
Vol.:(0123456789)

Minds and Machines
https://doi.org/10.1007/s11023-020-09545-4

1 3

GENERAL ARTICLE

Descriptive Complexity, Computational Tractability, 
and the Logical and Cognitive Foundations of Mathematics

Markus Pantsar1 

Received: 11 May 2020 / Accepted: 9 October 2020 
© The Author(s) 2020

Abstract
In computational complexity theory, decision problems are divided into complex-
ity classes based on the amount of computational resources it takes for algorithms 
to solve them. In theoretical computer science, it is commonly accepted that only 
functions for solving problems in the complexity class P, solvable by a deterministic 
Turing machine in polynomial time, are considered to be tractable. In cognitive sci-
ence and philosophy, this tractability result has been used to argue that only func-
tions in P can feasibly work as computational models of human cognitive capacities. 
One interesting area of computational complexity theory is descriptive complexity, 
which connects the expressive strength of systems of logic with the computational 
complexity classes. In descriptive complexity theory, it is established that only first-
order (classical) systems are connected to P, or one of its subclasses. Consequently, 
second-order systems of logic are considered to be computationally intractable, and 
may therefore seem to be unfit to model human cognitive capacities. This would be 
problematic when we think of the role of logic as the foundations of mathematics. 
In order to express many important mathematical concepts and systematically prove 
theorems involving them, we need to have a system of logic stronger than classi-
cal first-order logic. But if such a system is considered to be intractable, it means 
that the logical foundation of mathematics can be prohibitively complex for human 
cognition. In this paper I will argue, however, that this problem is the result of an 
unjustified direct use of computational complexity classes in cognitive modelling. 
Placing my account in the recent literature on the topic, I argue that the problem can 
be solved by considering computational complexity for humanly relevant problem 
solving algorithms and input sizes.

Keywords  Complexity · Descriptive complexity · Computational complexity · 
Computationalmodelling · Mathematical cognition · Philosophy of mathematics · 
Philosophy ofcognitive science

 *	 Markus Pantsar 
	 markus.pantsar@gmail.com

1	 University of Helsinki, Unioninkatu 40A, P.O.Box 23, 00014 Helsinki, Finland

http://orcid.org/0000-0001-8572-1453
http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-020-09545-4&domain=pdf


	 M. Pantsar 

1 3

1  Introduction

In computational complexity theory, decision problems are divided into complex-
ity classes based on the amount of computational resources it takes for algorithms 
to solve them. In theoretical computer science, it is commonly accepted that only 
functions for solving problems in the complexity class P, solvable by a deter-
ministic Turing machine in polynomial time, are considered to be tractable, i.e., 
efficiently computable (Papadimitriou 1994; Arora and Barak 2007). In cognitive 
science and philosophy, this tractability result has been used (see, e.g., Frixione 
2001; Gigerenzer et al. 2008) to argue that only functions in P can feasibly work 
as computational models of human cognitive capacities. This is called the P-cog-
nition thesis in the literature (van Rooij 2008).

One interesting area of computational complexity theory is descriptive com-
plexity, which connects the expressive strength of systems of logic with the 
computational complexity classes. One of the most important results of descrip-
tive complexity is that while first-order systems (linearly ordered, with a least 
fixed-point operator) are connected with the complexity class P, richer logical 
systems yield complexity classes beyond what is considered tractable (Immerman 
1999). In particular, given the generally accepted conjecture that the complexity 
class NP, the class of decision problems solvable by a non-deterministic Turing 
machine in polynomial time, is strictly greater than P, it follows that second-order 
systems of logic are considered to be computationally intractable. Hence, mir-
roring the above-mentioned reasoning in cognitive science, the proponents of 
the P-cognition thesis could argue that second-order logic is also unfit to model 
human cognitive capacities.

Such conclusion, while perhaps carrying some initial appeal, turns out to be 
unwarranted. I will argue that there are several ways in which it is problematic 
to draw direct connections between computational complexity, the complexity 
of logical languages, and computational models in cognitive science. However, 
the entire range of relevant cognitive phenomena is enormous and a thorough 
analysis is not possible in a single paper. For this reason, I focus on mathemat-
ics and mathematical problem solving to show that the computational complexity 
measures are too coarse to be used as general principles concerning the model-
ling of human cognitive capacities in these domains. The reason for this choice 
is two-fold. First, the differences between logical languages is a widely studied 
field in the foundations of mathematics and, as we will see, it provides us with 
philosophically interesting questions concerning the relation between logical and 
cognitive foundations of mathematics. Second, even though mathematical prob-
lem solving has its own characteristics, I believe that it can provide a platform for 
a more general treatment of how complexity should be applied in cognitive sci-
ence. In the case of mathematical problem solving, the computational complex-
ity measures are not sensitive to the actual problem solving algorithms used by 
human agents, nor are they sensitive to the computational characteristics of prob-
lems for bounded input sizes, only some of which are relevant for the modelling 
of human cognitive processes. On both accounts, there is no reason to believe that 



1 3

Descriptive Complexity, Computational Tractability, and…

mathematical problem solving is unique among cognitive phenomena. I will con-
clude that while computational complexity measures can work as rough guide-
lines in the computational modelling of cognitive capacities, strict limitations 
like focusing only on functions in P are unwarranted. This conclusion, I contend, 
can be generalised to other domains of cognitive phenomena.

Throughout this paper, I am not targeting a particular theory proposed in cogni-
tive science or philosophy. I acknowledge that many researchers would not advocate 
a drastic use of computational complexity measures as limits to computational mod-
elling in the cognitive sciences. Furthermore, to the best of my knowledge, descrip-
tive complexity is not discussed in the current literature in cognitive science when it 
comes to mathematical cognition. Nevertheless, I believe that there are three reasons 
why the present topic is important to tackle. First, as we will see, computational 
complexity measures are an important part of the discussion on the theory of com-
putational modelling, both among cognitive scientists and philosophers. While there 
have been important critical assessments of how computational complexity should 
be applied in cognitive science (e.g., van Rooij 2008; Isaac et al. 2014; Szymanik 
2016; Szymanik and Verbrugge 2018; Van Rooij et al. 2019; Pantsar 2019b; Fabry 
& Pantsar 2019), limitations like the above P-cognition thesis are still too often mis-
understood and given excessive importance. Second, these problems can extend to 
applications of descriptive complexity through the connections between computa-
tional complexity measures and the complexity of logical systems. Therefore, part 
of the purpose of this paper is to pre-empt potential confusions regarding descriptive 
complexity and the computational modelling of cognitive capacities, thus providing 
a feasible way in which computational complexity, and descriptive complexity in 
particular, can be applied in cognitive science and philosophy.

Third, I believe that mathematics and mathematical problem solving provide a 
clearly specified field of study for discussing computational complexity measures in 
the context of cognitive modelling, and this extends also to descriptive complexity. 
The mathematical consequences of adopting different logical systems as the founda-
tion for mathematics is a much-researched topic. However, while perhaps implicitly 
present, these considerations have not been explicitly linked to the potential limits of 
human cognitive capacities. I will show that by connecting descriptive complexity 
measures to considerations on the modelling of cognitive processes, we can get a 
fruitful platform for discussing the relationships between logical and cognitive foun-
dations of mathematics. In particular, I will show how drawing careless connections 
between the two can lead us astray.

I will begin in Sect. 2 by presenting computational complexity measures and how 
they have been used to argue for tractability principles when it comes to cognitive 
modelling. In Sect. 3, I will present the field of descriptive complexity and how it is 
connected to the computational complexity measures and other notions of complex-
ity. Sect. 4 then presents a fundamental tension of logical systems as the foundations 
of mathematics: since many important results in mathematics require second-order 
logic, either we must commit to computationally intractable logic as the foundation 
of mathematics, or else we must use a system of logic that is too weak to express 
crucial mathematical concepts and/or prove theorems concerning them. In Sect. 5, I 
will then propose a solution to this tension by analysing the way the computational 



	 M. Pantsar 

1 3

complexity measures and descriptive complexity should be understood in the frame-
work of human mathematical problem solving. I will then compare my account to 
two prominent alternatives in the literature, provided by van Rooij (2008) and Szy-
manik (2016). I will conclude that with well-considered specifications with regard 
to relevant input sizes and problem solving algorithms, tractability principles like 
the P-cognition thesis can be given their proper place as potentially useful guide-
lines, but not as anything resembling strict limits.

2 � Computational Complexity and Tractable Cognition

In theoretical computer science, the complexity of decision problems is a funda-
mental question and it is standardly studied in the theoretical framework of Turing 
machines (Turing 1936).1 Turing presented his model of a universal machine in 
order to study computation theoretically. Shortly put, a Turing machine functions by 
reading and writing symbols on a tape one at a time. The Turing machine is always 
in some inner state and based on the input symbol and the state, the machine has 
instructions to read and write symbols on the tape, move the tape, and change to a 
new inner state (or remain in the same state). The set of these instructions is called 
an algorithm. Since the Turing machine is a theoretical construct, no limits are made 
to the size of the tape or the number of operations that the machine can carry out.

According to the generally accepted Church-Turing thesis, if there is a mechani-
cal procedure for solving a problem, then there is a Turing machine that can solve 
it (Turing 1936; Church 1936). This way, Turing machine has become the stand-
ard framework for studying computational complexity, but also for studying the 
problem-solving potential of algorithmic, mechanical procedures in general (see, 
e.g., Arora and Barak 2007). Consequently, in the study of complexity in theoreti-
cal computer science, researchers are not interested in the computing capacities of 
particular computers. Instead, they want to study the inherent complexities of dif-
ferent tasks free from the limitations of physical computers. Under this approach, 
the complexity of a mathematical problem can be characterised by the complexity 
of a minimally complex Turing machine (i.e., an algorithm run by a Turing machine 
that takes minimal resources) that solves the problem. Such an algorithm is called 
optimal.

Optimality of algorithms, however, is not a straight-forward matter. One impor-
tant question concerns what the resource is that the algorithm should be optimal 
over. There are two common answers to that: time and space. Since the Turing 
machine is a theoretical construct, time and space are measured as functions of the 
size of the input, rather than any physical measure. But since there are no physical 

1  In this paper the focus is on decision problems, i.e., “yes/no” problems. There are also many other 
types of problems studied in theoretical computer science, including counting, search, function and opti-
misation problems (Goldreich 2008). I focus on decision problems because it is the most researched field 
in the present context. It also needs to be noted that many problems can be framed in different ways, so 
these distinctions can be somewhat arbitrary.



1 3

Descriptive Complexity, Computational Tractability, and…

limits to the Turing machine, there are also no limits to the size of the input. That is 
one reason why the complexity measures based on the Turing machines are asymp-
totic: they characterise the complexity of algorithms as the input sizes grow without 
limit.2

The great advantage of the asymptotic complexity measures is that they can be 
used to divide problems into complexity classes. The plethora of different complex-
ity classes and the relationships between them is an active topic of research and it 
is not possible to go extensively into the details here (for more, see Papadimitriou 
1994; Arora and Barak 2007).3 But taking time as the relevant measure, we can use 
two complexity classes to show how complexity classes work and what kind of rel-
evance they can have for philosophy. One of the most important complexity classes 
is called P (or PTIME) and it is defined as the class of decision problems that can 
be solved by a deterministic Turing machine in polynomial time. An algorithm 
(i.e., a Turing machine) is said to run for polynomial time if its running time has an 
upper bound of a polynomial function of the size of the input for the algorithm. This 
means that if the size of the input is n, the running time has an upper bound of some 
function nk for some constant k. Another complexity class relevant here is called 
EXP (or EXPTIME) and it is the class of decision problems that are solvable by a 
deterministic Turing machine in exponential time. An algorithm runs for exponen-
tial time if its running time has a lower bound of some exponential function of the 
size of the input, i.e., for input size of n, the running time has a lower bound of some 
function 2p(n) where p(n) is some polynomial function of n.

Here I have wanted to present P and EXP for two reasons. First, following the 
so-called Cobham’s thesis (or Cobham-Edmonds thesis), P is standardly accepted 
as the class of problems that can be feasibly solved by a computer (Cobham 1964; 
Edmonds 1965). Second, it has been proven that EXP is strictly greater than P. 
Algorithms for solving problems in P are called efficient or tractable (Garey and 
Johnson 1979). Algorithms for solving problems in EXP (that are not in P), on the 
other hand, are considered to be inefficient or intractable (ibid.). A simple exam-
ple of an efficient algorithm is the standard schoolbook algorithm for multiplying 
integers, which takes roughly n2 steps of computation for two n-digit integers. The 
standard algorithm for factoring integers into primes, on the other hand, is a good 
example of an inefficient algorithm. An n-digit integer takes about 2n1∕3computa-
tional steps (Pomerance 1996).4

2  It should be noted that optimal algorithms are not unique. In theoretical computer science, an algo-
rithm is called asymptotically optimal if it never performs more than a constant factor worse than the best 
possible algorithm. There can thus be many (even an infinite number of) optimal algorithms. It should 
also be added that although the method of characterising complexity of a problem in terms of an optimal 
algorithm for solving it is commonplace, we know from Blum’s speedup theorem (Blum 1967) that it is 
not possible in all cases to define the computational complexity of functions in terms of optimal algo-
rithms for solving them.
3  For the state-of-the-art, see Scott Aaronson’s highly informative website “Complexity Zoo” (https​://
compl​exity​zoo.uwate​rloo.ca/Compl​exity​_Zoo).
4  It should already be noted here that for inputs of fixed sizes, a problem in EXP can be less complex 
to solve than a problem in P. As mentioned above, the complexity classes are asymptotic and as such 
characterize the complexity of an algorithm as the input sizes grow without limit. More on this topic in 
Sect. 5, where it will play an important role.

https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://complexityzoo.uwaterloo.ca/Complexity_Zoo


	 M. Pantsar 

1 3

While it is proven that EXP is strictly greater than P, perhaps the most important 
inclusion relation between the complexity classes is still a matter of conjecture. The 
complexity class NP is defined as the class of decision problems that can be solved 
by a non-deterministic Turing machine in polynomial time.5 It is easy to see that P is 
a subclass of NP, but it has proven to be difficult to show whether it is a proper sub-
class of it, i.e., whether � ≠ ��. Although this is perhaps the most famous unsolved 
problem in theoretical computer science, it is a generally accepted conjecture that 
the class NP is strictly greater than P. This is important for the present context since 
because the conjecture � ≠ �� is generally accepted, the complexity class NP is de 
facto the lowest complexity class of problems which are thought to be computation-
ally intractable.

For computer science, the distinction between tractable and intractable algo-
rithms is central, but what is its relevance for philosophy and the cognitive sciences? 
It turns out that this distinction can be potentially useful for characterizing cognitive 
complexity, i.e., the complexity of human cognitive tasks and processes. In compu-
tational modelling in the cognitive sciences, the focus is often on what Marr (1982) 
calls the computational level of explanation. This means that rather than focusing on 
the actual algorithms used in performing a cognitive task (the algorithmic level in 
Marr’s terminology), or the neuronal activity (Marr’s implementational level), the 
focus is on identifying a mathematical function that can model a cognitive process 
(Marr 1982; Pantsar 2019b). This is based on the understanding of cognitive tasks 
as employing cognitive capacities to transfer input states (e.g., perceptions) into out-
put states (e.g., decisions), thus yielding a function that models the cognitive task as 
input-output mappings (Cummins 2000). In the computational-level approach, it is 
then possible to study these functions in terms of their computational complexity.6 
This computational-level framework has been highly influential for studying cogni-
tive capacities (see, e.g., Newell 1982; Pylyshyn 1984; Horgan and Tienson 1996). 
As explained by Frixione:

The aim of a computational theory is to single out a function that models the 
cognitive phenomenon to be studied. Within the framework of a computational 
approach, such a function must be effectively computable. However, at the 
level of the computational theory, no assumption is made about the nature of 
the algorithms and their implementation. (Frixione 2001, 381)

6  A fundamental question in all this is whether human cognition should generally be considered to be 
computational, and in particular whether there are forms of mathematical cognition that cannot be cap-
tured by algorithmic procedures. Such a position was suggested by Turing (1948) and was argued for 
explicitly by Lucas (1961) and Penrose (1989, 1994). It is not possible to go into the details here (for 
more, see, e.g., Piccinini (2003)), but I work under the assumption that there are no theoretical limita-
tions in the algorithmic approach to modelling mathematical cognition. In addition, I assume that cogni-
tive processes can generally be captured by computational models (without taking a stand in the question 
whether cognitive processes are computation in some more substantial sense). In particular, against the 
arguments of Lucas and Penrose, I do not see any reason why the human mathematical ability could rise 
above all algorithmic or mechanical procedures, i.e., Turing machines. See Pantsar (2009) for more.

5  The difference being that whereas a deterministic Turing machine is programmed to have one action 
for each situation, a non-deterministic Turing machine can pick the action from several options.



1 3

Descriptive Complexity, Computational Tractability, and…

This way, many researchers accept that computationally intractable functions cannot 
accurately model human cognitive tasks. This has become known as the tractable 
cognition thesis in the literature (van Rooij 2008; Isaac et al. 2014). According to 
the tractable cognition thesis, when we are looking for functions that can potentially 
model cognitive capacities, we should limit ourselves to those functions that can be 
computed by tractable algorithms. Standardly, based on Cobham’s thesis, this has 
been understood as the P-cognition thesis, stating that we should limit our consid-
erations to functions associated with problems in the complexity class P (Arora and 
Barak 2007; van Rooij 2008; Van Rooij et al. 2019). Many cognitive scientists have 
accepted the P-cognition thesis as a fundamental rule of computational-level expla-
nations. For example, according to Gigerenzer and colleagues:

The computations postulated by a model of cognition need to be tractable in 
the real world in which people live, not only in the small world of an experi-
ment with only a few cues. This eliminates NP-hard models that lead to com-
putational explosion (...) (Gigerenzer et  al. 2008, 236; quoted in Van Rooij 
et al. 2019, 17).

Thus the approach of Gigerenzer and others draws a direct link between computa-
tional complexity and cognitive complexity. In the case of mathematical problem 
solving, this implies that mathematical cognitive processes should be computation-
ally modelled by functions whose values can be computed by algorithms for solving 
decision problems in the complexity class P.7

With Regina E. Fabry, we have argued that such a direct connection between 
computational and cognitive complexity is potentially problematic since the com-
putational complexity approach does not transfer in a straight-forward manner into 
studying the complexity of human cognitive processes (Pantsar 2019b; Fabry & 
Pantsar 2019). One of the reasons for this is that human mathematical problem solv-
ing often includes visual and heuristic reasoning (e.g., the use of diagrams and spa-
tial manipulation of symbols (Fabry & Pantsar 2019)) that is not usually included in 
the algorithmic approach to problem solving used in theoretical computer science 
(Pantsar 2019b). Thus it is important to realize that human mathematical problem 
solving has its own particular characteristics that do not always correspond to the 
computational complexity approach. In this paper, I want to extend the critical eval-
uation of applying results from computational complexity theory to cognitive mod-
elling to one important subfield of computational complexity, which has not been 
extensively studied in the philosophical or cognitive scientific literature so far. This 
subfield is the complexity of systems of logic.

7  As has probably become clear by now, in this paper I talk about cognitive processes in a general way 
rather than the cognitive processes of particular individuals. This follows the standard usage in the rel-
evant literature and corresponds roughly to Chomsky’s (2015/1965) distinction between competence and 
performance, which was also used by Marr (1982). More specifically, here I am interested in encultur-
ated competence in mathematical problem solving, i.e., the culturally-shaped competence we have in 
mathematics. See Fabry & Pantsar (2019) for more.



	 M. Pantsar 

1 3

3 � Descriptive Complexity

The computational complexity measures such as P, NP and EXP are standardly 
used for classifying decision problems, but they have also turned out to have impor-
tant connections with languages of logic. This field of study is called descriptive 
complexity (Immerman 1999). Typically in computational complexity theory, 
we ask about the complexity of the task of checking if a certain input has a cer-
tain property. In descriptive complexity, we ask how complex it is to express that 
property in a formal language (Immerman 1995). This way, rather than measuring 
complexity in terms of time or space requirements for solving decision problems, 
as in standard computational complexity theory, descriptive complexity measures 
complexity in terms of the strength of logical systems. As Immerman argues, time 
and space are natural complexity measures from an engineering standpoint since 
they quantify physical resources required of completing a computational task, but 
neither appears to capture the inherent mathematical complexity of computational 
problems (Immerman 1999, 1). Thus, when we consider the cognitive complexity of 
mathematical problem solving processes, descriptive complexity initially appears to 
have great relevance. The logical systems we use have different strengths in express-
ing and proving mathematical statements, and it is a priori feasible that processing 
different logical languages also differs in terms of the complexity of the associated 
cognitive processes.8

What makes descriptive complexity particularly interesting to the present discus-
sion is the way it has proven to be directly connected to results concerning computa-
tional complexity classes. The research field of descriptive complexity can be traced 
back to Fagin’s (1974) result that the complexity class NP is equal to the class of 
problems describable in the existential fragment of second-order logic (also known 
as Σ1

1
-logic).9 Many other such connections have since been proven. Full second-

order logic, for example, has been shown to yield the complexity class PH, which is 
the union of all complexity classes in the polynomial hierarchy (Stockmeyer 1977). 
PH of course contains NP but it is also thought to contain many stronger complexity 
classes, making full second-order logic more complex than its existential fragment.10

8  It is important to note that the strength of a logical system required to express a mathematical state-
ment may differ from that of a system required to prove that statement (generally or in particular cases). 
Here I will focus mainly on the strength required for expressing mathematical concepts, under the 
assumption that proving statements about those concepts is generally not possible with a weaker logical 
system. However, this can be possible for particular instances.
9  In existential second-order logic, one can have universal quantification only over first-order objects, 
but not on second-order objects such as relations and sets. Existential quantification is allowed over both 
first- and second-order objects.
10  Although all this is a matter of conjecture: if it turned out that P = NP, it would also be the case that 
P = PH (Hemaspaandra 2018). In any case, as Immerman (1999) points out, PH is a rather strange com-
plexity class because it implies having an exponential number of Turing machines but limiting them to 
run for a constant time. The complexity class PSPACE is more much intuitive, as it allows for the time to 
grow polynomially. PSPACE is the class of all decision problems solvable in polynomial space and it is 
generally thought to be strictly greater than PH (Aaronson 2009). This would make it even stronger than 
full second-order logic.



1 3

Descriptive Complexity, Computational Tractability, and…

Here it is not possible to go into all the intricacies of the connections between 
particular cases, but it is essential to see the general connection between the expres-
sive strength of logical systems and the computational complexity of classes of deci-
sion problems. It is particularly important to note that there is a crucial difference 
between first-order logical systems and second-order systems in terms of their com-
plexity. While existential second-order logic yields the complexity class NP, clas-
sical first-order logical systems give us the complexity class P, or one of its sub-
classes.11 Therefore, only systems of first-order (classical) logic are connected with 
complexity classes that are considered to be computationally tractable. Even if it 
turned out to be the case that P = NP, this would still be a problem. It is known 
that second-order logic with a least fixed point operator yields the complexity class 
EXP, which we know to be strictly greater than P (Immerman 1999).12

This connection between computational complexity classes and the descriptive 
complexity of systems of logic has dual importance for the present purposes. First, 
it tells us that - according to the generally accepted view - systems of second-order 
logic are considered to be computationally intractable. But this is not limited to con-
siderations on computational complexity. In the framework of computational mod-
elling of cognitive capacities, this has important consequences also when it comes 
to cognitive complexity. If we accept the P-cognition thesis, we also need to accept 
that second-order logic, even the existential fragment of it, can express functions 
too complex to feasibly model human cognitive capacities, since many functions 
expressed in second-order logic are not in the complexity class P. In other words, by 
using second-order logic to describe functions supposedly modelling human cogni-
tive capacities, we run the risk of including intractable functions, which goes against 
the P-cognition thesis.

Second, the connection between second-order logical systems and intractable 
computational complexity classes tells us that many important mathematical results 
can only be expressed with systems of logic that are computationally intractable. For 
example, the (upward) Löwenheim-Skolem theorem famously shows that first-order 
theories cannot distinguish between the cardinality of infinite models. If a first-order 
theory has an infinite model of one transfinite cardinality, it has a model of every 
transfinite cardinality (Hodges 1993). This would be a huge problem in mathematics 
because, among other problematic aspects, it means that in first-order theories it is 
not possible to distinguish between the cardinality of natural numbers and the car-
dinality of real numbers. There are numerous known differences between first-order 
and second-order logical theories and, by and large, the latter are seen as an impor-
tant part of the toolbox of logicians and mathematicians (Väänänen 2019). Thus if, 

12  Since the least fixed point operator shows up for the second time, it should probably be noted that it is 
important in complexity considerations because of its strength in allowing recursive definitions.

11  Standard first-order logic is a very weak system that corresponds to the complexity class ��� , a sys-
tem of circuit complexity which is known to be strictly smaller than P. However, ��� does not contain 
even integer multiplication (Vollmer 1999). Linearly ordered systems of first-order logic with a fixed-
point operator are the strongest systems known to be included in P.



	 M. Pantsar 

1 3

based on the P-cognition thesis, we limit the complexity of acceptable logical lan-
guages, it would go against the prevalent use of logical systems in mathematics.

However, before we go deeper into the potential problems in applying descrip-
tive complexity measures for the foundations of mathematics, we need to be more 
detailed about descriptive complexity and its applications. In particular, we should 
first consider what kind of systems and problems descriptive complexity concerns. 
As Grohe (1999) puts it, one main theme of descriptive complexity is to study 
model-checking problems, i.e., problems of the type:

Given a finite structure A and a sentence � of some logic L  , decide whether A 
satisfies � . (Grohe 1999, 14).

It is important to note that model-checking complexity is just one notion of com-
plexity used in the literature, and there are substantial differences between differ-
ent notions of complexity. One important notion of complexity, for example, is 
expression complexity which measures the complexity of a formula in terms of the 
length of its expression in different models (Vardi 1982). As Szymanik (2016, 104) 
remarks, expression complexity and model-checking complexity have a potentially 
important difference: the existential fragment of second-order logic ( Σ1

1
-logic) is of 

the expression complexity NEXPTIME while its model-checking complexity is 
NP-complete. This prompts the question why we should focus on model-checking 
complexity when another notion of complexity like expression complexity (or per-
haps a combination of two or more notions of complexity) could be more relevant? 
This is particularly important when we consider differences in cognitive tasks and 
the relevant complexity measures for them. For example, Szymanik (ibid.) suggests 
that while model-checking complexity is suitable for measuring difficulty of the 
cognitive task of sentence verification, other notions of complexity could be used for 
measuring the cognitive difficulty of other processes, such as reasoning.13

Since the particular area of cognitive processes this paper focuses on concerns 
mathematical problem solving, we need to assess whether model-checking complex-
ity is indeed a suitable complexity measure for mathematical cognition. The first 
potential problem is that mathematics (for the most part) is concerned with infinite 
structures whereas descriptive complexity deals with finite structures, which have 
a finite universe. This way, descriptive complexity can be treated as a subfield of 
finite model theory (Szymanik 2016, 103-104), which is hardly representative of 
mathematics in general. However, we are not here interested in the general question 
whether a mathematical model A satisfies a sentence � of a logic L  . As mentioned 
in the beginning of this section, we are ultimately interested in cognitive complexity, 

13  There are also many other notions of complexity that are potentially relevant to the present topic. 
Kolmogorov complexity, for example, refers to the length of the shortest computer program that has an 
informative object, such as a string of symbols, as its output. This notion of complexity seems fitting 
for mathematical problem solving, but it has turned out that determining the Kolmogorov complexity 
of even short strings of symbols is a highly difficult task (Soler-Toscano et al. 2014). Other interesting 
notions of complexity come from machine learning theory, where statistical complexity measures like 
Gaussian complexity, Rademacher complexity, and Vapnik-Chervonenkis (VC) dimension are used (see 
Shalev-Shwartz and Ben-David (2014) for more).



1 3

Descriptive Complexity, Computational Tractability, and…

i.e., the complexity of a computational model of some cognitive entity. Perhaps it 
is illuminating to think of such computational models as systems of artificial intel-
ligence (AI). If an AI models a human cognitive process, we can use the algorithmic 
complexity of the AI to characterise the cognitive complexity of the human process. 
Since all human cognitive processes are obviously finite, we can limit our considera-
tions to finite computational models. This way, the fact that descriptive complexity 
is restricted to finite structures is not a problem for the present topic.14

However, the above remark of Szymanik suggests another potential problem. 
Since the field of study in the present context is mathematical problem solving, the 
complexity measure we use should be suitable for mathematical cognitive processes. 
However, at first look sentence verification does not appear to be typically the kind 
of cognitive task mathematicians are involved with. Instead of verifying sentences in 
models, mathematicians try to construct proofs. Would another complexity measure, 
perhaps one based on satisfiability, be more suitable for the cognitive task of prov-
ing theorems?15 This is a legitimate question to ask and I do not want to claim that 
descriptive complexity is the most suitable measure generally for mathematical cog-
nitive tasks. Indeed, since I will ultimately argue that results connecting descriptive 
complexity and computational complexity measures should not be used as any kind 
of general principles when discussing the computational modelling of cognitive 
capacities, my purpose is not to defend generally the use of descriptive complexity 
in characterising mathematical (or indeed other) cognitive tasks.16

Nevertheless, I can envision how descriptive complexity could be seen to be rel-
evant for the question of complexity of cognitive processes involved in mathemati-
cal tasks. Taking a (proposed) computational model M of a mathematical cognitive 
capacity, we can reasonably ask whether for M some mathematical statement � is 
part of the output. Furthermore, it is reasonable to ask which logical languages do 
statements like � in a particular model belong to. Thinking of the computational 
model again as an artificial intelligence, we can ask whether it models human cog-
nitive capacities with regard to a mathematical task by asking whether it provides 
as output the same mathematical statements as a human mathematician (given the 
same input). This way, it is possible to understand the question of computational 
modelling of human mathematical capacities in the context of model-checking prob-
lems, even if we do not believe that human mathematical problems standardly are 
model-checking.

14  This is not to say that AI mathematical problem solving should generally aim to model human cogni-
tive processes. Indeed, computer-assisted solutions to mathematical problems tend to take advantage of 
the brute computational power of computers rather than look for “human-like” proofs. A good example 
of this is the computer-assisted proof of the four color theorem (Appel and Haken 1976). In modern AI 
research in mathematics, there are efforts to use statistical “deep learning” to combine with symbolic 
processes to find new ways of using AI. See, e.g., Lample and Charton (2019). I thank an anonymous 
reviewer for this last suggestion.
15  I am grateful to an anonymous reviewer for pointing out this potential difficulty.
16  This is not to deny that descriptive complexity can be more suitable as a measure for some cognitive 
tasks and less suitable for others.



	 M. Pantsar 

1 3

I want to emphasise that for various reasons, which will become apparent in the 
rest of this paper, I do not advocate the above line of reasoning when it comes to 
computational modelling. Generally speaking, the connections and differences 
between different complexity measures and different notions of complexity are a 
much more complicated topic than there is space to describe here, and I do not want 
to suggest that the simplistic way above of connecting model-checking problems to 
mathematical cognitive tasks is valid. Nevertheless, I believe that it carries enough 
force to require a closer analysis of the connection between descriptive complex-
ity and computational complexity, particularly in the context of computational mod-
elling of cognitive capacities involved in mathematical tasks. Furthermore, as we 
will see, such a closer analysis is fruitful in explicating the weaknesses of applying 
descriptive complexity measures in the context of mathematical cognition. Let us 
therefore continue, for now, with the assumption that descriptive complexity meas-
ures can be used in characterizing mathematical cognitive tasks.

4 � Descriptive Complexity and the Dual Foundations of Mathematics

If we accept the applicability of descriptive complexity in modelling mathematical 
cognition as described in the previous section, results from the study of descrip-
tive complexity appear to put us in an uncomfortable position. When subscribing to 
a strong form of tractable cognition restriction, such as the P-cognition thesis, the 
conclusion seems to be inevitable: at the very least, second-order logic with a least 
fixed point operator (since it yields the complexity class EXP) is intractable. As 
such, according to the P-cognition thesis, it could not feasibly work as the logic of 
computational models of human cognitive phenomena. The consensus view implies 
that the same is true of existential second-order logic, since it is connected with the 
complexity class NP. Only systems of first-order logic yield the complexity class P 
or one of its subclasses and thus can be considered to be computationally tractable. 
But first-order systems are too weak mathematically to express important properties, 
such as the least upper bound property for sets of real numbers or, as in our example 
earlier, the difference between the cardinalities of sets of natural numbers and real 
numbers.

Therefore we arrive at a fundamental tension. When we consider the connection 
between mathematics and logic since at least Frege (1884) and Russell (1903), logic 
has been thought to provide two types of foundations for mathematics. First of these 
is expressing mathematical concepts in a system of formal logic. The second foun-
dation comes from logic being formalisation of mathematical thought. In Frege’s 
(1884) approach, formal logic was meant to provide universally acceptable rules of 
human thought (free from what he considered to be the arbitrariness of psycholo-
gism) that would justify mathematical principles.



1 3

Descriptive Complexity, Computational Tractability, and…

However, the complexity considerations above seem to imply that these two foun-
dational roles are in conflict. In order to express many important mathematical con-
cepts, we need to have a system of logic stronger than classical first-order logic.17 
But this connects the required system of logic to a computational complexity class 
that is considered to be intractable. If we accept the P-cognition thesis, this means 
that the system of logic used in mathematics can express functions that are too com-
plex to feasibly model human mathematical cognitive capacities. Thus the problem 
that follows from incorporating the P-cognition thesis, descriptive complexity, and 
logical foundations of mathematics is as follows: either our logical system is too 
weak to express important mathematical concepts, or else it is too complex cogni-
tively. This suggests that we need to give up one of the criteria of Frege and Russell. 
Yet giving up either one is an unappealing prospect. Certainly we do not want to 
give up important mathematical results because the logical systems used in proving 
them are considered to be computationally intractable. But from the epistemological 
point of view, it would seem to be equally problematic to have mathematics built on 
a system of logic that is considered to be prohibitively complex cognitively.

This prohibitive cognitive complexity can be understood in two different ways. 
First, we can analyse the strength of a system of logic in terms of its descriptive 
complexity and connect this to computational modelling of cognitive capacities, as 
I have been describing above. In this approach, it can be argued that second-order 
logic cannot be the cognitive basis of mathematics because in it we can express 
functions that are computationally intractable, which are thought to be unfit to work 
as computational models. This follows from a direct application of the P-cognition 
thesis.

It should be noted that the above line of reasoning does not imply that functions 
expressed in second-order logic are by necessity prohibitively complex. Obviously 
not everything expressible with second-order logical systems is computationally 
intractable. For example, an important part of what is expressible in second-order 
logic is also expressible in first-order logic. But by introducing second-order logic 
into computational modelling, we are expanding the domain of potential functions 
that model human cognitive capacities beyond the complexity class P. Without fur-
ther restrictions, this goes against the P-cognition thesis.

The second way to understand the intractability of second-order logic is based on 
its ability to express and/or decide the truth-value of logical formulas that are too 
complex for human cognizers to process. This is based on the simple observation 

17  This should not be confused with first-order theories that quantify over second-order objects as pro-
viding a basis for mathematics. Most notably this means first-order set theory (ZFC) which has very 
similar expressive power to second-order logic (Väänänen 2001). It should also be noted that there are 
first-order systems of logic, such as the independence-friendly logic of Hintikka and Sandu (1989) and 
the dependence logic of Väänänen (2007), that can express mathematical concepts that are beyond stand-
ard first-order logic. These systems don’t have contradictory negation so they are not classical. Impor-
tantly for the present purposes, both of the above-mentioned systems have equal expressive strength to 
existential (classical) second-order logic, thus yielding the complexity class NP.



	 M. Pantsar 

1 3

that the cognitive process of deciding the truth-value of a logical formula cannot, 
by definition, be less complex than an optimal algorithm for determining the truth-
value run by a Turing machine.18 As explained in Sect. 2, the computational com-
plexity of decision problems, and hence also the corresponding logical formulas, is 
defined through optimal algorithms for solving them. There are many ways in which 
the human problem solving algorithms can be computationally suboptimal (more on 
this in the next section), but they cannot outperform optimal algorithms.

For these reasons, it may appear that we cannot escape the problem that the logic 
we need for expressing familiar mathematical concepts can be, following the P-cog-
nition thesis, prohibitively complex for the modelling of human cognitive capacities. 
As explained above, this can be understood in two ways, both of which end up with 
the same problem for the proponents of the P-cognition thesis.19

5 � Tractable Cognition Thesis Reconsidered

How can we solve the problem presented at the end of the previous section? How 
can computationally intractable systems of logic work as foundations of mathemat-
ics if they are considered to be unfit for modelling human cognitive capacities? In 
this section I will argue that this is in fact a pseudo-problem that is the result of 
unwarranted application of results from the study of computational complexity in 
the domain of computational modelling of cognitive processes. In particular, I ques-
tion the general use of tractable cognition theses like the P-cognition thesis.

This could seem like a problematic solution. After all, it may appear obvious that 
some form of tractable cognition thesis must be acceptable. Even though the brain 
is a highly complex organ with a great deal of computational power, it quite clearly 
has limits. Beyond some limit, computational tasks will be too complex for the brain 
to carry out. I am not contesting that. What I do want to contest is whether the com-
putational complexity classes, in the present context connected to the descriptive 
complexity of logical systems, can be used in the general way they are done in the 
P-cognition thesis. I accept that second-order systems in logic are indeed computa-
tionally intractable, but I argue that this notion of computational intractability must 
be applied in combination with considerations on the kind of algorithms and inputs 
that are relevant to human cognitive processes.

18  To be precise, it is the algorithm that computes the values of a function modelling the cognitive pro-
cess that cannot be less complex than an optimal algorithm.
19  Here I am only considering logic as formalisation of (part of) human mathematical cognition, 
although a more general case could be made that logic should work as the formalisation of universal laws 
of thought, in the tradition following Boole (1854) and Russell (1903). This would bring in many dif-
ficult questions, concerning the prescriptive versus descriptive role of logic, possible cultural differences 
in logic, etc. Of course such questions are also relevant in the case of mathematical thinking, as well. 
However, mathematics as a case study is less problematic since there is a wider (although not full) con-
sensus of how mathematical thinking should be formalised with shared logical rules. But this should not 
be confused with these rules being universal to all humans and not (at least partly) culturally determined 
(see Pantsar 2014, 2019a for more).



1 3

Descriptive Complexity, Computational Tractability, and…

To see why, we need to make a few important clarifications. The first thing to 
remember is that not all problems in complexity classes like EXP (or NP) are intrac-
table. Rather, it is the class of EXP-complete (or NP-complete) problems that are 
considered to be intractable, i.e., those problems that are in EXP (or NP) but not in 
P. In the case of NP, it is of course possible that this class is empty. But even if that 
were not the case, the question is not about all the problems of NP; it is about the 
so-called NP-hard problems, referring to those problems that are at least as hard to 
solve as the hardest problems in NP.

However, even with this clarification, there seems to be something weird going 
on. Recall how P and EXP provided us with reference points for tractable and 
intractable algorithms, respectively, the difference being that algorithms in P have 
upper bounds for running time that are polynomial functions of the input while algo-
rithms in EXP are lower-bounded by exponential functions. But these may seem 
like rather useless criteria. We can have, for example, an algorithm that runs for 
n999999999999999999 computational steps, which is sure to take longer than the 2n1∕3com-
putational steps for prime factoring for any humanly feasible input size n. Accord-
ing to Cobham’s thesis, however, the former algorithm is tractable while the latter 
is intractable. As Aaronson (2012) points out, this characterisation of tractability 
is accepted in computer science mainly because empirical evidence shows us that 
it works most of the time. In practice, polynomial time and exponential time have 
proven be good characterizations for what is considered to be computationally trac-
table and intractable, respectively.

However, the practice of computer science is potentially very different from the 
study of tractable cognition. Because of this, we must first put tractable cognition 
theses in their proper place philosophically. There are two ways in which this should 
be done. The first of these concerns input sizes. We must acknowledge that the com-
plexity classes and the resulting theses of tractability are practical guidelines in the-
oretical computer science. In particular cases, however, problems in P can for inputs 
up to a certain size be more complex to solve than EXP-complete problems. This 
can continue for a long time as the input sizes grow, but ultimately it will change. It 
is crucial to remember that the computational complexity measures are asymptotic 
and measure the complexity of the problem solving task as the input sizes approach 
infinity. In computer science, the asymptotic complexity measures work in practice, 
even though problem solving with physical computers is obviously always limited 
to finite inputs. But the kind of finite inputs computers deal with can be very dif-
ferent from inputs that human problem solvers (without the help of computers) can 
process. To give just one example, the Goldbach conjecture has been verified for 
integers up to 4 ⋅ 1018 (Oliveira e Silva et al. 2014).20 If a printout of an integer has 
4,000 digits per page, the largest integer alone would take a thousand trillion pages 
to print. It is obvious that simply reading the integer that is tested would take a pro-
hibitive time for a human problem solver, and thus input sizes of that magnitude 

20  The Goldbach conjecture states every even integer greater than 2 can be expressed as the sum of two 
primes.



	 M. Pantsar 

1 3

cannot be relevant when we consider the complexity of the cognitive processes 
involved in the treatment of the Goldbach conjecture.

Based on such differences in relevant input sizes, we must be careful about the 
conclusions we draw based on the computational complexity measures. Even when 
limiting the consideration to finite inputs, the fact that the asymptotic measures work 
as a good practical guideline in computer science does not necessarily imply that 
they provide similar guidelines for studying the complexity of human cognition. 
When it comes to human mathematical cognition, the relevant input sizes can be 
very different from what is feasible for computers. As a consequence of this, for 
humanly relevant input sizes an NP-complete or EXP-complete problem can still 
be solvable. With this sensitivity to bounded inputs, there is nothing to suggest that 
a function in NP or EXP could not model the human cognitive process, which goes 
directly against the P-cognition thesis.

This insight transfers directly to descriptive complexity. It is clear that there are 
limits to the kind of solutions to mathematical problems that human problem solvers 
can feasibly provide. If the length of a second-order sentence is beyond the range 
of what humans can feasibly process, there is no need to consider it relevant for the 
question what the strength of logical systems can be in order for them to be pro-
cessable by human cognitive capacities. Based on this reasoning, if the inputs are 
bounded to humanly relevant sizes, second-order systems could very well be com-
putationally tractable.21

Aside from considerations on input sizes, another problematic aspect in apply-
ing computational complexity measures to characterise cognitive processes is the 
fact that the complexity classes are based on optimal algorithms for solving prob-
lems. As I have argued in (Pantsar 2019b), in mathematics human problem solvers 
use many heuristic and didactic methods (e.g., diagrams) that involve suboptimal 
problem solving algorithms. In (Fabry & Pantsar 2019), we argue that mathemati-
cal problem solving is a culturally shaped ability that is tightly connected to spa-
tial manipulation of symbols and other ways of engaging with cognitive tools in 
the problem solving process. Thus the computationally optimal algorithms that are 
standardly studied in the research of computational complexity can be a bad fit with 
modelling human problem solving algorithms.22

Thus, both in terms of the problem solving algorithms and the input sizes, the 
standard computational complexity measures fail to be sensitive to important 

21  It has been argued that limiting input sizes like this is not without its problems, since that the total size 
of input for cognitive capacities can be very large in real life situations, as opposed to the small domains 
used in studies conducted in lab settings (see, e.g, Van Rooij et al. 2019, 201). While I agree that this 
is a legitimate concern, I do not see it as an argument against introducing limits to relevant input sizes. 
Rather, I see it is as a challenge to investigate what the relevant input sizes are for particular cognitive 
capacities. Obviously there have to exist some limits due to the physiological limitations of our sensory 
nervous system, and these limits can be enough to make the asymptotic complexity measures misleading 
or downright irrelevant for that cognitive capacity.
22  The positive proposal in Pantsar (2019b) and Fabry & Pantsar (2019) is that we should study humanly 
optimal algorithms that are the result of the process of enculturation, which refers to the transforma-
tive process in which interactions with the surrounding culture determine how cognitive practices are 
acquired and developed (Menary 2015; Fabry 2020; Pantsar 2019a, 2020).



1 3

Descriptive Complexity, Computational Tractability, and…

characteristics of cognitive processes as carried out by human agents. When con-
sidering the descriptive complexity of systems of logic, the same conclusions apply. 
General principles, like the P-cognition thesis, that draw directly from the compu-
tational complexity measures are simply too coarse to be applied as reliable theses 
in cognitive modelling. This does not imply, however, that no form of a tractable 
cognition principle could be used. I am even ready to agree with Szymanik and Ver-
brugge (2018) that the P-cognition thesis can provide “a fruitful lens for assessing 
cognitive tasks”. In general, I share their approach that computational complexity 
measures can provide important tools for the cognitive sciences. Specifically to 
mathematical problem solving, it is clear that due to physiological limitations there 
exists a class of problems too complex for human beings to solve as the inputs grow 
large enough.23 This class could feasibly intersect in a significant way with the class 
of EXP-complete or NP-complete problems. I do not want to claim that the compu-
tational complexity measures cannot provide useful information, either generally in 
computational modelling or specifically in the case of mathematical problem solv-
ing. I only argue that they cannot be connected to limits in the modelling of cogni-
tive tasks as directly as is done in the case of P-cognition thesis.

In this way, the problem is not only that the P-cognition thesis appears to be too 
strict. More generally, limits in computational modelling based directly on computa-
tional complexity classes should be treated at best as guidelines. The reason for this 
is that both in terms of input sizes and the applied algorithms, human problem solv-
ing processes can greatly differ from those studied in computer science, for which 
the complexity classes and the Cobham-Edmonds tractability thesis are meant to 
apply. In addition to the humanly optimal algorithms as studied in (Pantsar 2019b) 
and (Fabry & Pantsar 2019), this should prompt us to consider bounded inputs, lim-
ited to humanly relevant input sizes.24

One such alternative to the P-cognition thesis has been suggested by van Rooij 
(2008; see Van Rooij et al. 2019 for more details), who argues that by introducing 
suitable parameters to the computational problem, also super-polynomial time com-
putation can be feasible in modelling cognitive tasks. Van Rooij calls this the “FPT-
cognition thesis”, for fixed-parameter tractable. The introduction of such parameters 

23  With computer assisted problem solving, for example, this class of problems is of course different, 
which brings us to the important question just what should be included in “human” problem solving. The 
introduction of cognitive tools, such as pen and paper, abacus, calculators and computers, clearly compli-
cates the matter significantly. Strictly speaking, since computers are human creations, all mathematical 
problem solving can be seen as human mathematical problem solving. On the other hand, to limit human 
problem solving to situations where no tools are used (not even pen and paper) would seem needlessly 
limiting. It is not possible here to go into details, but I believe that there can be a meaningful characteri-
sation of “human” problem solving, based on the idea that a human cognitive process must be essential 
to reaching the solution. This would not be the case, for example, in simply typing an input to a computer 
program and reading an output (see Pantsar 2019b for more).
24  See Buijsman & Pantsar (2020) for a suggestion how to find a more sensitive complexity measure in 
the case of mental arithmetic, which includes only small input sizes. Instead of being based exclusively 
on the input size, the complexity measure we suggest is also sensitive to features that have been empiri-
cally confirmed to differ in terms of cognitive complexity (based on different reaction times), such as 
additions involving zero (see, e.g., Brysbaert et al. 1998).



	 M. Pantsar 

1 3

is studied in computational complexity theory (see, e.g., Downey and Fellows 1999) 
and it can provide more fine-grained complexity considerations to apply to studying 
the complexity of cognitive tasks. The parameters van Rooij and colleagues discuss 
are different from limits to input sizes. One example of an NP-hard problem that can 
be made tractable by fixed parameters is the minimum vertex cover problem in graph 
theory (Van Rooij et al. 2019, 109). A vertex cover of a graph refers to a vertex set 
that includes (at least) one endpoint of each edge of the graph. If we limit the size of 
the vertex cover, we get a parametrised version of the minimum vertex cover prob-
lem. Many other parameters can also be used, like the maximum degree of a vertex, 
etc. Note that this is different from imposing limits to input sizes (which in this case 
would mean a limit to the size of graphs) since the parameter adds another variable, 
in addition to the input size, into the analysis (Van Rooij et  al. 2019, 202). Thus 
the difference is that parametrisation determines how the complexity of a function 
is generally characterised (ibid.), whereas limiting the input sizes simply ignores 
the complexity of a function after some point in the growth of the input sizes. Of 
course limiting the input size makes intractable functions fixed-parameter tractable 
(for some value of the parameter), so the two approaches (FPT-cognition thesis and 
bounded input sizes) are compatible.25

Another alternative for the P-cognition thesis is proposed by Szymanik (2016), 
who argues that the relevant complexity class as a limit for cognitive modelling is, 
at least in some cases, in fact NP.26 Based on Fagin’s theorem and Ristad’s (1993) 
contention that (human) language computations are NP-complete, he formulates 
the so-called Ristad’s thesis, according to which everyday language is semantically 
bounded by properties expressible in existential second-order logic (Mostowski and 
Szymanik 2012).27 Szymanik then argues that while such languages contain com-
putationally intractable expressions for human agents, there can be indirect mecha-
nisms that make them tractable (in the sense of model checking), meaning that that 
they can be verified through inferential dependencies with other sentences (Szy-
manik 2016, 14-16). While Szymanik is concerned with natural languages, Hintikka 
(1996) has famously argued that his independence friendly (IF) logic can provide 
a foundation for mathematics. Since IF logic has the same strength as existential 
second-order logic (Väänänen 2007), combining the views of Szymanik and Hin-
tikka would entail that the foundations of mathematics could be tractable. Hintikka’s 
contention, however, is not generally accepted and it is unclear whether Szymanik’s 
view extends to mathematical inferences. As Szymanik himself notes (2016, 14), 
there are mathematical expressions like “there exist at most countably many” that 
are not definable by existential second-order formulas, and would thus require a log-
ical language yielding a computational complexity class greater than NP.

25  See van Rooij et al. (2019, Chapter 5) for details on fixed-parameter algorithms and proving that they 
are indeed fixed-parameter tractable.
26  See also Szymanik and Verbrugge (2018), in which they argue for a combination of P-cognition thesis 
and Fixed-parameter Tractability for NP-complete tasks as a platform for assessing cognitive tasks.
27  “Everyday language” refers to the pretheoretic part of natural language. The reason for this specifica-
tion is that natural languages (which Ristad writes about) can contain technical expressions that are pro-
hibitively complex (Szymanik 2016, 14).



1 3

Descriptive Complexity, Computational Tractability, and…

One of the reasons why Szymanik (2016) eases the relevant complexity class 
for tractability considerations from P to NP is that NP-complete problems that are 
intractable to solve can have solutions whose correctness can be tractably checked. 
This is important to remember and it is closely connected to the present considera-
tions on what kind of processes mathematical cognition consists of. In Szymanik’s 
(2016, 10) formulation, we can intuitively think of NP-hard problems as ones that do 
not have “snappy” algorithmic solutions. Problems become prohibitively complex 
because the only method for solving them is through brute force by going through 
all possible combinations. But quite clearly this is not how mathematical problems 
are solved by human agents, aside from particular cases involving small domains. 
This is consistent with the way I have argued the P-cognition thesis to be misguided: 
limits on relevant input sizes and considerations on human problem solving algo-
rithms require thinking of mathematical problem solving in a different context, 
one in which computational complexity classes are not applied directly. As I see it, 
this is in line with Szymanik’s argumentation concerning everyday languages, and 
there is no reason to believe logical languages connected with complexity classes 
greater than P to be intractable in the relevant human sense. However, while Szy-
manik argues that the complexity class NP provides a relevant limit for language 
processing in everyday languages, for mathematical languages I do not see any a 
priori reason to use even NP as a limit of complexity. It is only after considering 
the relevant human problem solving algorithms and input sizes (or fixed parameters) 
that we should consider the computational complexity classes, and the descriptive 
complexity of logical languages.28

Finally, it should be noted that the present approach is very much in line with how 
computational-level theories are actually used in cognitive science. Generally speak-
ing, theories are not rejected even though they are known to be intractable (usu-
ally NP-hard, but possibly also more complex). Van Rooij and colleagues (2019, 
170) list numerous such theories in the literature, ranging from grammar processing 
(Ristad 1993; Berwick et al. 1987) to bottom-up visual matching (Tsotsos 1990). In 
the practice of cognitive science, tractability considerations are often ignored, which 
goes against principles like the P-cognition thesis and the theoretical discussions on 
them. Based on the considerations in this paper, however, there is not necessarily 
anything problematic in that. This does not mean that computational complexity is 
not relevant in the computational modelling of cognitive capacities. As detailed in 
Van Rooij et al (2019, Chapter 8), computational intractability can be put into use 
in many ways in revising computational models of cognitive processes. Along simi-
lar lines, instead of dismissing the importance of complexity considerations, I have 

28  For example, as mentioned earlier, second-order logic with a least fixed point operator yields the com-
plexity class EXP. Under restrictions for humanly relevant input sizes, however, there is no a priori rea-
son to believe that this logic is prohibitively complex. In mathematical practice, second-order logic is 
freely used and least fixed point operators play a crucial role in recursive definitions. Outside the field of 
pure mathematics, there are many examples of problems generally considered to be EXP-complete. One 
of the first of these presented in the literature was finding a perfect strategy in generalised ( n × n) chess 
(Fraenkel and Lichtenstein 1981).



	 M. Pantsar 

1 3

argued in this paper for carefulness and context-sensitivity in making connections 
between computational and cognitive complexity.

6 � Conclusion

Considering descriptive complexity, the upshot of the considerations in the previous 
section is clear. If the tractable cognition theses based on computational complexity 
are translated into the framework of descriptive complexity, it would mean that sec-
ond-order logic would be (at least partly) unfit as a logical system used in modelling 
mathematical cognitive capacities, or as a logical system thought to be processable 
by our cognitive capacities. This would be definitely so if it includes a least fixed 
point operator (since it yields the complexity class EXP), and likely so already in 
the case of existential second-order logic (which yields the complexity class NP). 
This is a troubling prospect, since it would imply that we use in mathematics a sys-
tem of logic that cannot feasibly work as the basis for the cognitive modelling of 
mathematical thinking.

Fortunately the matter changes fundamentally if we limit our considerations to 
humanly relevant input sizes and humanly relevant problem solving algorithms. 
There are many good reasons for doing that, but one very basic reason is already 
that processing input always takes time and the longer a logical formula, the more 
time it takes to process it as input. Here I do not want to suggest any particular lim-
its, because with cognitive tools humans can increase the speed of processing input. 
Perhaps an even more relevant limit is what human beings can process in their work-
ing memory, which is another aspect of cognition that can be enhanced with cog-
nitive tools. Nevertheless, there is always some limit after which the input simply 
takes too much time to process or the memory load becomes too large. In the sim-
plest case of reading a logical formula, for example, it makes no sense to consider 
cases where it would necessarily take hours, days, or even years to complete the 
process of feeding in the input. In computer-assisted problem solving the limits are 
different, but for every process some such limit to the input size can be established.29

Based on such considerations, I have argued that any philosophical treatment of 
tractable cognition needs to include considerations on aspects of human mathemati-
cal problem solving that the computational complexity measures are not sensitive 
to. In doing this, I am not claiming that the P-cognition thesis, or another complex-
ity principle, could not be along the right lines for an important amount of cases. It 
could indeed be a useful guideline to focus on functions computed by P-hard algo-
rithms as models of human cognitive capacities. But this must not be considered to 
be a strict criterion.

I have argued that based already on the question of humanly relevant inputs, in 
addition to the computational complexity of a function, also its behaviour for dif-
ferent input sizes needs to be studied. If the values of a function start to become 

29  This kind of complexity could be better assessed through the notion of expression complexity dis-
cussed in Sect. 3, which measures complexity with regard to the size of the formula and not the model.



1 3

Descriptive Complexity, Computational Tractability, and…

prohibitively complex to compute only for humanly unfeasible input sizes, there is 
no prima facie reason why the function could not work as a model of a human cog-
nitive phenomenon. In moving the focus to descriptive complexity, the same con-
clusion applies for formulas in supposedly intractable logical systems, such as full 
second-order logic. Together with the other problems I have discussed in this paper, 
it becomes clear that applying principles based on descriptive complexity measures 
in the cognitive sciences is no less problematic than applying computational com-
plexity classes in the manner of the P-cognition thesis.

This is not to say that they cannot be used fruitfully at all. The complexity of 
different logical systems can be relevant for a wide field of issues both in cognitive 
science and philosophy. In the foundations of mathematics, the descriptive complex-
ity measures can also be relevant. An argument could be made, for example, that the 
underlying logic of mathematics should not be any more complex computationally 
than necessary. As a general guideline, it is feasible that the less complex a logical 
language is computationally, the less complex it is also cognitively. But already at 
that point we must be very careful to consider complexity in a way that is relevant to 
the actual cognitive processes of human agents: the kind of algorithms they use and 
the types of inputs they process. Only then can we assess accurately the question of 
cognitive complexity of logical languages. In principle, however, there is no reason 
to believe that, with appropriate restrictions, second-order logical systems could not 
provide a feasible basis for the computational modelling of mathematical cognition. 
Consequently, neither is there any reason to believe that we could not have a com-
mon logic for the foundations of mathematics and the modelling of mathematical 
cognition.

Acknowledgements  I would like to thank Fausto Barbero, Regina E. Fabry and Gabriel Sandu for very 
helpful discussions. I would also like to express my gratitude to the two anonymous reviewers, whose 
comments have greatly improved this paper.

Funding  Open access funding provided by University of Helsinki including Helsinki University Cen-
tral Hospital. This research has been funded by grants from Alfred Kordelinin säätiö and Suomen 
kulttuurirahasto.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

Aaronson, S. (2009). BQP and the Polynomial Hierarchy. Proc. 42nd Symposium on Theory of Comput-
ing (STOC 2009), Association for Computing Machinery, 141– 150.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


	 M. Pantsar 

1 3

Aaronson, S. (2012). Why philosophers and cognitive scientists should care about computational com-
plexity. In J. Copeland, et  al. (Eds.), Computability: Gödel, Turing, Church, and beyond. Cam-
bridge: MIT Press.

Appel, K., & Haken, W. (1976). Every planar map is four colorable. Bulletin of the American mathemati-
cal Society, 82(5), 711–712.

Arora, S., & Barak, B. (2007). Computational complexity. A modern approach. Cambridge: Cambridge 
University Press.

Berwick, R. C., Barton, G. E, Jr., & Ristad, E. S. (1987). Computational Complexity and Natural Lan-
guage. Cambridge, MA: MIT Press.

Blum, M. (1967). A machine-independent theory of the complexity of recursive functions. Journal of the 
ACM (JACM), 14(2), 322–336.

Boole, G. (1854). An investigation of the laws of thought: on which are founded the mathematical theo-
ries of logic and probabilities. Dover,. Publications.

Brysbaert, M., Fias, W., & Noël, M. (1998). The Whorfian hypothesis and numerical cognition: Is 
“twenty-four” processed in the same way as “four-and-twenty”? Cognition, 66(1), 51–77.

Buijsman, S. & Pantsar M. (2020). Complexity of mental integer addition. Journal of Numerical Cogni-
tion, 6(1), 148–163.

Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Math-
ematics., 58(58), 345–363.

Cobham, A. (1964). The intrinsic computational difficulty of functions, Proceedings of the 1964 Con-
gress on Logic, Mathematics and the Methodology of Science, 24–30.

Cummins, R. (2000). How to solve it. “How does it work?” vs. “What are the laws?” Two conceptions of 
psychological explanation. In F. Keil & R. Wilson (Eds.), Explanation and cognition (pp. 117–145). 
Cambridge, MA: MIT Press.

Downey, R. G., & Fellows, M. R. (1999). Parameterized complexity. New York: Springer-Verlag.
Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3), 449–467.
Fabry, R.E. (2020). The cerebral, extra-cerebral bodily, and socio-cultural dimensions of enculturated 

arithmetical cognition. Synthese, 197, 3685–3720.
Fabry, R.E. & Pantsar, M. (2019). A fresh look at research strategies in computational cognitive science: 

The case of enculturated mathematical problem solving. Synthese. https​://doi.org/10.1007/s1122​
9-019-02276​-9

Fagin, R. (1974). Generalized First-order Spectra and Polynomial-time Recognizable Sets. In R.Karp 
(ed.): Complexity of Computation, SIAM-AMS Proceedings, Vol. 7, 43-73.

Fraenkel, A. S., & Lichtenstein, D. (1981, July). Computing a perfect strategy for n × n chess requires 
time exponential in n. In International Colloquium on Automata, Languages, and Programming. 
Springer: Berlin, Heidelberg, 278-293.

Frege, G. (1884). The Foundations of Arithmetic. Oxford: Basil Blackwell.
Frixione, M. (2001). Tractable competence. Minds and Machines, 11(3), 379–397.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-com-

pleteness. New York: W.H. Freeman.
Gigerenzer, G., Hoffrage, U., & Goldstein, D. G. (2008). Fast and frugal heuristics are plausible mod-

els of cognition: Reply to Dougherty, Franco-Watkins, and Thomas (2008). Psychological Review, 
115(1), 230–239.

Goldreich, O. (2008). Computational complexity: A conceptual perspective. ACM Sigact News, 39(3), 
35–39.

Grohe, M. (1999). Descriptive and parameterized complexity. In J. Flum & M. Rodriguez-Artalejo (Eds.), 
Computer Science Logic 1999 (pp. 14–31). Berlin, Heidelberg: Springer.

Hemaspaandra, L. (2018). 17.5 Complexity classes. In K.H. Rosen (ed.): Handbook of Discrete and 
Combinatorial Mathematics. Discrete Mathematics and Its Applications (2nd ed.), CRC Press, pp. 
1308– 1314.

Hintikka, J. (1996). Principles of mathematics revisited. New York: Cambridge University Press.
Hintikka, J., & Sandu, G. (1989). Informational independence as a semantical phenomenon. Studies in 

Logic and the Foundations of Mathematics, 126, 571–589.
Hodges, W. (1993). Model theory. Cambridge: Cambridge University Press.
Horgan, T., & Tienson, J. (1996). Connectionism and the philosophy of psychology. Cambridge, MA: 

MIT Press.
Immerman, N. (1995). Descriptive complexity: A logician’s approach to computation. Notices of the 

American Mathematical Society, 42(10), 1127–1133.

https://doi.org/10.1007/s11229-019-02276-9
https://doi.org/10.1007/s11229-019-02276-9


1 3

Descriptive Complexity, Computational Tractability, and…

Immerman, N. (1999). Descriptive complexity. New York: Springer Science & Business Media.
Isaac, A. M., Szymanik, J., & Verbrugge, R. (2014). Logic and complexity in cognitive science. In Johan 

van Benthem on logic and information dynamics (pp. 787-824). Springer International Publishing.
Lample, G. & Charton, F. (2019). Deep Learning for Symbolic Mathematics. arXiv​:1912.01412​
Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy, 112–127.
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of 

visual information. San Francisco: W.H. Freeman and Company.
Menary, R. (2015). Mathematical cognition: A case of enculturation. Open MIND. Frankfurt a. M.: 

MIND Group.
Mostowski, M., & Szymanik, J. (2012). Semantic bounds for everyday language. Semiotica, 188(1–4), 

363–372.
Newell, A. (1982). The knowledge level. Artificial intelligence, 18(1), 87–127.
Oliveira e Silva, T., Herzog, S., & Pardi, S., (2014). Empirical verification of the even Goldbach con-

jecture and computation of prime gaps up to 4∗1018 . Mathematics of Computation, 83(288), 
2033–2060.

Pantsar, M. (2009). Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics. 
Philosophical Studies from the University of Helsinki, Vol. 23, Helsinki: the University of Helsinki.

Pantsar, M. (2014). An empirically feasible approach to the epistemology of arithmetic. Synthese, 
191(17), 4201–4229.

Pantsar, M. (2019a). The enculturated move from proto-arithmetic to arithmetic. Frontiers in Psychology, 
10, 1454.

Pantsar, M. (2019b). Cognitive and computational complexity: Considerations from mathematical prob-
lem solving. Erkenntnis. https​://doi.org/10.1007/s1067​0-019-00140​-3.

Pantsar, M. (2020). Mathematical cognition and enculturation: introduction to the Synthese special issue. 
Synthese, 197, 3647–3655.

Papadimitriou, C. (1994). Computational complexity. Boston: Addison-Wesley.
Penrose, R. (1989). The Emperor’s new mind: Concerning computers, minds and the laws of physics. 

Oxford: Oxford University Press.
Penrose, R. (1994). Shadows of the Mind. A Search for the Missing Science of Consciousness. Oxford: 

Oxford University Press.
Piccinini, G. (2003). Alan Turing and the mathematical objection. Minds and Machines, 13(1), 23–48.
Pomerance, C. (1996). A tale of two sieves. Notices of the American Mathematical Society, 43(12), 

1473–1485.
Pylyshyn, Z. W. (1984). Computation and cognition: Towards a foundation of cognitive science. Cam-

bridge, MA: MIT Press.
Ristad, E. S. (1993). The Language Complexity Game. Cambridge, MA: MIT Press.
Russell, B. (1903). Principles of Mathematics. New York: Norton.
Shalev-Shwartz, Shai, & Ben-David, Shai. (2014). Understanding Machine Learning - from Theory to 

Algorithms. Cambridge: Cambridge University Press.
Soler-Toscano, F., Zenil, H., Delahaye, J. P., & Gauvrit, N. (2014). Calculating Kolmogorov complexity 

from the output frequency distributions of small turing machines. PLoS ONE, 9(5), e96223.
Stockmeyer, L. J. (1977). The polynomial-time hierarchy. Theoretical Computer Science, 3, 1–22.
Szymanik, J. (2016). Quantifiers and Cognition: Logical and Computational Perspectives, Studies in 

Linguistics and Philosophy Vol. 96, Springer.
Szymanik, J., & Verbrugge, R. (2018). Tractability and the computational mind. In M. Sprevak & M. 

Colombo (Eds.), The Routledge Handbook of the Computational Mind (pp. 339–354). Routledge.
Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13(3), 

423–445.
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Pro-

ceedings of the London Mathematical Society, 42, 230–265.
Turing, A.M. (1948). Intelligent Machinery, reprinted in D.C. Ince (1992) (ed): Collected Works of A.M. 

Turing: Mechanical Intelligence, Amsterdam: North Holland, 87– 106.
van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32, 939–984.
Van Rooij, I., Blokpoel, M., Kwisthout, J., & Wareham, T. (2019). Cognition and Intractability: A Guide 

to Classical and Parameterized Complexity Analysis. Cambridge: Cambridge University Press.
Vardi, M. Y. (1982). The complexity of relational query languages, In STOC’82: Proceedings of the 14th 

Annual ACM Symposium on Theory of Computing. New York: ACM Press, 137– 146.

http://arxiv.org/abs/1912.01412
https://doi.org/10.1007/s10670-019-00140-3


	 M. Pantsar 

1 3

Vollmer, H. (1999). Introduction to Circuit Complexity. A uniform approach. Texts in Theoretical Com-
puter Science. Berlin: Springer-Verlag.

Väänänen, J. (2001). Second-order logic and foundations of mathematics. Bulletin of Symbolic Logic, 
7(4), 504–520.

Väänänen, J. (2007). Dependence Logic: A New Approach to Independence Friendly Logic. New York: 
Cambridge University Press.

Väänänen, J. (2019). Second-order and Higher-order Logic, in E. Zalta (ed.): The Stanford Encyclope-
dia of Philosophy. Fall 2020 edition. https​://plato​.stanf​ord.edu/archi​ves/fall2​020/entri​es/logic​-highe​
r-order​. Retrieved July 30th 2020.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://plato.stanford.edu/archives/fall2020/entries/logic-higher-order
https://plato.stanford.edu/archives/fall2020/entries/logic-higher-order

	Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics
	Abstract
	1 Introduction
	2 Computational Complexity and Tractable Cognition
	3 Descriptive Complexity
	4 Descriptive Complexity and the Dual Foundations of Mathematics
	5 Tractable Cognition Thesis Reconsidered
	6 Conclusion
	Acknowledgements 
	References




