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My propositions are elucidatory in this way: he who understands me finally 
recognizes them as senseless, when he has climbed out through them, on them, over 
them. (He must so to speak throw away the ladder, after he has climbed up on it.) 
(Wittgenstein, 1933, Proposition 6.54) 

 

Trying to understand the origin of numbers through symbolic forms realized and refined over 
thousands of years, or by means of the innate, inchoate, inarticulate sense of quantity we share 
with other species, lands us in much the same position as the philosopher using Wittgenstein’s 
metaphoric ladder. In the first case, we have climbed up very far, the ladder has long since been 
kicked away, and we are left wondering just how we achieved the rare and elevated heights in 
which we find ourselves. In the second, there is no ladder, and we marvel at a seemingly 
unbridgeable gap. 
 To recognize that a ladder is needed and then put one back where one belongs, we review 
four perspectives on numeracy, the ability to reason with numbers. As argued, if we are to achieve 
an answer on numerical origins, the nativist, linguistic, embodied, and extended perspectives must 
address one or more critical questions, and this will involve working across the boundaries of the 
different disciplines investigating numeracy. 
 

1. The Nativist Model 
Nativists see the innate sense of quantity known as numerosity as both necessary and sufficient for 
numeracy. Necessity is reasonable, given that numerosity is demonstrated by all humans, exhibits 
the same functionality across and despite significant differences of culture and numerical 
elaboration, and has a pervasive and continuing influence on numeracy (Gordon, 2004; Henrich et 
al., 2010; Malone et al., 2019; Pica et al., 2004). These circumstances suggest that numerosity is 
both foundational to, and a key determinant of, numeracy as it develops in humans (Nieder, 
2017a,b). The converse—the claim that numerosity isn’t necessary for numeracy—may be 
unfalsifiable, since numerosity has been demonstrated by all the vertebrate and invertebrate species 
tested for it to date. 
 Sufficiency is a different matter. If numerosity were sufficient for numeracy, then all 
human societies should have numbers because all humans have numerosity. Yet not all human 
societies have numbers: The Amazonian Pirahã are said to lack them (Everett, 2005; Frank et al., 
2008), though this anumerical absoluteness has also been contested on the grounds that they may 
have terms for one and two (Everett, 2013; Nevins et al., 2009). Sufficiency also doesn’t explain 
why some societies develop highly elaborated numbers and others relatively few. Neither does 
sufficiency explain the variability observed within particular cultural traditions over time. In the 
Western tradition over the past thousand years, one, two, and zero became numbers, Hindu–Arabic 
numerals replaced Roman ones, and calculating with algorithms involving mental judgments 
supplanted the mechanical exchange of values on counting boards (Evans, 1977; Klein, 1992; 
Pullan, 1968; Reynolds, 1993; Rotman, 1987). This variability suggests an elaborational 



mechanism other than whatever aspects of numeracy are innate to numerosity, arguing against 
sufficiency. Simply, the Wittgensteinian ladder connecting numerosity to numeracy is missing. 
 The question of what else might need to be added to numerosity to yield numeracy in 
humans is debated, not just in terms of what that something else might be (i.e., what kind of a 
ladder?) but whether it is necessary in the first place (is a ladder really needed?). In arguing both 
need and kind, the biologically endowed ability to appreciate non-symbolic quantity has been 
described as being distinct from, though the basis for, its culturally mediated elaboration as exact 
symbolic quantification and arithmetic in humans (Núñez, 2017a,b). In arguing against both need 
and kind, the nativists have unequivocally rejected the need for cultural mediation, claiming the 
biological endowment is sufficient in and of itself (e.g., Nieder, 2017a,b). The rejection effectively 
equates not just numeracy and numerosity but the resultant concepts themselves. Here the need for 
laddering is obviated by denying the end conditions differ. 
 For example, honeybees were recently argued to possess not just the ability to differentiate 
absence from presence but “the conceptual number of zero” as “an empty set quantitatively [falling 
or positioned] along the numerical continuum” (Howard et al., 2018, pp. 1–2). The bees’ behavior 
was interpreted as demonstrating an “understanding that zero is lower than one,” with their 
performance deemed “at a level consistent with that of nonhuman primates” and parallel to that of 
“preschool children” (Howard et al., 2018, pp. 1–2). The last claim is particularly strong, given 
that the preschool children in question are WEIRD (Western, Educated, Industrialized, Rich, and 
Democratic; Henrich et al., 2010) and exhibit not just concepts and skills thought to be innate but 
those acquired from several years of linguistic and cultural exposure to a highly elaborated number 
system (Barth et al., 2005; Gilmore et al., 2010). 
 The biological emergence of a conceptual understanding of zero has been claimed to 
involve four stages, characterized as synthesized from historical, developmental, 
neurophysiological, and comparative data and purported to be broadly descriptive of, and 
summarily applicable to, these domains, despite their disparate natures (Nieder, 2016). As 
described, the first stage involves the recognition of an absence, the second responds to it without 
giving it numerical meaning, the third assigns it a “quantitative meaning … represented as an 
empty set at the low end of a numerical continuum or number line,” and the fourth represents the 
concept symbolically (p. 831). Stage 3 corresponds to bees’ conceptualization of zero, as inferred 
from observations of their behavior and as interpreted in terms of how humans understand zero 
(Howard et al., 2018), Stage 4 to the way human six-year-olds acquire the concept, as assessed by 
their ability to discuss and apply it with knowledgeable adults (Nieder, 2016). 
 For humans, the stages are arguably more applicable to the ontogenetic acquisition of 
Western number concepts than reflective of their historical realization. Zero is a WEIRD number, 
and before it was WEIRD, it was NERD (Non-western, Elaborate, Rich, and Despotic), emerging 
from the mathematical tradition of Babylon, whose own numerical antecedents lie deep in 
Neolithic Mesopotamia and the Paleolithic Levant. Four thousand years ago, Babylonian 
mathematicians inserted blank spaces to align the values of columnar numbers; in India 2500 years 
later, these spaces became a metasign marking the absence of any number, and over the last 1000 
years in the West, the metasign acquired new meaning as a sign for a number with a specified 
value, a specific place in the ordinal sequence, and unique characteristics like an inability to act as 
a divisor (Joseph, 2011; Rotman, 1987). The last two historical stages seemingly conflate or invert 
Stages 3 and 4, as biologically described, since symbolic representation preceded the realization 
of a quantitative meaning. 



 Equating concepts between bees and humans implies two things: First, bees must 
intuitively and spontaneously grasp a concept from interacting with the natural environment that 
humans realized only after manipulating numerical information in the specific form of handwritten 
notations over thousands of years, and before that, unwritten material forms over tens of thousands 
of years. Second, bees must realize the concept individually, but—given that human societies have 
invented zero only a handful of times—individual humans do not. The questions posed by these 
implications are these: If a Stage 3 concept of zero is innate to species as phylogenetically remote 
from us as bees, why does it take so much time and effort for us to develop a comparable version? 
Are the things that differentiate us from other species—particularly language and culture—merely 
epiphenomenal in this regard, or do they actually slow us down? 
 If human children acquire a preexisting cultural concept like zero as a function of 
ontogenetic maturation and pass through the stages of understanding it on that basis, surely this 
cannot be the correct explanation for zero’s socio-historical emergence. For one thing, it would 
resurrect Piaget’s (1928) belief that ontogenetic differences in conceptualization can be applied to 
the level of societies, an idea that has rightly fallen out of fashion. Notably, the socio-historical 
process was one in which a cultural form—writing—was central to the (re)conceptualization 
process, suggesting cultural mediation is appropriately identified as the elaborational mechanism. 
Similarly, as defined, Stages 3 and 4 imply a role for cultural mediation: Quantitative meaning, 
symbolic representation, and a numerical continuum entail cultural ideas about numbers, symbols 
for numbers, and a linear organization to the way numbers are envisioned. These things are not 
characteristic of emerging number systems, which lack both a concept of zero and symbols for 
numbers, and may not have a mental number line (Núñez, 2011). In other words, some sort of 
laddering is needed—if not for bees, then for humans, for whom numerosity alone doesn’t appear 
sufficient for realizing the later stages. 
 For the nativist view, the critical question may not be how much of numeracy is innate and 
shared between humans and other species, but rather, whether, how, and why human and non-
human numeracy differ. If we accept that the human symbolic conceptualization of zero differs 
from how, what, and why bees might think about naturally occurring absence, the qualitative and 
quantitative differences between human communication and material culture and their 
counterparts in non-human species suggest investigating linguistic and cultural mediation as 
potential factors. 
 

2. The Linguistic Model 
Linguists claim language as necessary and sufficient for numeracy. If language were necessary for 
number concepts, then as humans are the only species with language, by definition, only humans 
would have concepts of numbers—a conclusion not only diametrically opposed to what the 
nativists claim, but which also brings into question the relevance of the comparative data. The 
converse is true as well, since the nativist view effectively precludes a role for language. However, 
since all human societies have language but not all have numbers, language doesn’t appear 
sufficient. Moreover, since all human societies have both language and numerosity, the anumeracy 
of some societies means that language and numerosity are not conjointly sufficient either. 
 The linguistic model takes several forms. One, perhaps outdated, considers numbers a 
subset of the language faculty: The “human number faculty [is] essentially an ‘abstraction’ from 
human language, preserving the mechanism of discrete infinity and eliminating the other special 



features of language” (Chomsky, 1988, p. 169), with discrete infinity being the ability to generate 
near-infinite novel combinations from finite sounds and meanings. Another variant sees both 
language and numbers as informed by an underlying computational capacity responsible for 
properties like generativity, with other features—possibly including numerosity, though this isn’t 
specified—added subsequently (Chomsky, 2004). Numerosity has no role in the first variant, 
which ignores the complex quantical behaviors of alinguistic species and their implication that 
numeracy has a basis other than language. Numerosity isn’t necessarily excluded from the second; 
however, since the computational basis shared by language and numeracy is presumably not 
numerosity, it shares the same flaw. Both struggle to explain societal anumeracy, conjecturing a 
binary mechanism that either switches on numbers or fails to do so (Chomsky, 2004; Hurford, 
1987). This in turn assumes numbers are an all-or-nothing proposition, a monolithic construct that 
glosses over non-trivial differences in conceptual content, structure, and organization across 
cultural number systems, as well as change within particular traditions over time. 
 A third variant identifies recursion as the sine qua non for both language and numbers 
(Fitch et al., 2005; Parker, 2006). Recursion, claimed to be the “only uniquely human component 
of the faculty of language” (Hauser et al., 2002, p. 1569), is the ability to embed words, clauses, 
or phrases beside or within similar structures. In mathematics, recursion is often considered the 
mechanism whereby the successor function (n + 1) generates new numbers (Odifreddi, 1992; 
Reuland, 2010), though arguably, succession is an iteration, as it lacks key qualities of recursion: 
self-reference, the ability to increase embedding depth, and a terminating condition (Karlsson, 
2010; Taraban & Bandara, 2017). In language, recursion has been credited as the mechanism of 
discrete infinity; in spoken numbers, names for higher numbers like twenty-two are recursively 
concatenated from “a finite lexicon of atomic units or words” like two and ten (Ott, 2009, p. 256). 
The Pirahã language is often highlighted in discussions of recursion and numeracy because it has 
been described as lacking both, with the lack of recursion claimed to explain Pirahã anumeracy 
(Everett, 2005; Frank et al., 2008). These claims have also been contested, recursion because it is 
used in Pirahã storytelling and demonstrated in speaking Portuguese, numbers because Pirahã may 
include terms for small numbers (Everett, 2013; Nevins et al., 2009; Sakel, 2012). 
 Granted, the ability to generate number words through recursive concatenation is an 
important linguistic contribution to numeracy. It’s still not clear that an absence of recursion would 
prevent the subitizable quantities from being named, as they are immediately available to human 
perceptual experience, and indeed, Pirahã may have terms for one and two. Certainly, initial terms 
for numbers are often descriptive of material forms instantiating appreciable quantities, suggesting 
that while generativity is important, so too is the descriptive use of language, and so are the 
material forms that instantiate quantities and the perceptual system that appreciates them. 
Similarly, if recursion were the mechanism generating names for the initial numbers—say, one 
through ten—naming would presumably continue beyond the subitizable range, rather than 
invariably stopping at its upper limit. Yet the first words for numbers across languages and cultures 
are one, two, (occasionally) three or about three or four, (infrequently) four, and many. These 
terms are consistent with our perceptual experience, which recognizes the subitizable quantities 
one to about three or four and above that appreciates quantity differentials if they fall above a 
threshold of noticeability. Presumably, naming stops because we name the quantities we can see, 
and we can’t and don’t name quantities we cannot see. Recursion doesn’t appear to influence this, 
but then, the comparative evidence suggests that numerosity has the same functionality regardless 
of whether or not language itself is present. 



 Yet another variant claims “Without using language, we still can’t go [“higher than the 
subitizing range of about four”]” (Hurford, 2007, pp. 91–92). A role for numerosity is implied in 
differentiating subitizable and non-subitizable quantities; the distinction occurs in a discussion of 
numerosity and conceptualization, identified as abilities possessed alike by humans and non-
human species. The discussion reasonably proposes that non-human species may be limited 
conceptually to subitizable quantities. It less plausibly positions the conceptual limit as a matter of 
not having language, which seemingly assumes either that language is the mechanism whereby 
concepts of exact non-subitizable quantities are realized or that concepts don’t exist unless and 
until they assume linguistic form (Wittgenstein, 1933). Granted, when number concepts exist in a 
culture, language provides an acquisitional mechanism (Cantlon et al., 2006; Dehaene, 2007); 
nonetheless, this doesn’t answer the question of how such concepts emerge in the first place, nor 
does it entail the mechanism is wholly linguistic. In the absence of preexisting concepts for any 
non-subitizable quantities, we must still ask how and why we would name quantities that we lack 
the perceptual capacity to discriminate. 
 To understand how and why we might transcend our perceptual limits, it’s helpful to 
recognize both numerosity and numeracy as strongly visual, with visual perception informing 
numerical conceptualization, comprehension, learning, visualization, performance, and 
epistemology (Crollen et al., 2011; Dreyfus, 1991; Giaquinto, 2007; Kaput, 1987; Nelsen, 1993; 
Tang et al., 2006). Numerosity and numeracy are also strongly alinguistic, as numerosity is not 
influenced by whether or not language for numbers is available (Henrich et al., 2010), and 
numerical thinking involving regions of the brain other than those implicated in language (Amalric 
& Dehaene, 2016; Brannon, 2005; Varley et al., 2005). The visual, alinguistic nature of numerosity 
and numeracy suggests that numerical conceptualization is rooted in what we perceive visually 
and can manipulate into new, visually appreciable patterns, occasioning the need for linguistic 
labeling. Instructive in this regard are the first non-subitizable terms that typically emerge across 
languages and cultures: They are often five and ten, and the words for them tend to be closely 
associated with the fingers, hands, or fists. The hand is likely used as a material exemplar because 
it is visually salient, neurally interconnected with numerosity (Overmann, 2021a; Roux et al., 
2003), and able to bridge the internal and external domains of experience (Gallagher, 2013; 
Malafouris, 2013). Simply, we name the quantities we can see and then use a material form—a 
ladder, in our metaphoric motif; the hand, in actuality—to attain ones outside our perceptual limits. 
 When numbers first emerge, they depend less on language and rely more on material 
structures than is true of conceptual domains like color. Just like we appreciate quantity, we 
perceive color. Language lets us point to and designate quantities and colors alike, and refer to 
them in their absence. But with numbers, we can also represent quantity with our bodies or with 
objects in the immediate environment. Displaying the fingers and making marks on the ground 
have no counterparts when it comes to representing color. And as numbers elaborate, it becomes 
increasingly useful to get language out of their way. As written signs, numbers are more usable 
without a phonetic component (the difference between 7 and seven), with operational signs (+, √) 
ultimately achieving similar semantically meaningful, non-phonetically specified, concise visual 
forms (Chrisomalis, 2010; Schulte, 2015). Some question the role of language in mathematics 
altogether, preferring equations, diagrams, and pictures because of their visually appreciable forms 
(Landy, 2010; Silver, 2017). 
 For the linguistic view, the critical question may be how and why functions like 
generativity interact with language-external influences on, and mechanisms of, conceptual content 



and structure. It’s difficult to imagine concepts of non-subitizable quantities as emerging from 
words alone; while naming is important, so too is there being something to name, and both the 
material form and the ability to perceive and rearrange its quantity precede the emergence of verbal 
labels—phylogenetically, historically, and ontogenetically. The centrality of material forms to the 
conceptualization process implies that they are potential sources of concepts and mechanisms of 
conceptual change. 
 

3. The Embodied Model 
In the embodied model, numbers are abstract ideas conceived through conceptual metaphor, a 
cognitive mechanism that “allow[s] us to reason about one kind of thing as if it were another”; this 
is the human capacity for symbolic reference, the ability “to associate physical symbols (or words) 
with numbers (which are conceptual entities)” (Lakoff & Núñez, 2000, pp. 6, 52; also see Núñez, 
2017a). Conceptual metaphor builds upon the idea of conceptual blending, which proposes that 
(internal/mental) representational structures interact to produce novel structure (Fauconnier, 1997; 
Fauconnier & Turner, 2002). The model of conceptual blending consists of four interacting mental 
spaces: two input spaces, differentiated as source and target; an optional generic space that captures 
higher-level structure shared by the two inputs; and a blended space wherein the inputs interact. 
Blends inherit some of their structure from their inputs, whose interaction can also yield novel 
structure. To generate numerical concepts, conceptual metaphors blend the ability to appreciate 
non-symbolic quantity with the visual experience of quantity in collections of objects, with the 
results expressed linguistically (Lakoff & Núñez, 2000, pp. 54–68). 
 Under the embodied model, physical experience and conceptual metaphorizing are added 
to numerosity and language, as in the nativist and linguistic models. Experiencing collections of 
objects is the basis for forming concepts of their quantity, adding to and taking away from them 
the basis for concepts of addition and subtraction, and so on. However, these conditions still do 
not explain why some societies have few or no numbers, since all humans have numerosity and 
language, experience physical objects, and produce conceptual metaphors. Attesting to the latter 
are color terms in Pirahã: “Blood” is the word for red; “immature,” green/blue; “see through it,” 
white; “shaded” or “out of the sun,” dark (Everett, 2007, p. 21). As they are based on the physical 
experience of objects, they fit the definition of conceptual metaphor, leaving Pirahã anumeracy 
unexplained. 
 Given their plausibility and empirical support, it’s difficult to argue against the ideas that 
embodiment influences cognition, blending and metaphorizing are reasonable functional models 
of conceptualization and linguistic expression, collections of objects inform concepts of cardinality 
and addition, Western numbers are culturally and symbolically mediated, and symbolling is 
important. Accordingly, the model’s assumptions and omissions are the focus here: By admitting 
a role for the body and hinting at one for external material forms, the embodied model implicitly 
lets cognition start to “leak” outside the head. However, it maintains a tight, neurocentric focus on 
the brain: Symbolling is envisioned as a brain-bound process, with material forms assumed to have 
little role in the process or its outcomes. Symbolling is also assumed to be central to numerical 
conceptualization and elaboration. Granting this is true of WEIRD numbers, it’s not true of 
emerging numbers, which are represented non-symbolically, or at least less symbolically, 
depending on where symbolling is construed to start. The model largely omits the emerging 
number systems of small-scale, traditional societies, despite their potential relevance to an 
argument about how numbers emerge; the authors cited only a single ethnomathematical reference, 



an anthology focused on challenging Eurocentrism in mathematics education. Finally, the model 
omits the many material devices used to represent and manipulate numbers across emerging and 
elaborated number systems alike. The result is heavily skewed toward highly elaborated, 
symbolically expressed numbers, with only a part of a ladder—collections of objects—to explain 
how these were achieved. 
 Though counting devices are not mentioned, representing quantity with the fingers or a set 
of marks could be considered a form of symbolling (i.e., in using one thing to represent another). 
This behavior is unique to humans, for even our closest primate relatives don’t count on their 
fingers, despite sharing our pentadactyl limbs and much of our neuroanatomy. Using the hands to 
instantiate and express quantity highlights the importance, if not of language per se, then of social 
abilities to communicate and use material culture. Nonetheless, it seems a thin basis upon which 
to designate the resultant representations as symbolic. A distinction must still be drawn between 
symbolic and non-symbolic representational forms, with some thought given to the way the former 
emerges from the latter. For example, the word five is symbolic in a way the phrase all the fingers 
on one hand is not. A symbol, after all, is a conventional representation whose form is unconnected 
to its meaning. If five and all the words in the phrase are themselves arbitrary associations of sound 
and meaning, the phrase’s referent fingers and the quantity they instantiate are not. In describing 
and drawing attention to the hand, the phrase all the fingers on one hand is iconic and indexical, 
iconic because it depicts its referent, indexical because it points to it. 
 The hand can be directly involved in representing numbers non-symbolically: The fingers 
might be used with spoken numbers, either for clarity or emphasis, or the fingers used alone. 
Fingers might also be accompanied by a verbal phrase that merely mentions the hand as it 
represents a number, either because the speaker doesn’t know or have names for numbers, prefers 
to avoid their long, cumbersome names, or chooses not to name them when communicating across 
languages. The non-verbal communication of quantity through the hands is subserved by the fact 
that the fingers do more than represent iconically: Five fingers instantiate five, as a collection of 
five objects. As number systems elaborate, lengthy phrases like the fingers on one hand wear away 
to short words like five, which become symbolic through loss of the original phrasal form, likely 
supported in this truncation by the fingers’ iconic/instantiative accompaniment (Overmann, 
2021a). It’s unparsimonious to think that WEIRD spoken numbers somehow bypassed a process 
of linguistic change still observable today in contemporary languages (Comrie, 2011). The 
likelihood of their having emerged similarly and shortened subsequently is supported by the 
relation of the words five and ten and terms for one/both hands in Proto-Indo-European (Beekes, 
2011; Bomhard, 2008). That Proto-Indo-European spoken numbers were already well-truncated 
by 4500–2500 BCE highlights their greater antiquity, not an improbable symbolic emergence. 
 A similar transition was involved in realizing the numeral 5 from five linear marks. The 
numeral is symbolic—its form and meaning are unrelated—but it is historically related to the 
marks, which were iconic/instantiative and thus non-symbolic, at least in the sense of arbitrariness. 
In the Babylonian and Egyptian writing systems, five linear marks were typically organized as 
three marks above two (Chrisomalis, 2010). Grouping marks in subitizable chunks gave their non-
subitizable total a greater visual appreciability. Over time, the total group of marks became 
recognized topologically as a function of the neurological reorganizations associated with literacy; 
topological recognition, in turn, let signs relax their forms to the point they were no longer 
recognizable, becoming symbolic (arbitrary) by losing their iconic/instantiative quality 
(Overmann, 2021b). Considered in light of the similar transition in spoken numbers, it seems 



reasonable to conclude, first, that much of the symbolling in WEIRD numbers has a non-symbolic 
basis, as symbolling generally does (Deacon, 2012), and second, that symbolling may not be either 
the process or the form whereby numerical meaning is initially conceived or expressed. By 
focusing on symbols, the embodied model excludes the antecedent non-symbolic representations 
from which they emerged, effectively kicking away the ladder used to get from the one to the other 
and leaving an inexplicable gap. 
 Fingers and notations are mentioned by the embodied model, but only as externalized 
representations of mentally created concepts. The concepts are themselves claimed to emerge from 
viewing and perhaps arithmetically manipulating collections of objects. The problem with this 
mechanism is twofold. First, it has the brain doing all the work of numerical conceptualization and 
elaboration, a flaw shared with the nativist and linguistic views. The human brain is a smart brain, 
comparatively speaking, but when it is positioned as the sole locus of numeracy, it receives more 
credit than it is perhaps due. Second, the mechanism misunderstands what a number is. The 
cardinality of a collection of objects is a property of that set, not a number itself, which is instead 
something that all sets of that cardinality have in common, the distinction between the threeness 
of a trio and three as a number that describes all trios (Russell, 1920). Here is a specific role for 
devices that makes them more than representations of externalized mental content: When a device 
like the fingers or a set of marks represents a quantity, that quantity becomes shared between the 
enumerated and reference sets of objects, affording opportunities to conceptualize cardinality 
shared between sets, a number (this is one of several roles for counting devices developed by the 
extended model). 
 The critical questions for the extended model are these: Where does “symbolling” start, 
and what does the historical development of numerical symbols from non-symbolic antecedents 
suggest about the role of symbolling in numeracy? And if material forms provide the incremental 
morphological change that enables numerical symbols to develop from non-symbolic antecedents, 
does it entail that material forms are something more than passive repositories of mental content? 
These are matters that suggest incorporating resources from the extended model in particular. 
 

4. The Extended Model 
In the extended model, numerical conceptualization starts with the perceptual ability to appreciate 
quantity and a world of appreciable quantity. The extended model diverges from the previous 
models both in viewing quantity perception as an integral system comprised of brain, body, and 
world and in seeing its material dimension as subject to alteration in ways that bring forth meaning. 
The critical difference between humans and other species is our use of materiality to make our 
innate numerical intuitions tangible, manipulable, and explicit (Coolidge & Overmann, 2012; 
Malafouris, 2010). If using material forms is the mechanism by which number concepts become 
explicit, then as only humans use material forms for numerical purposes, only humans are likely 
to have numerical concepts in the way we understand them. 
 In contrast to the linguistic model, the extended model sees language as one of two 
interdependent, interacting, and distinct means of accessing and expressing numbers, the other 
being the manuovisual engagement of material forms. In facilitating access, use, and social 
transactability, language is viewed as a necessary component of numeracy but not the total 
mechanism whereby conceptual meaning emerges. Instead, the visual nature of numerosity and 
numeracy, in conjunction with the capacity of material forms to instantiate quantity and be 



manipulated into new configurations, yield a mechanism for making numerical intuitions visible 
and thus tractable to conceptualization, pattern recognition, and relational analyses. Expression by 
means of language is then a subsequent phenomenon that significantly enhances and expands the 
ability to acquire, use, and socially transact numerical concepts. Language and material forms are 
also viewed as interacting in ways that are both complementary and contradictory, either 
reinforcing one another to enhance a number system’s stability over long spans of time or differing 
from the other with the potential to illuminate and explicate implicit properties and principles. 
 As was true of the embodied model, blending and symbolling remain important 
mechanisms for conceptualization and elaboration. However, the extended model conceives 
blends as adding the material domain as an input, with material forms anchoring and stabilizing 
the resultant concepts (Hutchins, 2005). The material component of the blend includes not just the 
objects enumerated, as the embodied model did, but also the devices and behaviors used for 
counting, which the embodied model omitted. Counting devices—distributed exemplars of 
appreciable quantity; the body; devices and behaviors that accumulate or accumulate and group; 
and handwritten notations—are critical inputs. They share cardinality with sets of enumerated 
objects in ways that potentialize the conceptualization of cardinalities shared between sets. 
Material properties like linearity, discreteness, manipulability, and concision also inform 
numerical properties. Properties can be explicitly provided by a material form used for counting, 
as when the fingers visually and conceptually define a quantity perceived as about three or four 
against the adjacent digits; properties can also be implicit, learned, or habituated, influencing the 
use of devices and the selection of new material forms through behaviors, beliefs, and expectations, 
as well as transferring structure between devices independent of their form. 
 The incorporation of new counting devices as an input to the blend provides opportunities 
for numerical concepts to acquire novel properties, functioning as the mechanism of elaboration. 
This mechanism contrasts with that of the embodied model, where elaboration was “a consequence 
of the systematic layering of metaphor upon metaphor, often over the course of centuries” (Lakoff 
& Núñez, 2000, p. 47). In the extended model, new counting devices are recruited whenever the 
limitations of previous devices constrain numerical use: Fingers afford a small capacity for 
quantity and a finite persistence for representation. Devices that accumulate address these 
limitations by providing capacity and persistence, but impose new limitations, as their greater 
capacity can accumulate non-subitizable quantities to extents that are neither visually appreciable 
nor easily recounted. New limitations may eventually motivate the incorporation of yet other 
material forms, perhaps ones that not only accumulate but group to enhance visual appreciability 
and mitigate recounting. The result is a technological layering of material forms systematized by 
device affordances, and limitations that reliably and predictably emerge from the interaction of 
numerosity, material form, behaviors, and social needs. 
 The extended model not only adds material devices, it considers them an active component 
of the cognitive system for numbers. Their agency in this regard derives, in part, from their ability 
to influence our knowledge: They structure and organize numerical concepts in ways that inform 
both how we acquire them and what we understand them to be (Schlimm, 2018 points this out for 
notations; it is equally true of precursor technologies like fingers and tallies). Material forms also 
influence social behaviors: When we learn to use material forms for numbers, behaviors become 
socially patterned and individually habitual and automated. Patterned behaviors and associated 
expectations, in turn, can influence the use of a new material form in a habituated way, thereby 
transferring organization and structure between material forms. They influence us psychologically 



as well: In interacting with material forms, we develop familiarity and skill and acquire knowledge, 
all of which imply neurological change. Reading and writing involve specific neurological 
reorganizations (Dehaene et al., 2015), phenomena that include numerical notations. Changes in 
knowledge, behaviors, and psychological functioning then enable us to use and extend numbers, 
and to modify or add new material forms, especially over cultural spans of time. The task for each 
generation becomes simplified to a matter of learning to use the device (or set of devices) as a tool, 
in whatever form it was received. 
 The material forms used to represent and manipulate numbers have other elaborational 
effects, considered across device sequences. First, numerical information becomes increasingly 
concise. Representing the number ‘40’ requires the fingers and toes of two people, 40 notches on 
a tally, four abacus beads worth ten each, or two Hindu–Arabic numerals. Concision of the explicit 
representational form is attended by an increase in the implicit knowledge that the user must supply 
(e.g., encoded value; positional weight). Concision affords numerical information a greater visual 
appreciability at greater volumes, making it more analytically tractable and increasing the 
recognition of patterns and relations. The net effect is this: The more devices there are in the 
elaborational sequence, the more numbers will differ from the perceptual experience of quantity 
in their content, structure, and organization. 
 Second, as new material forms are recruited to represent and manipulate numbers, concepts 
become distributed over the set of representational forms in a way that makes them irreducible to, 
and thus functionally independent of, any particular form. When distribution and independence 
are added to symbolling, the result is a perceived abstractness that obscures the conceptual 
system’s material, non-symbolic roots. The ladder once used to transcend the perceptual 
experience of quantity and elaborate it as explicit concepts of symbolic number seemingly 
disappears, so we no longer realize we are still using one. 
 Finally, variability between cultural number systems, including anumeracy, becomes a 
function of whether or not a particular society uses material forms to represent and manipulate 
numerical information, which particular material forms it uses, and how it uses them. The need for 
numbers, and hence for using devices, is in turn modulated by social and demographic factors 
influencing internal complexity and/or external interactions, matters for which numbers are an 
adept and flexible management technology. Material culture may also have a more general effect. 
Independent of specific resourcing strategies, socio-material complexity might simply indicate a 
habitual materially based problem-solving and a socio-cultural environment wherein material 
forms distract from quotidian concerns, weaken cognitive biases, and provide unrelated/novel 
stimuli (German & Barrett, 2005; Kirsh, 2014). 
 The critical questions for the extended model are these: Given its use of inference and the 
generally unobservable nature of historical change, must it also demonstrate empirical 
supportability, and if so, what form should this take? Is it critical to accept extension, or does the 
idea of a visual epistemology suffice? Do the isometries of form and function between written 
numerals and precursor technologies entail that if the former participates in extended states like 
reading, the latter should as well, and if so, how and why might the two differ in this regard? And 
when skeptics glibly reduce and dismiss extended cognition as panpsychism (Johnson & Everett, 
2021), how might the role of material forms as outlined above be effectively explained?  



5. Conclusion 
As metaphor, Wittgenstein’s ladder denotes a material structure whose form and function are 
determined by—and thus reflect—the needs, applications, and physiological, psychological, and 
behavioral capacities and capabilities of their users. As material structure, it also usefully seems 
to vanish at the appropriate point. The metaphor less usefully connotes a finished, manufactured 
artifact, since the material elaboration of numerosity as the conceptual domain of numbers is more 
accurately described as an incremental layering of material forms that solve predictable and 
recurrent limitations; influence the content, structure, and organization of the numerical concepts 
they represent and manipulate; demand users acquire the knowledge, skills, and neurological 
reorganizations needed to operate them; and assist them in that acquisition. The metaphor suggests 
the structure disappears, when in fact, it merely becomes invisible to us. The metaphor also 
suggests the starting and ending points differ, but may less aptly equate movement between the 
two with progress, when in actuality, getting from one to the other is the fairly predictable pathway 
that numerical elaboration tends to follow cross-culturally, as determined by the components and 
contexts interacting to produce it. 
 The material devices used to represent and manipulate numbers are not currently 
recognized by the nativist, linguistic, or embodied views as a component necessary to our 
elaboration of numerosity as numeracy. Instead, devices are assumed to be epiphenomenal, 
externalizations of mental content or assistants to internal mental activity. Yet their presence not 
only correlates reliably with numerical elaboration, their forms and use correlate reliably with 
differences in numerical content, structure, and organization. This suggests that the assumed causal 
directivity from mind to material—which leaves unexplained how the mind creates such concepts 
in the first place—be reversed to consider how the manuovisual engagement of material forms 
contributes to the historical realization of numerical concepts, just as it contributes to numerical 
conceptualization in contemporary mathematical practice. It also suggests that working across 
discipline boundaries has significant potential for helping to answer the critical questions that each 
perspective brings to the inquiry into numerical origins. 
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