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Background Medical diagnosis has been traditionally recognized as a privileged field of application for so called probabilistic induc-
tion. Consequently, the Bayesian theorem, which mathematically formalizes this form of inference, has been seen as the most ade-
quate tool for quantifying the uncertainty surrounding the diagnosis by providing probabilities of different diagnostic hypotheses,
given symptomatic or laboratory data. On the other side, it has also been remarked that differential diagnosis rather works by exclu-
sion, e.g. by modus tollens, i.e. deductively. By drawing on a case history, this paper aims at clarifying some points on the issue. Name-
ly: 1) Medical diagnosis does not represent, strictly speaking, a form of induction, but a type, of what in Peircean terms should be
called ‘abduction’ (identifying a case as the token of a specific type); 2) in performing the single diagnostic steps, however, differ-
ent inferential methods are used for both inductive and deductive nature: modus tollens, hypothetical-deductive method, abduction;
3) Bayes’ theorem is a probabilized form of abduction which uses mathematics in order to justify the degree of confidence which
can be entertained on a hypothesis given the available evidence; 4) although theoretically irreconcilable, in practice, both the hypo-
thetical-deductive method and the Bayesian one, are used in the same diagnosis with no serious compromise for its correctness; 5)
Medical diagnosis, especially differential diagnosis, also uses a kind of “probabilistic modus tollens”, in that, signs (symptoms or
laboratory data) are taken as strong evidence for a given hypothesis not to be true: the focus is not on hypothesis confirmation, but
instead on its refutation [Pr (¬ H/E1, E2, …, En)]. Especially at the beginning of a complicated case, odds are between the hypothe-
sis that is potentially being excluded and a vague “other”. This procedure has the advantage of providing a clue of what evidence to
look for and to eventually reduce the set of candidate hypotheses if conclusive negative evidence is found. 6) Bayes’ theorem in the
hypothesis-confirmation form can more faithfully, although idealistically, represent the medical diagnosis when the diagnostic itin-
erary has come to a reduced set of plausible hypotheses after a process of progressive elimination of candidate hypotheses; 7) Bayes’
theorem is however indispensable in the case of litigation in order to assess doctor’s responsibility for medical error by taking into
account the weight of the evidence at his disposal. 

Index Terms Clinical Methodology, Bayes’ theorem

Premessa La diagnosi medica è stata identificata come un privilegiato campo d’applicazione della cosiddetta “induzione probabi-
listica”. Di conseguenza il teorema di Bayes, che formalizza matematicamente questa forma di inferenza è stato visto come lo stru-
mento più adeguato per quantificare l’incertezza della diagnosi fornendo la probabilità associata alle diverse ipotesi diagnostiche,
sulla base dei dati a disposizione (sintomatici o di laboratorio). D’altro canto è stato fatto notare che la diagnosi differenziale lavo-
ra piuttosto per esclusione, ad esempio utilizzando il modus tollens, quindi deduttivamente. Utilizzando una case history, il presen-
te articolo mira a chiarificare alcuni punti in questione. Soprattutto: 1) la diagnosi medica non rappresenta, strettamente parlando,
una forma di induzione, ma piuttosto ciò che in termini peirceani dovrebbe essere chiamata “abduzione” (che consiste, fra l’altro,
nel classificare un caso come token di un type specifico); 2) nell’eseguire i singoli passi diagnostici, vengono utilizzati diversi meto-
di inferenziali sia di natura deduttiva che induttiva: modus tollens, metodo ipotetico-deduttivo, abduzione; 3) Il teorema di Bayes è
una forma probabilizzata di abduzione che utilizza strumenti matematici per legittimare il grado di credibilità dell’ipotesi diagno-
stica in relazione all’evidenza disponibile; 4) sebbene teoreticamente non conciliabili, in pratica, il metodo ipotetico-deduttivo e baye-
siano sono utilizzati nella stessa diagnosi senza grave pregiudizio per la correttezza della soluzione; 5) la diagnosi medica, specialmente
la diagnosi differenziale, utilizza anche una sorta di modus tollens probabilistico in quanto i segni (sintomi o dati di laboratorio)
vengono presi come evidenza in sostegno della negazione dell’ipotesi: il focus non è tanto sulla conferma quanto sulla confutazio-
ne dell’ipotesti [Pr (¬ H/E1, E2, …, En)]. Questo vale specialmente all’inizio di un caso complesso, dove la “scommessa” è tra l’i-
potesi che va potenzialmente esclusa e una alternativa indefinita. Questa procedura ha il vantaggio di fornire degli indizi in rela-
zione a quale tipo di informazione cercare e di ridurre il numero delle ipotesi candidate se nessun evidenza conclusiva viene trova-
ta; 6) il teorema di Bayes quale strumento di conferma dell’ipotesi può rappresentare più fedelmente la diagnosi medica, sebbene
comunque idealisticamente, quando questa è giunta ad insieme ridotto di ipotesi plausibili alla fine di un processo di progressiva
eliminazione di tutte le ipotesi inizialmente possibili; 7) Il teorema di Bayes è d’altronde indispensabile in caso di contenzioso al
fine di misurare la responsabilità dell’errore medico quale fattore causale del danno, tenendo conto del peso dell’evidenza a dispo-
sizione. 

Parole Indice Metodologia clinica, Teorema di Bayes
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Introduction

Handbooks of inductive logic, often use medical
examples in order to exemplify how the uncertainty
affecting medical diagnosis can be quantified and man-
aged through computation methods developed out of
probability theory (Bermudez 2009; Hacking 2001;
Mushlin and Greene 2010; Peterson 2009). In these
examples, epidemiological data about the incidence of
a given disease on a population of interest, are combined
with symptomatic evidence and laboratory data in order
to provide an individual diagnosis or risk assessment. The
result is a ranking of possible diagnoses according to the
probability associated with each of them. In the ideal case,
one diagnosis is given probability 1 and the others 0. In
the case of maximal uncertainty, each hypothesis is given
the same probability (P = 1/n, where n is the number of
the hypotheses under consideration). Probabilistic expert
systems represent the computational application of this
approach to diagnosis (see for instance Cowell et al.,
2007).

On the other hand, traditional handbooks of clinical
diagnosis, especially differential diagnosis, rather focus
on the semeiotic work that doctors are supposed to per-
form in order to progressively reduce the spectrum of
candidate hypotheses and finally, by a work of system-
atic elimination, arrive at the hypothesis, which the
available evidence fails to eliminate (Blois, 1984; Bur-
num, 1993; Kassirer, 1989; Kassirer and Kopelman,
1991). This work resembles that of the (hypothetical-)
deductive method, where evidence can only exclude
the contemplated hypothesis but has neither the capac-
ity to confirm it nor to strengthen or weaken it (Popper,
2002). Being inherently deductive, this methodology
seems to be hardly reconcilable with the probabilistic
method mentioned above.

Indeed, apart from the inference direction – top-
down in the deductive paradigm vs. bottom-up in the
inductive one – there is another fundamental difference
between the two models: in the Bayesian one, there is a
closed set of mutual exclusive hypotheses, whose prob-
ability-sum equals 1 (the so called “sample space”). This
model determines straightforward knowledge updating
on the basis of available evidence, where probability
increase of one hypothesis necessarily leads to probability

decrease of at least one of the others. It’s a sort of cake-
diagram epistemology, where the main constraint for
rationality is that, increase in the confidence about one
hypothesis, directly diminishes confidence in the others. 

In the hypothetical-deductive method instead, there
is no formal constraint relating the plausibility of one
hypothesis to the plausibility of another: exclusion of one
hypothesis (or a set of hypotheses) does not necessarily
lead to any change in the confidence with which any other
alternative one is entertained. What happens instead, is
that a new hypothesis must be conjectured on the basis
of the knowledge provided by the failure of the previ-
ous one to pass the test. 

Yet, another form of inference which is relevant in
the domain of medical reasoning, as well as in that of sci-
entific explanation, is that of “abduction”. This term has
been introduced by Charles Sanders Peirce in “Deduc-
tion, Induction and Hypothesis” (1934, Collected Papers
2.623) and further developed in the Cambridge Confer-
ences (1898) and in the 1903 Harvard Lectures. Following
Peirce, abduction can be considered to cover two types
of inference: the classification of a token under a certain
predefined class (also known as qualitative or analogi-
cal induction), or the invention of a hypothesis for
explaining a “surprising” fact. In this second sense,
abductive inference covers the etimological sense of
intelligence as the act of connecting disparate things
(inter-ligere = “bind between”) and is grounded on causal
thinking. Instead, the former form of abduction rests on
a semantic level, in the sense that it acts as a function
which maps individuals to their class. 

In the following, all these different forms of inference
are examined as diagnostic tools in medicine. A case his-
tory will show that each of them bring a distinct contri-
bution to the final diagnosis, thereby demonstrating that
they are, at least practically, reconcilable. 

Deduction

In deductive inference, the conclusion follows nec-
essarily from the premises, in that it makes explicit the
information already contained in them. It should be
noted that even if totally based on already available
information, deduction may deliver new knowledge. As
a matter of fact, deductive inference makes explicit what
is implied by the conjunction of the premises; more-
over, this process produces awareness about their inti-
mate connection and related implications thereby reveal-
ing information about relationships.

In medical diagnosis, deduction can be used when-
ever a necessary and/or sufficient connection between evi-
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dence (E) and disease (D) has been established. This con-
nection can be represented by the entailment relationship
as follows:

Table 1: Venn diagrams and corresponding truth
tables for different entailment relations between D
(diseases) and E (evidence). 

The case where the contemplated disease D implies
the observed evidence E (D → E), can represent the
relationship of causal sufficiency between D and E,
meaning that D is a sufficient (but not necessary) cause
for E; 

Instead the opposite entailment relationship, E →
D, can represent D as being a necessary cause for E
(wherever E is present, then D must be too);

In the same line, D↔↔ E can be interpreted as mean-
ing that D is a necessary and sufficient cause for E. 

By knowing that D → E, and that D is given, one can
predict that the observable phenomena E will follow:

D → E
D
E
By knowing that E → D, after observing E, one can

diagnose that H is the case:
E → D
E
D
By knowing D↔↔ E, one can both infer D from E and

E from D. 
Provided that diagnosis consists in the interpretation

of symptoms and other laboratory or biomedical data, the
route goes necessarily from evidence E to diagnosis D
and therefore, the only deductive inferences which can
be made, are modus ponens when the relationship between
E and D is E → D (e.g. whenever the symptom E is pres-
ent, then, disease D is necessarily present):

E → D
E

D. 
or modus tollens from negative evidence and knowl-
edge of a relationship of causal sufficiency between D
and E:

D → E
¬ E
¬ D. 
In this second mode of reasoning, evidence can only

contribute to exclude one hypothesis. The table bellow
represents the possible strategies of deductive inference,
given a positive causal relationship between D and E (mp
stands for modus ponens and mt for modus tollens): 

Deductive inference can also follow from the prem-
ise D → ¬ E (or equivalently E → ¬ D), and ¬D → E
(or ¬ E → D); e.g. when the causal relationship is neg-
ative or D and E exclude each other. In this case, the pos-
sible inferences are illustrated below:
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Strict deductive inference however is rarely justi-
fied by medical knowledge, which is notoriously affect-
ed by endemic uncertainty due to the ambiguity of
symptoms: different diseases show similar sympto-
matic configurations (the same symptom can be pres-
ent in different diseases) and the same disease may
show different configurations of symptoms from case
to case. Moreover, disease classification is very com-
plex: some diseases are very well known in both eti-
ology and form, others are best addressed as syn-
dromes; e.g. sets of concomitant symptoms which hap-
pen to be recurrently observed together, but for which
there is little comprehension of the underlying phe-
nomena. In these cases, the symptoms themselves are
the illness. There is a continuum of examples between
these two extremes. 

Because of the complexity that characterizes the rela-
tionship between observable evidence and disease, med-
ical reasoning tends to be modelled through inductive
rather than deductive paradigms. Moreover, whereas
inductive reasoning can be both qualitative and statisti-
cal, it generally tends to be equated with the latter form
(probabilistic induction) thereby neglecting the possibility
of analogical induction or other forms of inference (such
as argumentative: see Fox, 2000, 2003, forthcoming). This
raises two distinct questions, which will not be dealt
with here: the first one concerns the descriptive ade-
quacy of the inductive-probabilistic model against other
ones; the second issue concerns its habitual priority in
respect to other methods of diagnosis. 

The aim and purpose of this paper (which is descrip-
tive rather than evaluative) do not allow me to consider
this question in detail; instead I will go on to present the
customary standard view of inductive reasoning. 

Induction 

Whereas deductive inference follows necessarily
from the information assumed in the premises, induction
aims to gain new knowledge from observation and/or
experimentation or through analogy. 

Induction departs from deduction mainly for two
kinds of steps, which are fallacious from a strictly deduc-
tive point of view. 
1. The inference tries to establish the connection between

D and E instead of drawing a conclusion from it. Log-
ically speaking, there is no way to arrive at D → E
(or vice versa) by simply observing the co-occurrence
of D and E events (Hume docet)1. For this reason the
relationship itself is hypothetical and henceforth the
alternative diagnostic hypotheses will be denoted by
the letter H (for hypothesis).

2. Once you have D → E or you have inductively estab-
lished a relationship between H and E, one infers, by
observing E, that D (or H respectively). This step is
a fallacy from a deductive point of view (fallacy of
affirming the consequent) and is also called inverse
induction (more on this in the next paragraph). 
Point one consists, for instance, in drawing the con-

clusion that “All swans are white” (S → W) after observ-
ing a sufficiently large and representative sample of n
white swans. This is called general enumerative induc-
tion. Particular enumerative induction refers to the pre-
diction that a particular individual will follow a certain
law, based on observation of n individuals of the same
class: “the next swan will be white”.

This mode of reasoning has two corollaries: 1) the link
direction cannot be established by the association itself;
2) the strength of the association says nothing about the
kind of connection (e.g. causal). The only inference
which statistical observation can legitimize, is that of
dependence/independence of types of events (this point
is however an issue of heated debate in the philosophy
of science. See for instance Cartwright 2007 and Glymour,
2009). 

Inductive inference can work in different directions
(for instance, from sample to population, from sample
to individual or from population to sample) depending
on which data are available and which questions one
wants to answer. Furthermore, it can follow from an
analogical procedure (qualitative induction)2 or be based
on counting (enumerative induction; see Kyburg, Man
Teng, 2001 for an introduction).

Inverse induction 

Through direct induction, a property about a certain
class of individuals is inferred from observation of a
representative sample (see the above swans’ example).
Instead, inverse induction is a (possibly probabilistic)
inference concerning a single case, based on statistical
or other kind of information. 

1 The issue is however not settled yet.  Already soon after Hume’s refusal
of causal laws, Bayes and Laplace have formulated the so called Rule of
Succession, precisely to defend the capacity of induction to bring new valid
knowledge through accumulation of evidence (see also Huemer, 2009). 
2 Qualitative (or analogical) induction follows from comparing individ-
uals or classes and then inferring a property of one from the collection of
properties associated with another one. For instance: if disease A is gen-
erally associated with symptoms α, β, γ, δ and disease B seems to show
a similar etiology, then B is also supposed to produce symptoms α V β V
γ V δ. Conversely, by observing an individual with symptoms α, β, γ and
δ, one will infer that the individual may have disease A. This second type
of inference is called inverse induction. 
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Inverse qualitative induction goes from the proper-
ties of the individual to its class. 

Observation: a has property α, β, γ and δ
(individual a has property α, β, γ and δ)

Rule: x belongs to A → x has property α, β, γ
and δ
(if an individual x belongs to class A then
it has property α, β, γ and δ) 

Conclusion: a belongs to A.
(therefore, individual a belongs to class A).

In this kind of inference knowledge about classes (e.g.
the properties of their elements) is used to identify the
class a specific observed individual belongs to. In this
case, for instance, observation of the properties of an indi-
vidual (α, β, γ and δ) triggers the search for the class
whose individuals share the same properties: A = {x|x has
property α, β, γ and δ}. From this follows the entailment
rule: x belongs to A → x has property α, β, γ and δ. But
the conclusion is fallacious. In fact, the inferential step
would be legitimate only when the entailment would go
in the opposite direction: x has property α, β, γ and δ →
x belongs to A. 

This becomes clearer when comparing inverse induc-
tion and deduction:

Deduction
Rule: If x belongs to A → x has properties α,

β, γ and δ
knowledge: x belongs to A
Conclusion: x has properties α, β, γ and δ

Inverse induction 
Rule: If x belongs to A → x has properties α,

β, γ and δ
Observation: x has properties α, β, γ and δ
Conclusion: x belongs to A

Logically speaking, having properties α, β, γ and δ
is a necessary consequence of belonging to class A, but
the reverse does not hold: belonging to A is not a nec-
essary consequence of having properties α, β, γ and δ.
Therefore, one cannot infer the class to which an indi-
vidual belongs to from knowledge about its properties,
unless the set of properties defines that class uniquely
(which case would be represented by a biconditional
relationship ↔↔ not by a simple sign of entailment). 

Let’s show this graphically through a Venn diagram:
set A is the set of all individuals sharing properties α, β,
γ and δ; set B is the set of both individuals sharing prop-
erties α, β, γ, δ and individuals having properties α, β,
γ, δ plus additional properties (say ω and ξ). Then prop-

erties α, β, γ, δ would both indicate disease A and dis-
ease B:

Medical diagnosis is generally based on the fallacy
of moving from the consequent (the observable symp-
toms and/or lab data) to the antecedent (the diagnosis).
However, given the constraints which characterise the
medical setting, and the regular unavailability of perfect
diagnostic information, one is obliged to make virtue of
necessity and use this kind of inference in such a man-
ner that one comes as close as possible to the right diag-
nosis and therapy. 

It is thus “logical” that Bayes’ theorem, which math-
ematically formalizes this type of inference and quanti-
fies the uncertainty surrounding it, has been called to res-
cue as an aid to reduce diagnostic errors by changing the
inference from a qualitative into a quantitative one and
by providing an explicit assessment of the probability
which can be assigned to each hypothesis on the basis
of available evidence. In fact, if it is true that both quan-
titative and qualitative induction are affected by uncer-
tainty, nevertheless in the case of quantitative infer-
ences, the uncertainty itself can be quantified and better
tracked along the paths. 

Bayes ’ Theorem 

The main use of Bayes’ theorem in medical diagno-
sis is to assess the probability that an individual belongs
to a certain pathological profile, given the available evi-
dence. 

The special merit of Bayes’ theorem lies in the fact
that ambiguous evidence - such as symptoms which are
expressed by more than one disease - is modelled in a
likelihood function which provides information about how
strong the evidence is associated with one candidate
rather than the other. 

The likelihood function expresses the proportion of joint
(Hi & E) cases over the entire quantity of Es for each alter-



As the graphs show, the prior distribution tends to be
rather diffuse, whereas the posterior distribution has a
visible peak on value A, which represents a certain degree
of uncertainty reduction in relation to the possible state of
affairs. In this case, moreover, the mode of the probabil-
ity distribution radically shifts towards the value, which
in the prior had the minimal frequency. This effect shows
the great impact of the information provided by the symp-
tom. Not every piece of information has a comparable effect
though, and sometimes sample information can even
increase uncertainty if it “levels out” all frequencies instead
of favouring some of the parameter values against the oth-
ers. For example, an ambiguous symptom such as cough
(which is loosely connected to several afflictions) might
be of little help for a diagnostic assessment. 

Bayes’ theorem says nothing about the type of semi-
osis between evidence and hypothesis (whether causal-
indexical, symbolic or iconic, to use Peirce’s semiotic tax-
onomy); however, by providing a measure of the likeli-
hood of each entertained hypothesis on the available
evidence, it allows to draw inferences which on a pure-
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native hypothesis Hi = (H1; H2; … Hn). This function may
be based on the information provided by epidemiological,
clinical and other relevant data. Bayes’ theorem then
applies it within the framework of the probabilistic calculus
in order to update knowledge about the set of hypotheses.

An example might illustrate how. Imagine that a
symptom S is strongly connected to a specific illness A
(and very weakly to other diseases), then the presence of
this symptom in a diagnostic procedure, strongly favours
the medical diagnosis towards this illness. Bayes’ theo-
rem may help quantify how much knowledge updating
is justified in the light of the presence of the symptom. 

In probability terms, we could assume that the like-
lihood of a certain disease Aon a symptom S, is very high,
say in .95. This means that 95% of the cases where the
disease is present also S has been observed. Similarly for
the likelihood of other diseases (B, C, D): 

P (S/A) = .95
P (S/B) = .05
P (S/C) = .02
P (S/D) = .03

If the doctor is expert enough to judge that no other
hypotheses can be taken into consideration, and that the
possibility of the conjunct presence of more than one ill-
ness at a time is negligible (which equals to say that they
are altogether exhaustive and mutually exclusive), then
Bayes’ theorem applies. In a situation where the doctor is
uncertain about illnesses A through D, the occurrence of
such a symptom would enormously increase the probability
of Aagainst the others even if it is epidemiologically very
rare. If epidemiological data about the incidence of the dis-
eases are available, for instance: P(A) =.01, P(B) =.35, P(C)
=.5, P(D) =.14, than the probability of the conjunction of
symptom and illness would be respectively: 

P(A & S) = P(A) x P(S/A) = .01 x .99 = .099
P(B & S) = P(B) x P(S/B) = .35 x .05 = .007
P(C & S) = P(C) x P(S/C) = .5 x .02 = .025
P(D & S) = P(D) x P(S/D) = .14 x .03 = .0042

Which gives the absolute probability of S: P(S) = P(A
& S) + P(B & S) + P(C & S) + P(D & S) = .1352

The probability of each illness given the information pro-
vided by the symptom is computed out of the ratio of each
conjunct over the probability of the symptom = P (I &
S)/P(S), (where I stands for any of the illness considered):

P(A/S)= .099/.1352 = .7322
P(B/S) =.007/.1352 = .0517
P(C/S) = .025/.1352 = .1849
P(D/S) = .0042/.1352 = . 0310

Therefore the symptom information has radically
changed the probability distribution of illnesses A through

D from: .01; .35; .5; .14 to .7322; .0517; .1849; .0310
respectively. This can be shown graphically: 
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ly categorical basis could not be warranted. This is
because, by working in a probabilistic framework, it
makes explicit the level of confidence with which a
hypothesis is entertained without being forced to com-
mit itself to its truthfulness or falseness. 

Another considerable advantage of the Bayesian par-
adigm is that it allows translating the epistemic value of
evidential information directly into practical advices. Fur-
thermore, the practical value of incoming information can
be evaluated through so called “sensitivity analysis”. This
analysis allows to predict the bearing of further informa-
tion on the decision at hand as a function of its capacity to
change the options ranking. This is a relational capacity,
which depends not only on the information’s relevance, but
also on the intensity of preference between outcomes.

The major epistemic advantage of the Bayesian para-
digm however, is that it models uncertainty as a function
of “equivocation” between hypotheses: the closer the prob-
abilities assigned to each hypothesis, are to each other, the
more uncertain is the diagnosis. The epistemic value of evi-
dence (“relevance”) is greater where it points to one hypoth-
esis rather than others and, thereby, both increases its prob-
ability and decreases the probability assigned to the others. 

Additionally, uncertainty may be modelled in the
Bayesian paradigm also by allowing a partition cell
devoted to the vague hypothesis: “other”. The greater is
the value of this cell, the greater is the portion of igno-
rance affecting the diagnosis and the related decision. 

In summing-up, the Bayesian paradigm not only
makes the portion of “not-knowledge” explicit, but it pro-
vides a framework where ignorance is, in some sense,
quantified (and therefore tracked or “controlled for”).

Abduction 

Charles Sanders Pearce has introduced the term
abduction in different contexts, with different semantic
nuances (see Thagard 1988, § 4.2.1).

A first meaning of abduction can be derived from the
following comparative table. 

The table is a revised version of the synopsis offered
in “Deduction, Induction and Hypothesis” (Peirce, 1934,
CP: 2.623; see also Petoefi, 2000 and Vitalcolonna, 1999).
It illustrates the different step order performed by deduc-
tive, inductive and abductive (or “retroductive”) inference.
The well-known example proposed by Peirce is: 

(1) Deduction:
All beans in this bag are white;
These beans are from this bag;
These beans are white. 

(2) Induction:
These beans are white;
These beans are from this bag; 
All beans in this bag are white.

(3)Abduction (or inverse induction, or “retroduction”):
These beans are white
All beans in this bag are white
These beans are from this bag.

In the case of deduction, from a rule: “If x belongs
to A then x has property T”, and a case: “a belongs to A”,
a result is inferred which is necessarily true given the
premises: “a has property T”. 

In the case of direct induction, empirical observations
about a phenomenon are used to support a generalisation
that translates into a rule: the observation of a certain sam-
ple (all the beans drawn from the bag are white) consti-
tutes the basis for an ampliative inference. 

In the case of abduction, the observation of a phe-
nomenon and knowledge of a rule allow for the classi-
fication of the phenomenon under the case predicted by
the rule.

Whereas the deduction correctly uses modus ponens,
both induction and abduction are fallacious inferences.
However, they are intuitively plausible. Induction gen-
eralises a property from a sample of the population;
whereas abduction uses a general rule to explain an
observed fact by subsuming it under a case of the rule.
In this respect, abduction corresponds to the kind of
inverse induction (either quantitative or qualitative)
introduced in the preceding paragraph. 

The parallelism between deduction and abduction is
due to the fact that both use type-token information.
However, the inference direction is opposite: whereas
deduction uses information about the type in order to
assert something about the token; abduction uses infor-
mation about the token in order to identify the type to
which it belongs. Direct induction instead, is mainly
occupied with the establishment of this relationship
itself. 



Inverse induction 
Inference steps (quantitative – probabilistic)

Rule: P(E/ Hi) P (S/A) = .95
P (S/B) = .05
P (S/C) = .02
P (S/D) = .03

Evidence: E S

Conclusion: P(Hi /E) P(A/S) = .7322
P(B/S) = .0517
P(C/S) = .1849
P(D/S) = . 0310

It is important to note that whereas, deduction only
focuses on one hypothesis and considers whether it is
true/false and qualitative inverse induction tries to work
out the most plausible hypothesis given the observed facts,
Bayes’ theorem requires the likelihood of all alternative
hypotheses on the available evidence to be made explic-
it, in order to compute the posterior probability of any
hypothesis given the observed evidence. In the beans’
example for instance, in order to compute the probabil-
ity that the beans come from the bag, one needs to know
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The Bayes’ theorem presented above does nothing else
than quantifying the uncertainty surrounding the abduc-
tive leap: a phenomenon E is associated with rule H
(with probability p) and whenever E is observed in a spe-
cific case, it contributes to classify this case as a token
of H with a degree of probability which follows from the
likelihood of H on data E. 

The rule could be interpreted, in Bayesian terms, as

the degree of association between evidence and enter-
tained hypothesis: P (E/H); the observation is simply E;
finally, the conclusion is the posterior probability that H
is indeed the case, given that E has been observed:
P(H/E):

Rule → P(E/H)
Evidence → E
Conclusion → P(H/E)

Deduction Inverse induction   Inverse induction 
Inference steps  (qualitative) (quantitative – probabilistic) 

Rule  All beans in this bag All beans in this bag are white 100% of beans in this bag 
are white are white.

Evidence These beans are from These beans are white There are n white beans 
this bag on the table.

Conclusion These beans are white These beans are from this bag There is a probability P that the
white beans come from this bag 
(rather than from somewhere else). 

the likelihood that a sample of n white beans are found
on the table, given that they do not come from that bag.
Similarly, in the symptom-diseases example, provided
above, S is the symptom which is differently associated
with each of the contemplated diseases (the hypotheses
under consideration); by using knowledge that S is the
case, the doctor can update his diagnosis about the
patient’s disease with a degree of probability which
depends on the strength of association between S and the
different diseases under consideration:
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3 Abduction II can be considered to be equivalent to what epistemologists
have been studying also under the name of “inference to the best expla-
nation”. There has been however a coalescing of both types of abduction
concepts into one, in the debate around the comparison between Bayesian
inference (i.e. abduction I probabilized) and inference to the best expla-
nation (i.e. abduction II) (see among others McGrew, 2003; Huemer,
2009; Lipton 2004, Psillos 2004, Salmon 2001a, 2001b,  Weisberg 2009)
which has compromised the clarity and fruitfulness of the dispute in many
ways. An interesting dyad emerging from the discussion is the opposition
between evidential and theoretical consilience (see McGrew 2003) which
provides an attractive – although not unproblematic – interpretation of epis-
temological coherence (more on this in a forthcoming paper; see also Bovens
and Hartman, 2003). 

Abduction II: Hypothesis invention

The term abduction, is used in Peirce’s work also in
another sense. Beyond denoting the act of classifying a
token under a predefined type – as presented in the pre-
ceding section, abduction also refers to the conception
of a new hypothesis in order to explain the observed
(“surprising”) state of affairs: abduction “is where we find
some very curious circumstance, which would be
explained by the supposition that it was a case of a gen-
eral rule and, thereupon, adopt that supposition” (Peirce,
1878: 2.624). Using the beans’ example, the inferential
steps could be written as follows: 

Evidence: The beans are white;
Knowledge: There is a bag in this room whose

beans are all white;
E & K → H
(explanation): The fact that the observed beans are

white, and that there is a bag con-
taining only white beans, can be
explained by the hypothesis that the
beans come from this bag; 

Conclusion → H: The beans come from this bag.

In this sense, abduction is a form of inference which
pertains rather to hypothesis invention, than to hypoth-
esis confirmation (or refutation). One observes E and
knows K and tries to find out a hypothesis which can
explain the occurrence of E in the light of K. Peirce for-
mulates this form of abduction as follows: 

The surprising fact C is observed;
But, if A were true, C would be a matter of course,
Hence, there is a reason to suspect that A is true. 
(Peirce, 1878: 5.171). 
Abduction of the first kind works on a semantic level:

e.g. it aims to give a name to a phenomenon which has
already been categorized under a specific heading.
Instead, abduction of the second type uses causal rea-
soning in order to explain facts in the light of available
knowledge.3

Moreover, the starting point and conclusion of the two
types of abduction are opposite:
1. Whereas the focus of abduction I is on the capacity

of the observed evidence to strengthen or weaken a
hypothesis; abduction of the second type starts from
the data and looks for a hypothesis which makes
their conjunction plausible;

2. Whereas in abduction I the inference is based on a
(probabilistically) established association; in abduc-
tion II the association itself is the goal of the infer-
ence.
In medical diagnosis abduction II might come to its

own when evidence is so contradictory that the case
cannot be categorised under any of the already known
disease classes and a new typology or sub-typology
needs to be invented in order to account for the set of
symptoms presented by the case at hand. 

Hypothetical-deductive method

The hypothetical-deductive method combines deduc-
tive inference with the second type of abduction. In
practice, it tests the hypothesis inferred through abduc-
tion on the basis of its observable implications. It fun-
damentally applies modus tollens: 

1. E evidence E is observed;
2. K relevant knowledge K is considered;
3. E&K → H the conjunction of E and K indicate

that H should be the case;
4. H → I H entails implication I;
5. ¬I experiment shows that I is not the case;
6. ¬H. therefore, also H is not the case.
7. G a new hypothesis G must be conceived

in order to account for E, K, and ¬I.

A set of data (evidence E), together with a certain
amount of knowledge about a phenomenon, indicates that
H should be the case. In order to see whether this is real-
ly so, one looks for a necessary implication of H and put
up an experiment in order to test whether it holds. By
doing this, one tests the hypothesis H. However, the test
can give only negative conclusive information, e.g. it can
say that ¬H, given that ¬I is found. Every time that ¬ I
is found, the hypothesis H needs to be refined or com-
pletely changed. Instead, if I is found to be true, then H
cannot be said to be confirmed but only “corroborated”.
This means that in a set of hypotheses, those that have
been submitted to more tests, and passed them, are con-
sidered more plausible than those that have not been
yet refuted as well but have passed less and/or less severe
tests (Popper, 2002). 

In medical diagnosis, the hypothetical-deductive



1

Observation (E) Hypothesis (H) Inference steps

Fever Cause? Rule: Fever → Infection
(if fever then infection) 

Observation: Fever 

Conclusion: Infection 
(modus ponens) 
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method is represented by cases where the doctor seeks
for plausible diagnostic hypothesis and test them by
looking at evidence which can exclude them one after the
other. The sophistication of this process depends on the
doctor’s knowledge of the possible implications of any
disease either in terms of observable symptoms or in terms
of laboratory data. 

The formal difference between a straightforward
modus tollens and a hypothetical deductive one in med-
ical diagnosis, is that, in the former, both hypotheses and
possible implications are known, whereas in the latter,
at least one of the two must be thought of anew during
the diagnostic process. 

The difference between abduction II and the hypo-
thetical deductive method, is that, while abduction II stops
at stage 3 of the inferential process illustrated above, the
hypothetical-deductive method tries to falsify the inferred
hypothesis through modus tollens (steps 4-6). 

Until now, I have presented a series of inferential
methods, which have been included to a lower or high-
er degree in the toolkit of medical reasoning. Indeed, med-
ical diagnosis seems to combine different kinds of infer-
ence in subsequent steps depending on the available evi-
dence. In the following, I present a case history in order
to show what types of inference models are used in dif-
ferent diagnostic circumstances and the rationale under-
lying the inferential strategy. 

A case history: Frugoni’s diagnosis 
of miliary tuberculosis 

I am reporting here an old case history from the
famous Italian clinician Cesare Frugoni, who wrote one
of the most used manuals of differential diagnosis in the

first half of the XXth century: “Lezioni di clinica med-
ica” (1948). Federspil and Vettor have already examined
the case, and, although I fundamentally agree with their
analysis, I will propose some additional comments and
come to a different conclusion.

The clinical case reports a diagnosis of acute miliary
tuberculosis (or disseminated tuberculosis). Miliary
tuberculosis is the most dangerous type of tuberculosis,
because the infection is not limited to one organ (e.g. lungs
or kidney), but it spreads throughout the body through
blood circulation. 

Given that generally infections have a short incuba-
tion time, patients affected by infectious pathogens only,
slowly show noticeable signs of the disease. In fact, the
central figure of the case, a young woman, presents
practically no laboratory or symptomatic evidence. She
has been taken to the hospital because of two episodes
of severe fever interspaced by a two-week-period of rel-
ative well-being.

The first fever was accompanied by skin eruptions on
the legs: big whitish-bluish infiltrated nodules. Frugoni
interpreted these as “clear signs” of Erythema nodosum.
Erythema nodosum however, is not a disease, but a syn-
drome with various etiologies: in fact, it can be caused
either by toxic agents or rheumatic infections, or else, by
the use of sulfonamides. In most cases however, it is an
allergic reaction to tubercular infections. Frugoni quotes
a personal statistics from his clinic, where 94% of EN
has been established to be of tubercular origin. The link
between EN and tuberculosis is the key to the general
diagnosis. However, let’s follow Frugoni’s line of rea-
soning. The table presents, in the first column the observed
data; in the second one, the diagnostic question and the
provisory hypothesis; in the third column, the inference
steps that lead to the conclusion.

The first symptom analysed is the presence of fever;
this straightforwardly indicates the presence of an infec-
tion, given that there is a necessary causal association
between fever and infection. The second step then, is to
diagnose the type of infection. 

The patient’s general state, at the moment of admis-
sion in the clinic, is relatively good, apart from her high
temperature and symptoms of asthenia, weakness and
swollen spleen and liver. Both physiological and
instrumental evidence is negative (which is obvious-
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The swollen liver and spleen, usual expression of a
general infective state, also indicate the non-specificity
of the infection. This is however inconclusive evidence,
because swollen liver and spleen can also be caused by
other phenomena. Therefore, the causality connection
between general infection and swollen liver and spleen,

ly different from saying that there is no evidence): no
lesions at the lymphoglandular system, nothing at the
head, no headache, no signs of psychic disorder, no
neck-stiffness, nothing to the chest (heart, lungs). As
for the instrumental evidence, radioscopy is negative,
but the pulsation is abnormal and there is light leu-

copenia. The available evidence excludes that the
fever can be originated by lesions at the gallbladder
by a pleurisy, by pneumonia or by pararenal abscess.
All these negative signs indicate that the infection is
not specific, and therefore, that it is generalised to the
entire body:

3

Observation (E) Hypothesis (H) Inference steps

Swollen liver and spleen What kind of infection? Rule: General infection → Swollen 
liver and spleen 

Observation: Swollen liver and spleen 

Conclusion: General infection 
(Abduction I) 

2

Observation (E) Hypothesis (H) Inference steps

¬ abnormal signs at What kind of infection?
lymphoglandular system;
head;
neck;
chest;
lungs;
heart;
negative radioscopy 

Rule: Specific infection → (lymphoglandular
system V head V neck V chest V lungs V
heart)

Observation: 
¬ LS
¬ head
¬ neck 
¬ chest
¬ lungs 
¬ heart 

Conclusion: ¬ specific infection (modus tol-
lens) 

Rule:
For all x (x is an infection) → x is specific V
x is generalized

Observation: q is ¬ specific 

Conclusion: q is generalized

is sufficient but not necessary: GF → SLS but not SLS
→ GF. Hence, concluding GF from GF → SLS and the
presence of SLS is a fallacy. But, from an inductive
point of view, it can be considered as a case of abduc-
tion of the first type. 



Sepsis is also excluded, because when someone has
swollen liver and spleen because of sepsis, then he
also has septic tongue, neutrophilia and is in a numbed

state. Instead, the patient is lucid and calm, has leu-
copenia, and no septic tongue. Therefore, the infection
is not a sepsis: 
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Now, the question is: What kind of general infection?
Candidate diseases for the explanation of a general
infection with swollen liver and spleen, are the Malta-
fever, slow endocarditis, malaria, typhus, sepsis and
tuberculosis: the set of hypotheses is therefore repre-
sented by the disjunction: {Malta-fever V slow endo-

carditis V malaria V typhus V sepsis V tuberculosis}.
Typhus is quickly excluded because Typhus is asso-

ciated to Eberthian-fever, rosy elements, chest erythema,
neurological syndrome, intestinal syndrome and specif-
ic immune reactions. Neither of these phenomena appear
to affect the subject under examination. 

4

Observation (E) Hypothesis (H) Inference steps

¬ Eberthian-fever, What kind of general infection?
¬ rosy elements, 
¬ chest erythema, 
¬ neurological syndrome, 
¬ intestinal syndrome 
¬ specific immune reactions

Rule:
Typhus → (Eberthian-fever V rosy elements
V chest erithema V neurological syndrome V
intestinal syndrome V specific immune reac-
tions)

Observation:
¬ ef
¬ re
¬ ce
¬ ns
¬ is
¬ sir

Conclusion: ¬ Typhus (modus tollens) 

5

Observation (E) Hypothesis (H) Inference steps

a has no septic tongue What kind of general infection?
a has leucopenia 
a is lucid and calm 

Rule: Sepsis → septic tongue V neutrophilia
V numbed state

Observation: 
¬ septic tongue 
Leucopenia → ¬ neutrophilia 
Lucid and calm → ¬ numbed state

Conclusion: ¬ sepsis (modus tollens) 

Malaria is excluded because the malaria’s parasite test
is negative, and endocarditis is also immediately exclud-
ed given that there are no heart abnormalities:



55B OSIMANI: “Modus Tollens” Probabilized: Deductive and Inductive Methods in Medical Diagnosis

As for the Malta-fever, instead, there are signs in
favour of a diagnosis of this type: these, are the swollen
spleen and liver, the irregular and instable temperature,
the presence of leucopenia and the abundant sweating.
However, there is also evidence against the hypothesis
of Malta-fever: both blood culture and serum reactions
are negative. Frugoni concludes that ‘It is therefore prob-
able that it is not Malta-fever’. It is important to note that
the probabilistic conclusion is due to two different con-
straints: 
1. On the one hand, evidence in favour of the hypoth-

esis cannot be conclusive because it is positive and,
therefore, modus tollens cannot be applied. The rela-

tionship between the observed symptoms and the
diagnostic hypothesis is not necessary: Malta-fever
is a sufficient cause for irregular and instable tem-
perature and so on, but it is not a necessary one, so
that the evidence cannot be used to infer the diagno-
sis deductively. 

2. On the other hand, there is also inconclusive evi-
dence against the hypothesis of Malta-fever: the neg-
ative blood spectrum and the negative serum reaction.
These two test results cannot absolutely exclude the
presence of the disease, and therefore, also here,
modus tollens cannot apply, but the data obviously
speaks against it. 

7

Observation (E) Hypothesis (H) Inference steps

Inconclusive evidence for MF
Irregular and instable 
temperature 
Swollen spleen and liver 
Leucopenia
Abundant sweating

Inconclusive Evidence 
against MF
Negative blood culture
Negative serum reaction 

Rule: Malta-fever → irregular and instable
temperature V swollen spleen and liver V leu-
copenia V abundant sweating 

Observation: 
Irregular and instable temperature 
Swollen spleen and liver 
Leucopenia
Abundant sweating

Conclusion (only on probabilistic grounds):
low probability of Malta-fever.

What kind of general infection?

6

Observation (E) Hypothesis (H) Inference steps

Negative test result for What kind of general infection? Rule: Malaria → parasite
malaria parasite 

Observation: ¬ parasite 

Conclusion: ¬ malaria (modus tollens) 

Heart = normal What kind of general infection?  Rule: Endocarditis → heart abnormalities 

Observation: Heart = normal

Conclusion: ¬ endocarditis (modus tollens)

The final diagnosis of miliary tuberculosis comes by
exclusion of the alternative hypotheses and it is addition-
ally supported by further radiological evidence: lung
parenchyma (the radiography shows the lungs full of little

“seeds” which are typical of tuberculotic caseation). As a
further confirmation, the same “seeds” can also be observed
in the patient’s cornea. The following table illustrates the
inferential process that results in the final diagnosis. 
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The inference process goes from a very general
assessment (“infection”) and progressively specifies the
pathological classification. Inference steps are general-
ly made through modus tollens until the Malta-fever
hypothesis is both supported and disconfirmed by incon-
clusive evidence and therefore, cannot be categorically
excluded. The final preference for the tuberculosis
hypothesis against the Malta-fever, is the result of a
comparison of the evidence for and against both of them. 

In this diagnosis, Frugoni represents medical rea-
soning as mainly deductive. However, this is also due to
the didactic exposition of the case and the need of jus-
tification of the final diagnosis. Between the lines, one
can read an overarching inferential structure, which orig-
inates from the puzzling conjunction of the fever, and the
absence of any symptomatic evidence or laboratory
report (“there is no semeiotic fact which can explain by
itself the presence of fever”): all localised lesions (like
appendicitis, for instance) which can give origin to fever,
are absent.

Given that there is no other possible explanation, the
fever is attributed to a general state of infection (abduc-
tion II), but this diagnosis is very vague and does not give
any information about the etiology. This is investigated
by taking into account all possible types of general infec-
tions that are accompanied by swollen liver and spleen.
In order to simplify the diagnostic procedure, conclusive
negative evidence for each of them is examined in order
to exclude each of them, one after the other. This pro-
cedure simplifies the inferential process by considering
one hypothesis at a time; however, it is possible only when

the relationship between evidence and disease is neces-
sary in one direction or the other. 

A probabilistic paradigm is used only when no con-
clusive negative evidence can be used to reject the
hypotheses under consideration (here the Malta-fever),
in which case, the non-rejected hypotheses are weighed
against each other on the basis of all available evidence.
In this case, tuberculosis wins over the Malta-fever.

Frugoni takes into account also the epidemiology of
erythema nodosum (94% of cases in his clinic has been
established to be caused by tuberculosis). It is important
to note, that this data has been reported both at the begin-
ning and at the end of the diagnosis. In fact, the presence
of this syndrome seems to have covertly guided the
entire inferential procedure towards the final diagnosis.
Because of its diverse etiology, it could have not legit-
imised the diagnosis of tuberculosis by itself; but, after
excluding all other candidate causes of general infection,
this data does play a supportive role in strengthening the
diagnosis of tuberculosis (however the statistics is not
used as a basis for a Bayesian computation, given that
this method was not known to clinicians at that time). Yet,
this statistical data points generically to tuberculosis,
but cannot give any further information about the spe-
cific type of tuberculosis. This information is provided
by radiological report, by the absence of signs of specific
infection and by the presence of the “seeds” on the eye’s
cornea. 

It is important at this point, to mention that Frugoni takes
the opportunity to explain his students the different symp-
toms associated to the three main types of tuberculosis. This

8

Observation (E) Hypothesis (H) Inference steps

Erythema nodosum What kind of general infection?
Seeds in the cornea 
Seeds in the pulmonary 
radiography 

Rule: general infection & swollen liver and
spleen → Malta-fever V endocarditis V
malaria V typhus V sepsis V tuberculosis.

¬ endocarditis
¬ malaria
¬ typhus
¬ sepsis
¬ MF (?)
+ statistical evidence concerning the etiolo-
gy of erythema nodosum
+ radiography 
+ symptomatic evidence in the cornea

Conclusion: miliary tuberculosis
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4 But see Stanford (2009) for a debate on this issue.

is done through etiological considerations. Tuberculosis may,
in fact, manifest itself in different forms depending on the
way the caseation disseminates in the body. In the pul-
monary type, caseation, enters the heart from the right
side, and then from there, in the lungs through the pulmonary
circulation and produces lung embolization and asphyxia.
Instead, if the caseation goes to the left side of the heart,
then it enters from there, to the entire body through the sys-
temic circulation and produces a general infection: in this
case, you can either have the miliary form (the case under
consideration), or the meningeal form, which produces
symptoms similar to that of a primary meningitis: headache,
neck stiffness, vomiting. 

From an epistemological point of view, one is struck
by the heterogeneity of the logical methods used all
along the way to the final diagnosis. The single steps are
generally performed deductively, but these are framed in
an abductive framework and are supported by proba-
bilistic considerations. Does this mean that the procedure
is incoherent or flawed? 

My answer to this question is yes, from a pure epis-
temological point of view (with some caveat), but no from
a pragmatic point of view. 

Epistemical point of view

The difference between a hypothetical-deductive
method and a Bayesian one, is that, in the former,
hypotheses are produced along the way and changed
through accumulation of negative evidence against the
old ones, whilst, instead, in a Bayesian procedure, can-
didate hypotheses are decided from the beginning, and
the accumulation of evidence, should help increase the
probability of one to the detriment of the others with no
possibility to introduce a new hypothesis on the way. In
fact, the Bayesian procedure can be represented as a
cake-diagram, where, the growth of a sector necessari-
ly leads to decrease of the area of at least one of the oth-
ers. In order for this procedure to function, the contem-
plated hypotheses cannot change during the inferential
process (at best they can be eliminated). If new hypothe-
ses need to be added, instead, the old inference process
is interrupted and a new one starts, with a new sample
space. However, the main diverging point is in the under-
lying assumption at the basis of the two inferential pro-
cedures. In the Bayesian paradigm it is assumed that the
probability of the disjunction equals 1: P (H1 V H2 V …
V Hn) = 1. This equates to saying that at least one of the
hypotheses must be true. Instead, the hypothetical-deduc-
tive paradigm, does not commit to the truthfulness of the
hypotheses that pass the elimination test; it just says
that they have not been falsified. Therefore, when the set
of hypotheses that have not been falsified in a hypo-

thetical-deductive procedure are taken as the starting
point for a Bayesian inference, one fails to remember that
their disjunction is not guaranteed to be true, and there-
fore, its probability is not 1. This has both logical and epis-
temological bearings. From a logical point of view, if the
probability assigned to the sample space does not amount
to 1, then no computation, at least in the Bayesian
method, is possible. From an epistemological point of
view, the Bayesian method aims at reducing uncertain-
ty as to which one of the contemplated hypotheses it is
the true one, whereas, the hypothetical-deductive meth-
ods aims at reducing the set of possible worlds by pro-
gressively eliminating the false ones, without commit-
ting to the truth of the remaining ones.

A possible converging point between the two systems,
could be represented by considering the catch-all hypoth-
esis as a translation (in probabilized version) of the
modus tollens used in the hypothetical-deductive method.

The catch-all hypothesis is simply the partition cell
“other”. In a sample space of two hypotheses, this would
be ¬ H; it would be ¬ (Hi V Hj) when the cells are three,
and so on. The catch-all hypothesis explicitly accounts
for the proportion of ignorance which surrounds the
inference. Still, the epistemological assumption of the
Bayesian paradigm is that accumulation of evidence
should reduce uncertainty and approach truth, which is
paradoxically compatible with an increase of conscious
“ignorance” [e.g. : : P(H/ E1) > P (¬ H/ E1) but P(¬ H/
E1, E2, …, En) may be higher than : P(H/ E1, E2, …, En)].

4

Instead, the converse does not hold for the hypothetical-
deductive paradigm, which has no instrument for meas-
uring how much falsehood has been eliminated to the ben-
efit of how much truth. On the other hand, the point of
the hypothetical-deductive method is not to measure
falsehood against truth, but to detect falsehood and then
trigger a new abductive process with the hope that the
resulting hypotheses pass subsequent tests. Therefore,
even if the catch-all hypothesis can be seen as a locus of
intersection between the Bayesian and the hypotheti-
cal-deductive paradigm, nevertheless it serves hetero-
geneous purposes in each of them.

Pragmatical point of view

Let’s look back at the case history. We could com-
pare the first part of the diagnosis (1 -3) to a simple form
of abduction II, where lack of evidence for a specific
infection and presence of fever, requires an explanation
which is found in the hypothesis of general infection.
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From this moment onward, this hypothesis is taken for
granted, and the inferential work is devoted to under-
standing what kind of general infection is at work,
rather than testing this hypothesis. The second part of
the diagnosis (4-6), is devoted to testing the diverse pos-
sible candidates for a diagnosis of general infection. The
implications for each of them are investigated and used
to eliminate the related hypothesis when failing to be
present. In the final part (7-8), the remaining hypothe-
ses are considered as the two possible cells of a sam-
ple space and then associated with a probabilistic esti-
mation on the basis of relevant positive and negative
evidence. 

The hypothetical-deductive and the Bayesian frame-
work are used one after the other by tacitly assuming that
the set of non-falsified hypothesis can represent a dis-
junction whose probability-sum amounts to one. This is
done by contradicting the hypothetical-deductive para-
digm in two ways: 1) by fixing at some point the hypothe-
ses under consideration, thereby excluding any other
hypotheses which might be conceived on a second
thought; 2) by considering that at least one of them must
be true, whereas, in the hypothetical-deductive framework
no truth-commitment is made as to the non-falsified
hypothesis. 

However, this compromise is useful for many reasons.
The eliminative procedure strongly simplifies a process
which quickly eliminates candidate hypotheses one after
the other; the subsequent use of the probabilistic method
allows to arrange the remaining hypotheses in a ranking
which is supposed to reflect closeness to truth. 

Both inferential processes are important to medical
diagnosis: the hypothetical-deductive one is open and
flexible, but requires conclusive evidence; the Bayesian
method works with simply supporting or disconfirming
evidence, but requires a closed set of hypotheses. 

Although it is hard to think of a way to reconcile them
on a theoretical level, the medical practice constantly does
this in the attempt to maximize the information that can
be provided by different types of evidence. 

Medical diagnosis, especially differential diagno-
sis, also uses a kind of “probabilistic modus tollens”, in
that, signs (symptoms or laboratory data) are taken as
strong evidence for a given hypothesis not to be true:
the focus is not on hypothesis confirmation, but instead
on its refutation [Pr (¬ H/E1, E2, …, En)]. Especially at
the beginning of a complicated case, odds are between
the hypothesis that is potentially being excluded and a
vague “other”. This procedure has the advantage of
providing a clue for what evidence to look for, and to
eventually reduce the set of candidate hypotheses if
conclusive negative evidence is found. Indeed, the key
issue in the diagnostic procedure is not only to assess

the probability of the considered hypotheses on the
available evidence, but also how to decide what infor-
mation to look for. 

Conclusion and outlook

Federspil and Vettor (2000) provide a different expla-
nation for the use of the different types of inferential meth-
ods in the clinical case presented above (which they
also analyse). They defend the position, according to
which, not only ethics and rights are governed by dialec-
tic argumentation, rather than pure logic, but also natu-
ral science and the hard sciences in general are ruled by
rhetorical games and dynamics which are typical of the
persuasive discourse. They assert that this is also valid
for medicine and clinical decisions, even if the medical
profession has generally tended to hide controversies and
to present only the logically incontrovertible facts about
medical diagnosis. However, in order to demonstrate
their thesis, they do not draw on the Frugoni’s case, but
on another one, which is precisely a court case, where
the medical topic hides the shift from a pure clinical
domain to a legal one. The case presented is therefore,
not adequate for showing anything relevant about pure
clinical investigation. 

The case they present concerns a young worker who
died because of a sudden pulmonary infection some
days after his supervisor hit him with a stick on the
stomach and on the back. The main question is whether
his superior’s aggression can be considered the cause of
his death. 

Three, more or less jointly contributing causes are con-
sidered: the physical aggression, the persistent cold that
the young man had been exposed to in the last days, and
the moral depression caused by the supervisor’s hostil-
ity. Murri’s work, an important clinician in the Italian’s
medicine history, consists in showing that cold alone could
not have by itself caused the pulmonary infection; instead,
the sensation of cold, especially perceived after the
assault, was itself a consequence of the physical and
moral aggression, and together with these other two cir-
cumstances, it constituted a complex causal framework,
where the triggering phenomenon was to be identified
in the physical and moral violence suffered by the vic-
tim. Federspil and Vettor’s analysis, examines the rhetor-
ical means used in order to persuade the court of his the-
sis (for instance the argumentum ad verecundiam) and
the various logical fallacies made along the way (e.g. peti-
tio principii); however their analysis fails to recognize
that the legal framework differs from the clinical one, not
only because of the different epistemological and prac-
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tical purposes and working methods, but also, because
generally, the issue is not primarily the diagnosis which,
for instance, can be established through autopsy, but the
proximate cause for the health injury, because general-
ly, the purpose is to establish the responsibility and its
legal liability. 

It is however important to emphasise athat the suc-
cess of the Bayesian paradigm in medical decision-mak-
ing, is also due to its practical usefulness in case of lit-
igation for the attribution of damage’s responsibility in
case of medical treatment. In the case above, for instance,
a Bayesian computation, made with the help of histori-
cal statistics and other available evidence, would have
helped the court to assess the single contribution of each
causal factor to the final event. This, in turn, would have
led to a precise estimation of the complex role played by
the assault in causing the young man’s death, perhaps
leading to a more moderate use of rhetorical instru-
ments. 
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