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Much theorizing about cognition in philosophy, cognitive science, and biology still
proceeds on the assumption that we are born with our primary cognitive faculties
pre-determined, and that they simply need to mature, or be fine-tuned by learning
mechanisms. Against this view, a growing number of researchers are aligning them-
selves with the view that processes of enculturation transform our basic biological
faculties through the cultural transmission of cognitive practices. In particular, encul-
turation refers to the transformative process in which interactions with the surrounding
culture determine how cognitive practices are acquired and developed (Menary 2015;
Fabry 2018a). The enculturation perspective therefore transcends the crude nature
versus nurture dichotomy, as it focuses on how the human biological endowment both
constrains and allows for specific processes of enculturation to take place. The frame-
work of enculturation has great potential to identify and analyze the integral role of
cultural elements in the ontogenetic process of developing cognitive abilities, such as
reading, writing, and—of particular interest in this special issue—mathematics.

It is this interplay of biological and cultural elements in the development of human
mathematical cognition that provides the background for this Special Issue. During
the last decades, a great deal of progress has been made in studying early numerical
cognition. Nowadays, it is generally accepted that human infants and many nonhuman
animals process observations of their local surroundings in terms of (approximate)
quantities. These abilities are thought to be genetically determined adaptations and
universal to humans (see, e.g., Dehaene 1997/2011; Butterworth 1999). According
to the most commonly accepted theory, this non-symbolic treatment of quantitative
information is based on the so-called cognitive core systems (Spelke 2000; Carey
2009). In the literature, two such systems have been identified. First of these is a system
for parallel individuation (PIS) (or object tracking, OTS) that allows determining the
amount of objects in the field of vision without counting (Starkey and Cooper 1980;
Spelke 2000). This ability is called subitizing. The second system allows estimating
the numerosity of a group of objects and determining differences in group sizes. It is
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referred to as the approximate number system (ANS) or the analog magnitude system
(Dehaene 1997/2011; Cantlon et al. 2010).

Most researchers agree that the core abilities function as a cognitive basis for the
development of arithmetical abilities. However, there is considerable disagreement
over the roles that the particular core systems play in the developmental process. Some
researchers postulate that the ANS is key to the development of number concepts and
arithmetic (e.g. Dehaene 1997/2011; Halberda and Feigenson 2008), while others see
parallel individuation as the prevalent core cognitive system in that development (e.g.
Carey 2009; Izard et al. 2008; Sarnecka and Carey 2008; Carey et al. 2017; Beck 2017,
Cheung and Le Corre 2018). Yet others (Spelke 201 1a; Pantsar 2014, 2015; vanMarle
et al. 2018) argue that both core cognitive roles play a crucial role in the process.

Amidst this disagreement, however, researchers agree that these core cognitive
abilities must not be confused with more advanced (even if still quite elementary)
arithmetical abilities. The subitizing ability stops working after three to four objects,
and the estimation ability become increasingly inaccurate as the estimated numerosi-
ties become larger (see, e.g., Dehaene 1997/2011). To stress this difference, instead
of “numerical abilities”, which allows for equivocation with more developed abilities,
we should call the core cognitive abilities proto-arithmetical (Pantsar 2014, 2018,
2019).! While in the current literature the data on proto-arithmetical cognition is the
strongest, similar core cognitive foundations have been proposed also in the case of
geometrical cognition (see, e.g., Dehaene et al. 2006; Spelke 2011b).

Putting aside the issue of what exactly constitutes the minimal cognitive start-
ing point [what Heyes (2018) calls the “starter kit”], about which there is still quite
some disagreement, the next big question in explaining mathematical cognition then
becomes how these proto-mathematical abilities develop into proper mathematical
abilities. We believe that the framework of enculturation as formulated by Menary
(2015) provides an exceptionally fruitful conceptual framework for studying this ques-
tion, as it is able to clarify how culturally specific cognitive abilities like mathematics
can be acquired and developed taking a particular genetic endowment as a starting
point. Through the mechanism that Menary (2014) calls “learning driven plasticity”,
new cognitive capacities can be acquired due to the neural plasticity of the brain,
which allows for both structural and functional variations (Dehaene 2009; Ansari
2008; Anderson 2015). Indeed, the human brain is now thought to be highly plastic,
developing in different ways depending on the specific experiences of different indi-
viduals (while also being constrained by genetically determined factors). Culturally
developed cognitive abilities, such as reading and writing, are thus made possible
by redeploying older, evolutionarily developed neural circuits for new culturally spe-
cific functions (Dehaene 2009; Menary 2014). In the case of arithmetical cognition, a
commonly accepted hypothesis is that the evolutionarily determined capacity to code
numerosity in the intraparietal sulci is employed in connection with linguistic abilities
in grasping number words and symbols, resulting in two different but partially over-

! De Cruzetal. (2010) and Pantsar (2014, 2019) have argued that it would be clearer if we talked about “nu-
merosities” on the proto-arithmetical level, leaving “numbers” as the domain of more developed arithmetical
ability. In the empirical literature, this distinction is rarely made which is the source of some unfortunate
formulations, such as Wynn (1992) describing the application of the PIS in infants as “infant arithmetic”.
Nuiiez (2017) argues for a similar distinction between “quantical” and “numerical” cognition.
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lapping systems for processing numerosities (Dehaene and Cohen 2007; Nieder and
Dehaene 2009; Dehaene 1997/2011; Menary 2015).

The enculturation framework therefore provides a link between the evolutionarily
determined, core-cognitive proto-arithmetical abilities and the culturally developed
abilities to engage with mathematical concepts and practices. This prompts important
questions, since it is well known that there are cultures with little or no basic arithmetic,
e.g., the Pirahd and Munduruk of the Amazon (Gordon 2004; Pica et al. 2004).> Why
did these cultures not develop numerical concepts even though they have the same
proto-mathematical abilities as we do? To start addressing this question, we must first
realize that in cultures where mathematics exists, it is clearly the product of a long line
of development. This is consistent with theories of cumulative cultural evolution as the
way human cultures develop their knowledge and skill sets (Boyd and Richerson 1985,
2005; Tomasello 1999; Henrich 2015; Heyes 2018). Technologies are improved upon
in small generational increments, and in large enough societies—or ones with extensive
interactions with other societies—this process can establish a status of knowledge and
skills where it is no longer tied to a small group of individuals. Basic arithmetic, for
example, developed into such a skill in many cultures. It is typically taught to young
children systematically starting from rote learning of the sequence of number words
combined with the cognitively more demanding task of counting objects.

Cumulative cultural evolution is a trans-generational process that can help explain
how culturally specific cognitive practices develop. The enculturation account can then
provide an explanation for how the cultural transmission of these practices happens
at the level of individuals, connecting the ontogenetic and phylogenetic study of the
development cognitive practices. We can thus construct a model of the development of
arithmetical knowledge that is both genetically and culturally determined. Arithmetical
ability is partly shaped by the instinctive, core cognitive abilities with quantities that
we already possess as newborns, which is then further molded by the training and
exposure to practices of counting which in turn are a product of trans-generational
cultural accumulation. Due to cultural transmission, in most cultures these abilities are
extended to include systems of numerals that refer to small numerosities. At this level,
people are able to keep track of small quantities and carry out simple operations (e.g.,
addition) on them. On some occasions, cultures develop their numeral systems further
so that it has a recursive base, which then allows for the unrestricted construction of
new numerals, as well as extending the operations for this domain (Pantsar 2018).

An integral part of cumulative cultural evolution in developing arithmetic and other
fields of mathematics is the emergence of cognitive tools, such as symbol systems and
artifacts like the abacus. Manipulating external symbol systems successfully is inte-
gral to learning mathematical practices and thus acquiring mathematical knowledge
and skills (Dutilh Novaes 2013). Both domain-specific (abacus, calculator) and multi-
domain (pen and paper, computer) cognitive tools shape the way we learn mathematics.
This influence also applies to the other direction: mathematical practices are integral to
the development of new cognitive tools as can be seen, for example, in the case of cal-
culation practices influencing the development of digital computers (Fabry 2018b). As

2 By “basic arithmetic” we mean the ability to operate (count, add, multiply, etc.) with exact quantities,
often in practical settings. This should be distinguished from formal systems of arithmetic, like the Peano
axiomatization (see Pantsar 2018, 2019 for more).
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several researchers have pointed out, many important mathematical problem-solving
methods, such as constructing and interpreting diagrams, are made possible by the suc-
cessful application of tools (see, e.g., De Toffoli and Giardino 2014; Giardino 2017;
Fabry and Pantsar 2019). An important part of being enculturated in mathematics is
thus being enculturated in the active manipulation of cognitive tools.

The importance of manipulation of cognitive tools prompts the question what kind
of cognitive role do we assign to features of our environment, such as artifacts and
symbol systems. A natural philosophical setting for studying enculturation is the “4E”
landscape of embodied, embedded, enactive, and extended cognition. Menary (2015)
places his theory of cognitive integration (CI, Menary 2007) and the enculturation
framework in that landscape as a variant of strongly embedded cognition, according
to which “cognitive processes and states are integrated with environmental states and
processes into a single system” (Menary 2015, p. 2). Menary points out that CI occu-
pies the same “strong embedding region” as extended cognition, according to which
some cognitive processes are not entirely located in the brain (Clark and Chalmers
1998; Clark 2008), but distinguishes cognitive integration from the organism-centered
approach of Clark, based on the focus on practice and culture that is at the foundation
of CI (Menary 2015, pp. 3-4). But what CI and extended cognition have in common
is the view that at least some cognitive phenomena are not exclusively constituted by
neuronal processes realized in the brain. Based on the significance of number symbols
and their manipulation for mathematical cognition, Menary (p. 16) argues:

Symbol manipulation makes a unique difference to our ability to complete math-
ematical tasks, and we cannot simply ignore their role. If we take the approach of
CI, then mathematical cognition is constituted by these bouts of symbol manip-
ulation, and we cannot simply shrink the system back to the brain.

Within this general landscape of proto-arithmetical abilities, enculturation, 4E cog-
nition, and cumulative cultural evolution of mathematical practices and tools, there
is a vast range of interesting questions. For this Special Issue, we have gathered
contributions that cover a wide range of approaches to enculturation with regard to
mathematical cognition. One crucial question concerns how learning driven plastic-
ity is realized on the neuronal level. Menary (2014, 2015) follows Dehaene’s (2009)
theory of neuronal recycling, referring to the way old neural circuits are redeployed
to new functions. But Anderson (2010, 2015) has proposed a more general principle
of neural reuse which, among other differences with respect to the neuronal recycling
account, allows for a wider plasticity of regions of the brain for different domains. In
this collection, two papers make important contributions to this topic, which we will
now see as we introduce the contributions.

Jones (2018) argues that while neuronal recycling can explain how biological sys-
tems can gradually acquire new properties, it is only with the additional mechanisms
of neural reuse that we can explain the flexibility of the brain in exploiting these prop-
erties to acquire sophisticated culturally shaped abilities like arithmetical problem
solving. Fabry (2019) also makes a powerful case for focusing on neural reuse as the
mechanism of learning driven plasticity. Furthermore, she argues that the cognitive
transformations involved in arithmetical cognition are not limited to the brain. Extend-
ing the cognitive transformations to the extra-cerebral bodily counterpart of learning
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driven plasticity, which she calls learning driven bodily adaptability (Fabry 2018a),
Fabry uses examples like finger counting and embodied symbol manipulation to show
that the adaptability of our motor patterns play an integral role in acquiring arithmetical
knowledge and skills in socio-cultural settings. Finally, in her paper the enculturation
account is strengthened by an analysis of disorders in arithmetical cognition, namely
developmental dyscalculia and acquired acalculia.

In their article, Johansen and Misfeldt (2018) analyze the embodied physical expe-
riences in practices of mathematics based on an interview study of active research
mathematicians. Their analysis lends support to the position that it is crucial to include
social and cultural contexts when analyzing the cognitive use of material represen-
tations such as diagrams by mathematicians. In particular, they argue that material
representations and the ways mathematicians engage with them are socially sanc-
tioned and enabled in a process of enculturation. Larvor (2018) also tackles the issue
of material representations in his paper. He uses examples from algebra to argue that
the application of notations and representations is a dynamic process which is integral
to mathematical cognition, shaping the way mathematics itself develops. Larvor argues
that the common parlance of material tools as “scaffolding” is in fact misleading in
that it suggests that notations and representations are static aids that can be discarded
later. Indeed, he argues that much of mathematics, and consequently the cognitive
tasks involved in it, would not even exist without those notations and representations,
which continue to play a crucial role in these cognitive processes and thus cannot be
discarded at a later stage.

This is in line with what Vold and Schlimm (2019) argue in their contribution to
this volume. They use examples from the history of mathematics in which introducing
new symbols has enabled representing mathematical possibilities that were not yet
understood or conceived (e.g. negative numbers), but also entirely new domains (like
non-Euclidean geometries). They thus argue that symbols can drive mathematical
understanding in crucial ways, and so extra-neural representations like symbols can
have non-derived, “original” content. This issue is crucial when we consider just
what “cognition” consists of in the enculturation framework. In his paper, Buijsman
(2018) approaches this question with focus on 4E cognition and where Menary’s
enculturation account falls on that landscape. He analyses the role of numerals in
developing arithmetical cognition and asks whether the role they play indeed implies
that the cognitive process cannot be “shrunk” back to the brain. While he ends up
accepting that the cognitive role of symbol manipulation requires the endorsement of
some form of externalism, he argues that the empirical data on arithmetical cognition
do not give us sufficient reasons to prefer a theory of extended (or strongly embedded)
cognition over a weaker of theory of embedded cognition. According to the latter,
interactions with the environment play an important role in cognition but cognitive
processes do not extend beyond our heads to objects in the environment (Sprevak
2010).

While Buijsman’s analysis of Menary’s theory focuses on the suitable theory on
the 4E cognition spectrum for understanding enculturation, Pelland (2019) argues
that the enculturation account may not have the generality that Menary aimed at.
In particular, Pelland claims that, while enculturation may help explain differences
between cultures that have developed numerical abilities and cultures that do not, it
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does not provide an explanation of the difference between individuals with and without
developed numerical abilities. In this way, he argues that the enculturation account is
more suitable as an account of transmission of mathematical practices rather than as
an account of mathematical innovation.

This general question of how enculturation can account for innovation is most cer-
tainly crucial. But when applying the enculturation account to analyze mathematical
innovation and practices, the devil is very much in the details. In this Special Issue,
two papers are included that study particular innovations and practices. Barton (2018)
proposes an explanation of how the metaphysics and epistemology of zero can be ana-
lyzed satisfactorily within the enculturation framework by combining mathematical
(numbers as properties of collections), philosophical (the philosophy of absence), and
empirical (numerical cognition) studies. Rothstein and Lima (2018) present a study
of the interpretation of quantity expressions in the Amazonian language of Yudja. The
Yudja language allows for reference to exact cardinalities of collections, but Rothstein
and Lima show that the expressions of exact cardinalities are not automatically used
for exact measurements. They thus argue that in order to account for knowledge and
skills in the domain of measurements, the process requires more than the enculturated
ability to perform abstract calculations.

Finally, it is important to note that while successful processes of enculturation
are integral the acquisition of new cognitive practices, enculturation is always tied
to beliefs shared in a particular cultural context. Differently enculturated individuals
and groups may struggle when assimilating to new cultures, and mathematics is no
exception. In the final paper of the Special Issue, Rittberg et al. (2018) apply the
recent philosophical work on epistemic injustice (Fricker 2007; Kidd and Pohlhaus
2017) to mathematics. They present cases from the history of mathematics (most
importantly Thomas Royen and Srinivasa Ramanujan) and analyze how processes of
enculturation can lead to epistemic injustice by hindering the participation of certain
individuals in mathematical cultures. Their contribution highlights that cultural factors
can also represent barriers for the development of mathematical knowledge, that is,
when certain individuals are not attributed the epistemic stature they deserve in virtue
of non-epistemic factors such as gender, race, nationality etc.

This Special Issue was inspired by the Mathematical Cognition and Enculturation
Symposium at the meeting of the European Society of Philosophy and Psychology
in St. Andrews in 2016, organized by Catarina Dutilh Novaes. Two of the papers in
this volume (by Max Jones and Jean-Charles Pelland) are based on talks given in that
symposium. I would like to express my greatest gratitude to Professor Dutilh Novaes
for her work as the co-editor of this volume, as well as for her help in writing this
introduction. Both the symposium and this Special Issue were strongly influenced by
the work of Richard Menary on enculturation and mathematical cognition. We would
like to express our greatest gratitude for his central role in making this Special Issue
possible.’

3 Parts of this introduction are adapted from Pantsar (2019), which is acknowledged with gratitude to
Frontiers in Psychology.
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