves that 〈a⊂c,b⊂d〉∈H−1(η).

Next we check that H and H−1 are actually mutually inverse.

PROPOSITION 5.2
Let θ ∈Con(A) and η∈Con(A′). Then, θ=H−1(H (θ )) and η=H (H−1(η)).

PROOF. Let θ ∈Con(A). By definition, 〈a,b〉∈H−1(H (θ )) means that

〈a′,b′〉,〈(¬a)′(¬b)′〉∈H (θ )

which is equivalent to 〈a′,b′〉∈θ and 〈(¬a)′,(¬b)′〉∈θ . By Lemma 3.4, this is equivalent to 〈a,b〉∈θ .
Hence, θ=H−1(H (θ ).
Now let η∈Con(A′). The assumption 〈a,b〉∈H (H−1(η)) means that 〈a,b〉∈H−1(η)∩(A′×A′), i.e.,
a,b∈A′ and 〈a,b〉∈H−1(η). This last assumption is equivalent to 〈a′,b′〉,〈(¬a)′,(¬b)′〉∈η. Then,
given that a=a′ and b=b′, we immediately see that H (H−1(η))⊆η. Conversely, if 〈a,b〉∈η, then
a=a′ηb′ =b. To prove that 〈(¬a)′,(¬b)′〉∈η, notice that x⊃e≈¬¬(x⊃e)≈¬(x′) is obviously valid
in every T -lattice. Under the assumption that a,b∈A′, we have then a⊃e=¬(a′)=¬a and likewise
b⊃e=¬b. Using compatibility of η with the operation ⊃′, we obtain then

(¬a)′ = (a⊃e)′ =a′ ⊃′ e=a⊃′ e η b⊃′ e=b′ ⊃′ e= (b⊃e)′ = (¬b)′.

Hence, η⊆H (H−1(η)) and so η=H (H−1(η)).
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Joining the two above propositions, we obtain the result we have been aiming at (a similar one
has been proved in [11, Proposition 6.2]).

THEOREM 5.3
For any T -lattice A, the lattice Con(A) of congruences of A is isomorphic to the lattice Con(A′)
of congruences of A′ through the maps H ,H−1 defined in (5.1) and (5.2). Consequently, for any
twist-structure A≤L	
, we have Con(A)∼=Con(L).

Notice that the second statement of the above theorem follows immediately from Theorem 3.6
(the same applies to the second statement of Theorem 5.4, which follows from Theorem 4.4).

Theorem 5.3 tells us, in particular, that subdirectly irreducible T -lattices are exactly those iso-
morphic to twist-structures A≤L	
 where L is a subdirectly irreducible residuated lattice. We are
now going to see that this correspondence is still true when we add modal operators.

THEOREM 5.4
For any modal T -lattice A, the lattice Con(A) of congruences of A is isomorphic to the lattice
Con(A′) of congruences of the residuated lattice with modal operators A′ through the maps H ,H−1

defined in (5.1) and (5.2). Consequently, for any modal twist-structure A≤L	
, we have Con(A)∼=
Con(L).

PROOF. We already know that the map H is an isomorphism between the congruences of the non-
modal reducts of A and A′. So we only need to check that H (θ )∈Con(A′) for all θ ∈Con(A) and
that H−1(η)∈Con(A) for all η∈Con(A′). As in the non-modal case, the first claim is easy because
any modal operator of A′ is defined by a term in the language of modal T -lattices. To prove the
second, assume 〈a,b〉∈H−1(η), i.e. 〈a′,b′〉,〈(¬a)′,(¬b)′〉∈η. Then we have

�′(a′)= (�a′)′ = (�a)′ η (�b)′ = (�b′)′ =�′(b′).

Using (ii) of Definition 4.2 together with double negation law, we obtain

�′1((¬a)′)= (�1((¬a)′))′ = (�1(¬a))′ = (¬�¬¬a)′ = (¬�a)′

and, similarly, �′1((¬b)′)= (¬�b)′. By assumption η is compatible with �′1, therefore we have
〈�′1((¬a)′),�′1((¬b)′)〉∈η and so 〈(¬�a)′,(¬�b)′〉∈η. Hence, 〈�a,�b〉∈H−1(η). A similar rea-
soning shows that H−1(η) is compatible with �, i.e., that it is a congruence of the modal T -lattice
A.

6 Logics of T -lattices

Given that the main motivation for the study of twist-structures comes from non-classical logics,
there is a particular interest in associating logical systems to the algebraic structures we have been
considering in the previous section. One way of doing this is to use the general theory of alge-
braization of logics developed in [4]. This strategy, that we will pursue in the present section, has
the advantage of allowing us to obtain logics whose associated consequence relation is essentially
equivalent to the equational consequence relation of the classes of algebras we are interested in.

Let us denote by Fm the set of propositional formulas defined in the standard way over the
the language of T -lattices {∧,∨,⊃,⊂,¬,e}, which is going to be the non-modal fragment of the
propositional language of the logics we consider. We can translate a formula ϕ∈Fm into an equation
(i.e., a pair of formulas) in the same language by letting

τ (ϕ) := ϕ≈ϕ∨(ϕ⊃ϕ).
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We extend the translation τ to sets of formulas in the following way. If � is a set of formulas, let
τ (�) :={τ (ϕ) :ϕ∈�}. We may then define a consequence relation |=T as follows: for all formulas
�,ϕ,

� |=T ϕ iff τ (�) |=T -Lat τ (ϕ)

where �T -Lat denotes the equational consequence associated with the variety of T -lattices. This
obviously defines a sentential logic in the language {∧,∨,⊃,⊂,¬,e}. We are going to see that this
logic is algebraizable, in the sense of [4], w.r.t. to the variety of T -lattices. In order to prove this
result, we have to define an inverse translation ρ : Fm×Fm→Fm from equations into formulas, as
follows: for any equation ϕ≈ψ ,

ρ(ϕ≈ψ) := {(ϕ→ψ)∧(ψ→ϕ)}.
We extend ρ to sets of equations in the same way as τ . Let us also abbreviate

ϕ↔ψ := (ϕ→ψ)∧(ψ→ϕ).

We may then state the announced result.

THEOREM 6.1
The logic |=T is algebraizable w.r.t. the variety of T -lattices with defining equation ϕ≈ϕ∨(ϕ⊃ϕ)
and equivalence formula (ϕ→ψ)∧(ψ→ϕ).

PROOF. By [4, Definition 2.8], we only need to check that the following condition is satisfied:

ϕ≈ψ=||=T -Lat τ (ρ(ϕ≈ψ)).

Applying our translations, we have that τ (ρ(ϕ≈ψ)) is

ϕ↔ψ≈ (ϕ↔ψ)∨((ϕ↔ψ)⊃ (ϕ↔ψ)) (6.1)

It is easy to check that (6.1) is equivalent, in twist-structures, to ϕ≈ψ . Therefore, by Theorem 3.6,
we conclude that the same holds in T -lattices.

We employ the same translation τ defined above to define a modal logic |=MT in the language
{∧,∨,⊃,⊂,¬,�,�,e}. We immediately obtain the following result as a corollary of Theorem 6.1.

THEOREM 6.2
The logic |=MT is algebraizable w.r.t. the variety of modal T -lattices with defining equation ϕ≈
ϕ∨(ϕ⊃ϕ) and equivalence formula (ϕ→ψ)∧(ψ→ϕ).

Thanks to the algebraizability results stated above, it would be possible to axiomatize our logics by
taking as axioms the ρ-translations of the equations that axiomatize the variety of (modal) T -lattices.
For instance, the equation

(a∧b)′ = (a′ ∧b′)′

of Definition 3.1 (iii) would be translated into the following axiom:

(p∧q)′↔ (p′ ∧q′)′
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which is a shorthand for

¬((p∧q)⊃e)↔¬(((¬(p⊃e)∧¬(q⊃e)))⊃e).

It is easy to show that by adding standard logical rules (e.g. modus ponens, adjunction) to this set of
axioms, we may obtain a complete axiomatization for our logics, both the modal and the non-modal
one. However, it is clear from the above example that such axiomatization is neither compact nor
elegant as it involves some rather long axioms whose logical meaning is not immediately clear. It
is certainly possible to introduce better axiomatizations for our logics, but we will not pursue this
here as our main concern here has been rather to make sure that our logics are finitely axiomatizable
(hence, finitary) rather than to look for a specific axiomatic presentation. We leave this topic to
future research, together with others that we mention in the next section.

7 Conclusion and future work

The treatment of modal twist-structures and their associated logics presented in the previous section
is clearly just a first approximation to the topic. From a logical point of view, we believe that the
most interesting line for future research is the study of alternative (e.g. possible worlds) semantics
for our logics. This may lead to a definition of global and local consequence relation, as is usual
within modal logic, the global being the one that is likely to coincide with the algebraic consequence
defined in the previous section.

Another related direction of research involves the study of many-valued Kripke frames where not
only the valuation function, but also the accessibility relation, take value into some fixed (maybe
finite) twist-structure (see [5], where such a study is developed for modal logics over residuated
lattices).

From an algebraic point of view, a topic which has in our opinion an obvious interest is the purely
structural investigation of our twist-structures from a universal algebraic and lattice-theoretical point
of view, along the same lines as [16, 19].

Let us conclude these final remarks with an example of a specific open question in this respect.
It is easy to see that the presence of the constant e in the language of T -lattices (interpreted as the
element 〈1,1〉 in twist-structures) is essential to the construction that allowed us to prove Theorem
3.6, which states that any T -lattice can be represented as a twist-structure. In fact, the role of the
constant e in our construction is very similar to the one played by the constant denoted by the same
letter in [6].

From a logical point of view, it seems difficult to find a natural justification for the presence of
this constant in the propositional language, especially if we take into account the fact that both e and
¬e are theorems of our logic, which seems to be forcing (rather than just allowing) a paraconsistent
behaviour. One can therefore wonder if it may be possible to define an alternative construction
that avoids using the constant. In algebraic terms, this would amount to characterizing the e-free
subreducts of T -lattices. One obvious option would be to introduce the prime operation (′) as
primitive in the language of T -lattices and use it to reproduce the construction leading to Theorem
3.6. From a technical point of view this strategy seems to be equivalent to the one we have adopted
in the previous sections. However, from a logical point of view the presence of the prime operation
in the basic propositional language seems to be even harder to justify. For the time being we do not
know of any other strategy that may lead to a satisfactory solution of the problem, but we believe that
what we do know about twist-structures as presented in this paper is interesting enough to stimulate
further research on the topic.
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