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ABSTRACT
I identify two reasons for believing in the objectivity of mathematical knowl-
edge: apparent objectivity and applications in science. Focusing on arithmetic,
I analyze platonism and cognitive nativism in terms of explaining these two
reasons. After establishing that both theories run into difficulties, I present an
alternative epistemological account that combines the theoretical frameworks
of enculturation and cumulative cultural evolution. I show that this account
can explain why arithmetical knowledge appears to be objective and has sci-
entific applications. Finally, I will argue that, while this account is compatible
with platonist metaphysics, it does not require postulating mind-independent
mathematical objects.

1. INTRODUCTION
Many of the most crucial questions in the philosophy of mathematics concern
what mathematical knowledge is like (see, e.g., [Benacerraf and Putnam, 1983;
Shapiro, 2005]. Is it analytic or synthetic? Is it necessary or contingent? Does
it have content or is it purely formal? And finally, closely related to all of the
above, the question this paper will focus on: is mathematical knowledge objec-
tive? That question, like the others, is tightly connected to the question what
mathematical knowledge is about. For the area of mathematics that children
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are taught first, namely arithmetic, this latter question seems like a simple one
to answer. Arithmetic is about numbers, more specifically the ordered set of
natural numbers N = 0, 1, 2, 3, . . .. But the question what natural numbers
are has puzzled philosophers since antiquity (see, e.g., [Shapiro, 1997] for a
review). Clearly numbers are not physical objects; so they must be abstract.
But if they are abstract, in what sense do numbers exist? Are they just the
result of human conventions, as suggested by, e.g., Field [1980]? If not, how can
we, as Benacerraf [1973] famously asked, as physical subjects get knowledge of
abstract non-physical objects? If mathematical objects exist independently of
human conventions and practices, how do we get epistemic access to them, i.e.,
how can we establish that our mathematical theories accurately capture the
characteristics of mathematical objects?1 In order to answer that question, we
need to specify how mathematical knowledge is possible for human subjects.
Thus the question what mathematical knowledge is about is ultimately tightly
linked to the question how mathematical knowledge can be acquired.

The foundation of platonist epistemology is that since sense perception can
never be about the mathematical objects themselves, knowledge about mathe-
matical objects must be gained through reason (The Republic, 527a–b).2 With
some exceptions (e.g., Mill [1843], intuitionists like Heyting [1931] and Brouwer
[1948], Wittgenstein [1976], Field [1980], and Kitcher [1983], this platonist view
ruled the epistemology of mathematics well into the second half of the twentieth
century. But more than that, for both platonists and non-platonists, it seemed
that there was a largely uniform way of approaching the epistemology of math-
ematics. Mathematics was thought of exclusively as a sophisticated, (relatively)
mature human ability, and the epistemology of mathematics as mainly a topic
for philosophy, with its usual a priori methodology.

Then some unexpected results started to surface from empirical research.
It was discovered that agents that were previously not thought to have suffi-
cient reasoning ability, i.e., non-human animals and human infants, were also
able to process quantitative information (see, e.g., [Starkey and Cooper, 1980;
Wynn, 1992; Dehaene, 1997/2011; Hauser et al., 2000; Cantlon and Brannon,
2006; Hunt et al., 2008; Pepperberg, 2012; Agrillo, 2015]). With paper titles
like ‘Addition and subtraction by human infants’ [Wynn, 1992], ‘Arithmetic in
newborn chicks’ [Rugani et al., 2009], and ‘Numerical and arithmetical abil-
ities in non-primate species’ [Agrillo, 2015], there appeared to be two clear
emerging messages from empirical cognitive scientists. First, arithmetical abil-
ity is not only the domain of sufficiently mature human agents. Second, for

1Following a common custom in the literature (e.g., [Dummett, 2006]), I will use
the term ‘mind-independent’ to refer to something that is not dependent on human
conventions, practices, languages, and thoughts.

2Here I proceed with the custom that Platonism with capital ‘P’ refers specifically to
Plato’s philosophy whereas platonism with a lower case ‘p’ refers to a more general realist
metaphysical position on mathematics. Tait [2001] has suggested that instead of platonism,
it would be clearer to talk about ‘realism’ than platonism. For the sake of terminological
congruity with the relevant literature, however, I will follow the more common custom.
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progress in explaining the acquisition of arithmetical knowledge, we need to be
well-informed concerning the empirical research on quantitative cognition. As I
have argued before [2014; 2015a; 2018a; 2019a], and will be discussed in detail
in Section 5, I find the first conclusion unwarranted. The second conclusion,
on the other hand, is something I agree with. The account I will be proposing
in Section 6 will be heavily based on the state-of-the-art empirical research on
quantitative cognition. Indeed, I believe that the quantitative abilities we have
as infants and share with non-human animals form a foundation for the devel-
opment of arithmetical knowledge. But, importantly, those abilities themselves
must not be considered to be arithmetical.

This distinction between arithmetical and what I call proto-arithmetical abil-
ities is important to make when we consider the question whether mathematical
knowledge is objective. As I will argue, as bad a fit as the idea of infant and
(non-human) animal arithmetic seems to be with platonism, the two views share
one important characteristic. On both accounts, mathematical knowledge can
be considered to be essentially objective. In Section 2, I will provide specific
criteria for objectivity, but initially objectivity can be understood as the posi-
tion that mathematics is not about human conventions. Objectivity is of course
central to platonist philosophy of mathematics: the set of truths we accept in
mathematics is not a matter of convention (see, e.g., [Panza and Sereni, 2013]).
In one way or another, they are determined by objective, mind-independent
criteria. Perhaps less obviously, objectivity of arithmetical knowledge is also an
essential characteristic of the nativist view that infants and non-human animals
possess arithmetical abilities.3 But this kind of cognitive nativism appears to
be as committed to objectivism as platonism is. Infants and most non-human
animals cannot be feasibly thought to adhere to conventions; so whatever their
putatively arithmetical ability is, it must be due to biological evolution, ‘hard-
wired’ into their cognitive architecture. The resulting arithmetical knowledge
therefore has to be objective in a strong sense, since it is not determined by
conventions or customs. Rather, it is dictated by cognitive capabilities that are
independent of the particular surroundings where the infant or animal has been
born and raised.4

In Sections 4 and 5, I argue that both views fail to give a satisfactory expla-
nation why mathematical knowledge is seen to be objective. However, it is
at least prima facie plausible that mathematical knowledge is objective. As
I show in Section 3, we cannot simply dismiss the widely shared impression
among mathematicians (as well as scientists and laypeople) that mathematical
knowledge is objective, nor can we dismiss that there is a strong philosophical
argument for the objectivity of mathematical knowledge based on mathemati-
cal applications in science. What I aim to do in this paper, however, is to show
that both the apparent objectivity and the mathematical applications can be

3 I call this view both ‘nativism’ and ‘cognitive nativism’ in this paper.
4 I assume here that it is accepted that true arithmetical beliefs constitute knowledge.

Of course not all beliefs based on evolutionarily developed capacities are knowledge.
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explained without assuming that mathematical knowledge is indeed objective
in the strong sense of the platonist and nativist views. To establish this, I
will argue that we need a finer-grained understanding of the development of
mathematical knowledge, with sufficient emphasis on its culturally determined
character. The biological origins underdetermine the development of arithmeti-
cal and other mathematical knowledge, which makes it crucial to identify and
analyze the cultural conditions conducive to the development of mathematics.
While this might seem to be a step toward the kind of cultural relativism that
conflicts with the apparent objectivity (e.g., [Bloor, 1976]), I will argue that
this is not the case. Instead, with a proper understanding of the cultural fac-
tors in developing early quantitative abilities, I argue that we can explain the
reasons behind the apparent objectivity of mathematical knowledge and the
applications in science. In particular, I will apply the framework of encultur-
ation as developed by Menary [2015] in explaining how culturally dependent
factors influence the development of mathematical cognition and mathematical
knowledge.

2. WHAT IS OBJECTIVITY?
Before analyzing the characteristics and foundations of mathematical knowl-
edge, it is important to explicate what is meant by ‘objective’. This is a widely
studied philosophical question and it is not possible here to go into the details,
but it is important to note that mathematical objectivity in modern philosophy
has been primarily an epistemological rather than an ontological matter. Tait
[2001] traces this to Cantor who wrote:

First, we may regard the whole numbers as real in so far as, on the basis of
definitions, they occupy an entirely determinate place in our understand-
ing, are well distinguished from all other parts of our thought and stand
to them in determinate relationships, and thus modify the substance of
our minds in a determinate way. ([Cantor, 1883], quoted in [Tait, 2001,
p. 22]).

It is thus not the existence of some platonic world of mathematical objects, but
the characteristics of mathematical thinking that should be the standard for
objectivity. If we interpret Cantor’s idea in epistemological terms, mathemati-
cal knowledge is objective (if it indeed is objective) because of the determinate
role that knowledge about mathematical objects plays in our thinking. As
Tait [2001] points out, Cantor’s formulation is heavily psychologistic, and in
contemporary literature it is more common to talk about the objectivity of
mathematical discourse. But the crucial point is that Cantor moves the focus
on objectivity away from being primarily about the existence of mathematical
objects.5

5This move from the existence of mathematical objects to the objectivity of mathe-
matical discourse is often referred to as ‘Kreisel’s Dictum’ in the literature. This is due to
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When is a form of discourse objective? According to Tait, ‘Objectivity in
mathematics is established when meaning has been specified for mathematical
propositions, including existential propositions ∃xF (x)’ [2001, p. 22]. But as he
also points out here, philosophers have understood this ‘meaning’ in different
ways. For Hilbert, the meaning of mathematical propositions was fixed entirely
by the axioms of the particular mathematical system [Zach, 2019]. But ever
since Gödel [1931] proved the incompleteness of all formal axiomatic systems
of arithmetic, this approach has been untenable. In order to establish mean-
ing, and hence objectivity, something more than agreeing on axioms is needed.
Importantly, in the above manner specified by Tait, it would require establishing
the meaning of propositions that make existence claims concerning mathema-
tical objects, i.e, we would need to explain how mathematical objects exist.

However, in this paper I take a different argumentative path. My main pur-
pose is not to argue for the objectivity of mathematics, nor will I aim to explain
the way in which mathematical objects exist.6 Instead, I will show how we can
make sense of the two main reasons for believing in the objectivity of mathemat-
ics: the apparent objectivity of mathematics and mathematical applications in
the sciences. Ultimately, I will argue that whether one accepts mathematics as
being objective or not, there is a better argument for the putative objectivity of
mathematical discourse than either platonism or nativism. Thus, even though
I will not be arguing for the objectivity of mathematics per se, I consider its
apparent objectivity to be a strong reason for considering the possibility that
mathematics, and mathematical knowledge, are objective.7

First, however, we need to establish criteria for objectivity in order to deter-
mine whether the apparent objectivity of mathematical discourse is of the type
that we would generally accept as being objective. Shapiro [2007] has used
Wright’s [1992] influential criteria for the objectivity of discourse for a similar
purpose, arguing that mathematical discourse is indeed objective. The three
criteria are epistemic constraint, cognitive command, and wider cosmological
role.8 The criterion of epistemic constraint states that non-objective matters
are always knowable, i.e., for non-objective matters it is always the case that:

P ↔ (P may be known). [Wright, 1992, p. 75].

Dummett, who alludes to Kreisel’s review of Wittgenstein’s Remarks on the Foundations
of Mathematics in which he supposedly points out that ‘the problem is not the existence
of mathematical objects but the objectivity of mathematical statements’ [Dummett, 1978,
p. xxxvii]. However, in that review Kreisel does not express this view explicitly and it is
unclear where, and indeed if, he ever did that.

6Although both of those questions will be treated in the final section.
7Like Tait [2001], in this paper I treat objectivity of mathematics and objectivity

of mathematical discourse in an interchangeable manner. Furthermore, I assume that
successful mathematical discourse can achieve knowledge.

8 [Shapiro, 2007] also includes the criteria of response dependency and judgment depen-
dency in his analysis of Wright’s criteria for mathematical discourse. Here I do not include
them as I do not believe they add anything substantial to the analysis of the criteria of
cognitive command in the present context.
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While this touches upon some of the most fundamental questions in philosophy
of mathematics (e.g., the question of provability vs truth; see [Pantsar, 2009]
for more), I take it is as uncontroversial that mathematical truths can at least
appear to be unknowable. For one thing, there are well-defined mathematical
problems that are generally considered to be too complex computationally to be
solved for large enough inputs [Arora and Barak, 2007; Pantsar, 2019b; 2021a].
There is also the Gödelian [1931] restriction that no consistent formal system
strong enough to express arithmetic can be complete, i.e., prove all true sen-
tences in the system. If we accept that proof from axioms is our way of knowing
things in mathematics, this alone implies that there are unknowable truths in
our mathematical systems.9 But even disregarding such limitations of formal
axiomatic systems, it is clear that formal (as well as informal) mathematical
languages can be complex enough to make the prospect of knowing every truth
expressible in them unfeasible. This is enough to accept that mathematical
knowledge at least appears to be such that it does not meet the epistemic
constraint, which suffices for the present purposes.

Wright’s [1992, p. 92] criterion of cognitive command means that a discourse
concerns something objective if and only if we can a priori rule out the possi-
bility that there are disagreements that Shapiro [2007, p. 356] calls ‘blameless’.
In a blameless disagreement, there is no reason such as divergent information
or different conditions for explaining the disagreement. Roughly put, blameless
disagreements are seen as differences in opinion that cannot be solved, akin
to matters of taste. A case could be made that in mathematics there appear
to be just such disagreements. Should we accept the continuum hypothesis?
The axiom of choice? The parallel axiom? In different times, different math-
ematicians have held different views on them and many other mathematical
statements. It could be argued that whether we include the axiom of choice in
the axioms of set theory, for example, gives us two different systems of math-
ematics, neither of which is more correct than the other. In other words, a
blameless disagreement is reached and hence in such cases it would appear that
the criterion of cognitive command fails. Here I cannot analyze that question
in detail (see [Tait, 2001] and [Shapiro, 2007] for interesting treatments), but
as far as apparent objectivity is concerned, it seems clear that at least much of
mathematics fulfills the criterion of cognitive command. There is no (blameless)
disagreement over, for example, what should be acceptable theorems in basic
arithmetic. If, like Dostoevsky’s character in Notes from Underground [1864],
somebody claims that 2 + 2 = 5, it would standardly not be considered to be
grounds for a blameless disagreement.

Finally, the criterion of wider cosmological role demands that in order to
concern something objective, a discourse must feature also in explanations that

9For the present purposes this exposition is sufficient, but it should be noted that the
matter is complicated. It does not follow that any particular mathematical truth would
be unknowable, since the unprovable sentences depend on the particular axiomatizations
and encodings. Nevertheless, Gödel’s [1931] first incompleteness theorem implies that no
single formal axiomatic system proves all mathematical truths (see [Pantsar, 2009]).
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are not exclusive to that discourse [Wright, 1992, p. 198]. This criterion would
seem to be straightforwardly met by mathematical discourse due to the rich
variety of applications it has in science. However, as we will see in the next
section, the matter is not quite that simple. It could be that the mathematical
applications are dispensable from the scientific explanations, in which case the
wider cosmological role of mathematical discourse could be put into question.
Yet it can hardly be contested that mathematics at least appears to play an
explanatory role in sciences. For the present purposes, that is enough. We can
safely conclude that the appearance of mathematical objectivity is indeed of
the kind of objectivity that Wright [1992] has in mind.

3. TWO REASONS FOR BELIEVING IN THE OBJECTIVITY OF
MATHEMATICAL KNOWLEDGE

As stated in the introduction, I see two main reasons for believing in the
objectivity of mathematical knowledge. First is that mathematical knowledge
appears to be objective. Second is that mathematical knowledge is intertwined
in a significant way with scientific knowledge that is generally accepted to be
objective. While the latter is a much-discussed philosophical argument, which I
will explore in more detail below, the first reason may initially seem feeble, since
appearances can be misleading in philosophy. Shapiro [1997], for example, has
written about working realism, the way in which most mathematicians work as
if mathematical objects were real. Mathematical language is full of existential
expressions with apparent commitment to objects. But for a working realist,
writing that ‘there exists a number’ may not entail any metaphysical com-
mitment to the existence of numbers. It might be simply a convenient way of
expressing something metaphysically far more economical, like ‘from generally
agreed upon axioms, with generally accepted rules of proof we can deduce that
. . . ’.

Nevertheless, I contend that the apparent objectivity of mathematical knowl-
edge demands an explanation. The first question to ask, however, is how
pervasive a phenomenon is the apparent objectivity? There are regrettably
few studies on the topic and, to the best of my knowledge, there are none that
reliably and systematically explore views on mathematical objectivity.10 How-
ever, based on the data presented by Müller-Hill [2009], we can proceed under
the assumption that at least for a significant portion of mathematicians (as well
as non-mathematicians), mathematical knowledge appears to be objective. In
any case, in the present context it is important to distinguish the question

10One potential exception is a questionnaire that revealed 82.4% of ‘professional math-
ematicians’ believed in the objectivity of mathematical knowledge [Müller-Hill, 2009]. But
this figure was based on an open Internet questionnaire and we cannot know for sure
that the participants were in fact mathematicians. Moreover, other data gathered from
the same questionnaire suggest that the same mathematicians were in fact inconsistent in
their knowledge ascriptions. For a critical review of the study and its interpretation, see
[Pantsar, 2015b].
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whether mathematical knowledge is objective from the question why mathe-
matical knowledge appears to be objective. With this distinction in place, we
arrive at three philosophically interesting positions. First is that mathemat-
ical knowledge appears to be objective because it is objective in essentially
the way it appears on a literal reading. In short, mathematical statements are
true because they state facts about mind-independent objects and relations
between them. I take this to be a common position among platonists, although
the apparent objectivity could be independent of the actual objectivity.11 The
second position is that the apparent objectivity is indeed due to actual objectiv-
ity, but it comes from other sources, and not mind-independent mathematical
objects. I take cognitive nativism to adhere to this view. The third view is that
mathematical knowledge appears to be objective even though it is in fact not
objective.

The first two positions will be analyzed in detail in the rest of this paper,
but let us first focus on the third option. This last position implies that math-
ematical knowledge is ultimately about human conventions and nothing else.
I call this view strict conventionalism, to distinguish it from more moderate
positions that take conventions to play an important part in mathematical
discourse.12 For strict conventionalists, mathematics is about arbitrary rules of
symbol manipulation and it cannot be tied to anything more robust. This is the
view of at least Field [1980] and Balaguer [2009], and it is commonly attributed
also to Wittgenstein [1976].13 Furthermore, this is also the view often associated
with mathematical formalism, although this issue is trickier due to the different
meanings of formalism in the philosophy of mathematics (see, e.g., [Linnebo,
2017]). But combining conventionalism and formalism, mathematics could be
likened to a game like chess in that it is about clearly defined, well-established
rules, and these rules are human inventions.

However, as one of the pioneers of formalism (but certainly not conven-
tionalism), Frege already noted in his Grundgesetze, there is a very important
difference between chess and mathematics. Unlike the rules of chess, the rules
of mathematics have important applications outside their own domain [Frege,
1893/1903]. This brings us to the second main reason why mathematical
knowledge is considered to be objective. Aside from its apparent objectivity,
mathematical knowledge has widespread applications in science, and there are
few philosophers who are ready to question the objectivity (at least as an ideal)

11For example, it could be that the appearance of objectivity comes from educational
practices.

12From here on, when I write about conventionalism, I am always referring to its strict
version.

13An interesting question is how intuitionist philosophy of mathematics should be
understood in this regard. According to Shapiro [2007], the original intuitionists like
Heyting [1931] and Brouwer [1948] did not believe in the objectivity of mathematical
knowledge, whereas at least some modern intuitionists, like Tennant [1997], do.
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of scientific knowledge.14 In contemporary philosophy of mathematics, appli-
cations have become the main argument for the objectivity of mathematical
knowledge [Colyvan, 2001; Brown, 2008; Lange, 2017]. How could mathematics
be an arbitrary game when it is integral to modern science which can explain all
kinds of non-mathematical matters? This argument carries significant power for
philosophers with radically different views. Field [1980], for example, considers
it the strongest argument for mathematical realism (which he argues against).

The topic of scientific applications of mathematics is particularly important
because it moves the focus from the appearance of objectivity to something
more substantial. After all, the appearance of objectivity could be simply due
to firmly established customs. We know that how the queen moves in chess is a
matter of convention, but we might be unable to detect more fundamental and
general rules as conventions. Indeed, mathematical rules can be such deeply
entrenched conventions. That multiplying two negative numbers produces a
positive number, for example, is a mathematical convention that is difficult to
see as anything other than convention. There are good algebraic reasons for this
custom, but what could be the non-conventional understanding of a negative
times a negative quantity? However, does (−4) ∗ (−4) = 16 appear any less
objective than 4 ∗ 4 = 16 to most people with basic mathematics education?15

And if a convention like that appears to be objective, could it be that all of
mathematics is actually similar?

However, even if strict conventionalists could explain the apparent objectiv-
ity of mathematics, mathematical applications in science provide a much more
difficult challenge. Conventionalists are of course aware of this problem. Indeed,
applications outside mathematics are often evoked as the only reason why we
prefer some mathematical theories over others. Field [1980, p. 15], for example,
has argued that we prefer mathematical theories over their alternatives not
because they are true, but because they are more useful. Since mathematical
theories are not about anything objective, no theory is truer than its alterna-
tives. They can only be more useful. However, this is a problematic state of
affairs, even if we bought into Field’s [1980] claim that mathematics can be
taken out of scientific theories without losing any non-mathematical explana-
tory power, i.e., mathematics is not indispensable for scientific explanations.16

An inevitable follow-up question is why certain mathematical theories are more

14This is not to say that in post-modernist philosophy such points of view are not
endorsed, but I see no reason to engage with views such as those of Feyerabend [1975]
here.

15This point about multiplying two negative integers is made by various mathemati-
cians, e.g., [Stewart, 2006].

16This is a highly contested claim indeed. Field’s [1980] argument is that Newtonian
mechanics can be reconstructed without appeal to mathematical notions. The book is
called Science without Numbers, but Shapiro [2000] and others have claimed that what
Field actually does in his nominalization project is remove the mathematical structure
of numbers and replace it with another mathematical structure of Newtonian space and
time. For more details, see [Pantsar, 2009; Shapiro, 2000].
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useful than others. Field’s theory seems to imply that this is an arbitrary mat-
ter, but if we can find reasons to believe that the matter is not arbitrary, clearly
the alternative explanation would be preferable.

Volumes have been written about mathematical explanations in science
and it is not possible to go into the full range of details of the topic here
(for overviews, see [Colyvan, 2001; Lange, 2017; Pincock, 2012; Reutlinger
and Saatsi, 2018; Pantsar, 2018b]). I will only mention one much-discussed
example that will make it sufficiently clear what the problem is. Baker [2005;
2009] brought to the attention of philosophers a phenomenon from biology
[Yoshimura, 1997], in which species of cicadas have life cycles that include
nymphal stages of either 13 or 17 years, depending on the geographic area. The
long nymphal stage by itself poses an interesting question, but particularly
intriguing is why 13 or 17, but not 15 or 16 years? The only proposed expla-
nation so far that makes sense appeals to the arithmetical fact that 13 and 17
are prime numbers whereas 15 and 16 are not. Prime number nymphal peri-
ods mean fewer intersections with the periods of other insects with multi-year
nymphal stages, giving the cicadas an evolutionary advantage.

This explanation of the prime nymphal periods is clearly partly biological
(concerning, e.g., the life cycles of the cicadas), but prime numbers seem to play
a crucial role in the explanation. However, it is a highly debated matter whether
prime numbers are indispensable for the explanation, making the explanation
‘genuinely mathematical’.17 In the conventionalist position of Field, no math-
ematical explanation of a non-mathematical phenomenon is indispensable, but
we choose some theories because they are useful in explanations. Yet it is
difficult to see how the move from indispensability to usefulness changes the
fundamental problem. Rather than asking why a mathematical theory is indis-
pensable, we should now ask why a mathematical theory is useful. As I see it,
the issue itself remains equally important, and the strict conventionalist can
only propose that the matter is arbitrary. Thus the strict conventionalist posi-
tion has a serious weakness. It cannot (nor does it aim to) provide a feasible
non-arbitrary explanation why some mathematical theories have knowledge-
inducing applications and others do not. For this reason, I will move the focus
in the next two sections to two alternative explanations of the usefulness of
mathematics, namely platonism and cognitive nativism, before developing my
own view in Section 6.

4. PLATONISM AND THE OBJECTIVITY OF MATHEMATICAL
KNOWLEDGE

Linnebo [2018b] defines mathematical platonism as the conjunction of three
claims. Existence states that there are mathematical objects, abstractness that
the objects are abstract, andindependence that mathematical objects are inde-
pendent of our languages, thoughts, and practices. Following this definition,

17See [Lange, 2013; 2017] for a defence of this view and [Saatsi, 2011; 2016] for a
contrary position. For a commentary on the debate, see [Pantsar, 2018b].
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any epistemological theory associated with platonism must take mathematical
knowledge to be objective. As initial presuppositions of platonist epistemology,
I take it as uncontroversial that expressions used in mathematical theorems
refer to mathematical objects, and that knowledge of mathematical theorems
requires the theorems to be true. In platonist philosophy, the class of true
mathematical statements is determined by the characteristics of mathematical
objects which, due to the independence claim, do not depend on our partic-
ular mathematical languages, thoughts, and practices. Consequently, Wright’s
[1992] criteria of epistemic constraint and cognitive command would seem to
be immediately met.18

Platonism about mathematics, as understood above, is not a uniform view,
but a heterogeneous collection of various epistemological and metaphysical
positions. The common thread to platonism is that it endorses realism about
mathematical statements or objects, but this can mean radically different
things. Traditionally, platonism referred to the view that mathematical objects
have a mind-independent existence. However, modern platonists, like Shapiro
[1997; 2000], are more likely to argue that it is about mathematical structures
rather than objects like numbers. Also epistemologically, hard-line positions like
Gödel’s [1983] ‘special epistemic faculty’ are rare in modern platonism. Not to
attack a straw man, here I focus on the type of platonism that aims to minimize
epistemological and ontological commitments. In particular, I will restrict my
analysis to the diverse arguments according to which mathematical objects do
have a mind-independent existence, but it is a ‘thin’ existence as a referent of
true statements, and nothing more.

As Linnebo [2018a, p. 4] has put it, ‘thin objects’ are such that their exis-
tence ‘does not make a substantial demand of the world’. More precisely,
in Linnebo’s [2018a] account the notion of thin objects is understood in the
Fregean, maximally general, sense, as referents of singular terms. Frege’s [1884]
famous definition of number was based on the following abstraction principle:

The number of F s is equal to the number of Gs if and only if F s are
equinumerous with Gs.

The neo-Fregean position of Hale and Wright [2001; 2009], among others, is
based on the same idea: the only role played by numbers is as referents of
singular terms, i.e., for ‘the number of F s is equal to the number of Gs’ to
be true it only needs to be the case that F s are equinumerous with Gs.19

This is the fundamental idea behind referring to objects in terms of abstraction
principles. They give a criterion of identity for new concepts by ‘carving up’ pre-
vious propositional content. Frege’s [1884] famous example was the abstraction
principle:

18As shown in the end of this section, the matter is not straightforward for all accounts
of platonism. However, I will also show that for all platonist accounts, the criterion of wider
cosmological role poses more problems.

19This is called Hume’s principle in the literature, following Boolos [1998, p. 181].
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The direction of line A is the same as the direction of line B if and only
if A and B are parallel.

By carving up the propositional content of two lines being parallel, new abstract
objects (directions) are introduced. This is what Linnebo [2018a] means by thin
objects: numbers and directions are referents of singular terms in the abstrac-
tion principles, and that is all they are required to be. Thus, while numbers
and directions are abstract objects as referents of singular terms, their existence
does not make any substantial demands of the world.20

In the introduction, I mentioned the epistemological problem of Benacerraf
[1973] as perhaps the main difficulty that a platonist account in the philosophy
of mathematics faces. For the platonists, as Benacerraf saw it, the epistemo-
logical problem was in explaining a connection between humans as physical
subjects and causally inert abstract mathematical objects. Both Linnebo and
the neo-Fregeans aim to escape this problem by arguing that the thin notion
of mathematical objects does not require any epistemological connection that
is not present in the abstraction principles. Since the accounts involving thin
objects do not require ontology beyond the abstraction principles, they also
avoid Benacerraf’s epistemological problem.

However, those accounts are now faced with the problem of explaining what
the existence of thin objects amounts to. Most importantly, one can ask whether
the thin objects exist in the mind-independent manner required of platonism
under Linnebo’s definition. Rayo [2013; 2015] has argued for a theory he calls
‘subtle platonism’ as a way of escaping the problem. The fundamental idea
of this subtle reading of platonism is that mathematical objects like numbers
exist, but they do so in a trivial sense. Essentially this refers to the triviality
of the compositional semantics for mathematical statements. Standard seman-
tics would imply that an arithmetical statement like ‘1 + 1 = 2’ can only be
true if the world contains numbers. If the world does not contain numbers,
as Field [1980], for example, has argued, any existential mathematical state-
ment (1 + 1 = 2 can be formulated as one) is always false. After all, for a
mathematical statement to be true, under this conception, there have to exist
mathematical objects. One popular solution to this problem is that existen-
tial mathematical statements should be paraphrased in nominalistic or modal
terms (e.g., [Putnam, 1967; Chihara, 1973; 1990; 2005; Hellman, 1989; 1905]).
In this approach, phrases like ‘there exists x’ are replaced by phrases like ‘it
is possible to construct x’ [Chihara, 2005]. Shapiro [1997, p. 228] has argued
against such paraphrasing strategies by pointing out the infeasibility of solv-
ing ontological problems by a mere change of vocabulary. More recently, also

20For present purposes, it is not necessary to go into the differences of the accounts
of Linnebo and the neo-Fregeans, but it should be noted that the two accounts are not
equivalent. One of the fundamental differences Linnebo sees is that his account does not
require the ‘syntactic priority thesis’ stating a type of priority of syntactic categories over
ontological ones [Linnebo, 2018a, p. xii].
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Rayo [2015] has argued that the different ways of paraphrasing mathemati-
cal statements to avoid existential quantification do not solve the problem.
However, he contends that his trivial semantics does, because in it the truth
conditions for mathematical statements do not require substantial existence
claims; hence the characterization of them as trivial. Let us take a closer look
at what this means. Rayo [2013; 2015] does not aim to avoid commitment to
numbers. Rather, he accepts that arithmetical statements commit to numbers,
but for the statements to be true, there is no need for numbers to exist in a
non-trivial manner. Consider his example: ‘the number of dinosaurs is zero’.
According to Rayo, for this sentence to be true it is only required that there
are no dinosaurs, i.e., the sentence is true in a possible world w if and only if
there are no dinosaurs in w. The truth condition (the right-hand side of the
biconditional) says nothing about numbers. As he formulates it:

For the number of the dinosaurs to be zero just is for there to be no
dinosaurs. [Rayo, 2015, p. 81; emphasis original]

Hence, Rayo points out, there is no difference between there being no dinosaurs
and the number of dinosaurs being zero. Generally:

‘For the number of the Fs to be n just is for it to be the case that ∃!nx(Fx)’
(ibid., emphasis original).21

In other words, there is no difference between there being n things that have
the property F and the number of Fs being n. Moving to purely arithmetical
sentences like ‘1+1 = 2’, Rayo argues, the truth conditions are satisfied trivially
regardless of what the world is like, since the right-hand side of the biconditional

1 + 1 = 2 is true if and only if 1 + 1 = 2

is fulfilled in all possible worlds. Thus, arithmetical sentences commit to num-
bers, yet by trivial semantics they escape Benacerraf’s problem. After all, Rayo
[2015] argues, the commitment to numbers does not have anything to do with
the truth conditions of arithmetical sentences; so there is no epistemological
cost.

Rayo’s subtle platonism shows promise in offering an epistemologically fea-
sible platonist alternative to conventionalism, since it does what platonists
generally aim to do: instead of advocating a paraphrasing or revisionist alter-
ation of mathematics, it takes mathematical practice as it is and maintains
that commitment to numbers need not carry any epistemological problems.
Yet it is not clear that this commitment to numbers amounts to anything more
than applying a particular use of language. For all there is to its credit, Rayo’s
account appears to take such a general way of understanding the commitment

21The expression ∃!nx(Fx) means that there exist exactly n values of x for which it
holds that Fx.
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to numbers that it is questionable whether it can be called platonism, even as a
subtle variant. It is possible to entertain an alternative view, according to which
the only commitment being made is to a linguistic practice, which may not be
anything more than a conventional shorthand. And if this is the case, Rayo’s
subtle platonism will end up with the same potential problem of arbitrariness
as the conventionalist accounts.

One might wonder how this could be the case since the truth conditions
of arithmetical statements are clearly not arbitrary. The number of dinosaurs
is zero just in case there are no dinosaurs. But there being no dinosaurs is
not something arbitrary, it is a fact concerning dinosaurs. That the number
of Earth’s moons is one is not arbitrary, and so on. This is clear enough, but
what is there to prevent statements of pure arithmetic like 1+1 = 2 from being
arbitrary? Rayo [2015] discusses also pure arithmetic in terms of triviality: the
truth conditions of 1 + 1 = 2 are trivial because they are satisfied regardless
of what the world is like, and hence the existence of numbers is also trivial.
In this picture, there is no room for non-trivial truth-makers for arithmetical
statements. Yet I can envision a possible world where the truth conditions of
1+1 = 2 are not trivial: a world with no subjects who process their observations,
thoughts, or ideas in terms of numbers. In such a world the truth condition of
1+1 = 2 would not be trivial, since any proposition involving natural numbers
would require new conceptual thinking. This is not to say that 1 + 1 = 2
would be false (or without truth value) in such possible worlds. Rather, the
argument is that in such possible worlds there would be no cognitive agents
who possess number concepts. Consequently, the truth conditions of 1 + 1 = 2
are not satisfied regardless of what the world is like. For them to be satisfied,
there need to be cognitive agents who possess number concepts, or at least
some form of equivalent numerical ability.22

Neither would it be trivial that the number of Earth’s moons is one, because
it would not be trivial that things are discussed in terms of their number.
Understanding such statements and establishing their truth would require the
subjects first to learn about natural numbers, or at least a small finite subset of
them. This brings us to what I see as the real crux of the matter: just how do we
initially learn about natural numbers and the way they can be associated with
objects in the world? Rayo’s account does not get involved with this issue. In the
context I have brought up, however, what appears to be trivial may not be so
trivial after all. And if we can identify non-trivial truth-makers for arithmetical
statements, we must reconsider how Rayo’s account should be interpreted —
including the triviality of the existence of numbers.

In a similar way, I see a potential problem with the thin objects of Linnebo
and the neo-Fregean account of abstract objects. Abstraction principles may
indeed carve out the propositional content so that reference to new abstract

22Another possibility is that numbers exist in the possible world independently of
cognitive agents, but assuming a platonist ontology of mind-independent objects would
appear to go against the spirit of the subtle version of platonism and trivial existence of
numbers that Rayo argues for.
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objects is possible, and manage to do that in an epistemologically unproblem-
atic way. But why do we end up endorsing particular abstraction principles like
Hume’s principle? Is it really the case that we have an understanding of the prin-
ciple of equinumerosity which we then use to introduce the concept of number?
Or did the concept of number exist beforehand, and equinumerosity is used to
characterize it? This is at least a plausible possibility, given how numbers have
been referred to for millennia without explicit recourse to abstraction principles
like Hume’s principle. Now the question is, could it be the case that there has
been reference to numbers even without implicit use of equinumerosity? Could
there be reference to numbers due to some other kind of epistemological access
besides abstraction principles? If so, would this reference still make numbers
‘thin’ objects in the sense of Linnebo’s account?

In the next two sections, I will discuss that possibility and its philosophical
consequences in detail. For now, however, let us assume that the account of
thin objects is correct for mathematical objects. Can this account escape the
conventionalist threat mentioned above in reference to the trivial truth con-
ditions of Rayo’s account? If mathematical objects only exist as referents of
abstraction principles, is there any reason to believe that mathematical knowl-
edge concerns anything more than conventions? If not, is there any reason still
to believe that mathematical knowledge is objective? Returning to Wright’s
[1992] criteria of objectivity, it is not clear that any of them are necessarily met
by the accounts of Linnebo and Rayo, which makes it necessary to reassess how
platonist those views are. Epistemic constraint seems questionable, given that
the abstraction principles may be just conventions; a further argument would
be needed to establish that they are more than that. Similarly, the criterion
of cognitive command may not be met if we do not have any non-conventional
reasons to choose some abstraction principles over others.

However, the most serious problem concerns the criterion of wider cosmolog-
ical role. How can we justify that mathematical discourse, as envisioned in the
accounts of Linnebo and Rayo, is used outside mathematics? If the abstraction
principles or the trivial mathematical truths are only conventions, I cannot see
any such justification. The accounts would run into the most serious problem
of conventionalism as discussed in the previous section: mathematical applica-
tions in science appear to be arbitrary. If the abstraction principles are based
on something more than conventions, however, we can no longer assume — at
least without argument — that mathematical objects only have a thin or trivial
existence. In other words, the epistemologically unproblematic versions of pla-
tonism proposed by Linnebo and Rayo face a new challenge: they must explain
why they should still be associated with platonism, instead of conventionalism.
For Linnebo [2018b], platonist mathematical objects are abstract, and they
exist in a manner independent of thought, language, and practice. In order
for the account of Linnebo to remain platonist, since the propositional content
in the abstraction principles is responsible for the existence of mathematical
objects, it must be independent of our thoughts, languages, and practices.

As I will argue in the concluding section, there is indeed a non-conventionalist
way of understanding thin objects. But before we can establish that, we should
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know just how mathematical thoughts, languages, and practices come to exist. I
will propose an explanation in Section 6. For now, however, let us return briefly
to traditional forms of platonism, according to which mathematical objects have
an existence that is not thin. Clearly they fulfill Wright’s criteria of epistemic
constraint and cognitive command for objectivity. But are they in a better
position to explain the wider cosmological role of mathematics, namely the
existence of mathematical applications in science? The best-known answer is
provided by Quine [1966; 1969], according to whom we cannot separate the
mathematical content from the non-mathematical content in scientific theories,
and therefore both should have the same ontological status.23 If we accept,
for example, that prime numbers are indispensable for the best explanation of
the cicada nymphal stages, we must accept that prime numbers are as real as
the insects or the molecules they consist of. In this holistic picture of scien-
tific explanations, we cannot cherry-pick the objects that we make ontological
commitment to.

Yet it seems clear that abstract mathematical objects must be in some
way very different from physical objects. In this respect, the Quinean account
does not provide us with many answers. Even if we agreed that there should
be ontological commitment to mathematical objects, just as there is to non-
mathematical objects, we are still left with the question how abstract and
non-abstract objects are connected in scientific explanations. I see this as a
basic problem of platonism about mathematics with regard to scientific expla-
nations. Granted, Quine’s argument gives uniformity to the explanations in
terms of ontological commitments: physical objects have a mind-independent
existence and so do mathematical ones. But this alone does little to explain
the wider cosmological role of mathematics. For that, there would need to be
an explanation of how abstract mathematical objects (or structures) and phys-
ical objects are related to each other. While such accounts have been discussed
(see, e.g., [Brown, 2008]), none of them seems to bridge the gap between the
abstract and the physical in a satisfactory way. Unfortunately, analyzing them
goes beyond the scope of this paper. Instead, I will move on to a different type
of account of mathematical knowledge and see how they fare with the ques-
tions of objectivity and applications. If successful, such accounts can potentially
solve the problem of integrating abstract and non-abstract objects in scientific
theories.

5. EVOLUTIONARY NATIVISM AND THE OBJECTIVITY OF
MATHEMATICAL KNOWLEDGE

As we saw in the previous section, platonist approaches have developed into
increasingly light ontological and epistemological variations, up to the point
that it becomes necessary to ask what distinguishes them from conventionalist

23To be precise, as mentioned earlier, this is the case if mathematics is indispensable
for the scientific explanation in question, i.e., the application of mathematics makes it
possible to explain non-mathematical scientific facts that cannot be explained without
mathematics.
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positions about mathematical knowledge. But in one way these new variations
of platonism, such as those of Rayo [2015] and Linnebo [2018a], but also others
like Peacocke [1993], Shapiro [1997], and Brown [2008], are very much part of the
older platonist tradition: their methodology takes epistemology and ontology
of mathematics to be an a priori pursuit in which we can elucidate the nature
of mathematical knowledge through logical and conceptual analysis.

As was mentioned in the introduction, however, recently this approach has
been challenged by researchers who believe that we can explain mathematical
knowledge on the basis of the evolutionarily determined ability to treat quan-
titative information that we already possess as infants and share with many
non-human animals (e.g., [Dehaene, 1997/2011; Butterworth, 1999; Lakoff and
Núñez, 2000; Carey, 2009]). On this view, the a priori approach to philosophy
of mathematics is largely replaced by empirical research on our cognitive capac-
ities, which can reveal how mathematical knowledge is possible, and what it is
about.24 An important part of this work is empirical research on young children
(often infants) and non-human animals. Numerous authors have concluded that
infants and many non-human animals, including primates and parrots, but also
fish, have numerical abilities [Starkey and Cooper, 1980; Dehaene, 1997/2011;
Hauser et al., 2000; Cantlon and Brannon, 2006; Pepperberg, 2012]. Indeed,
many influential authors explicitly call these animal and infant abilities arith-
metical (e.g., [Wynn, 1992; Dehaene, 2001; Rugani et al., 2009; Agrillo, 2015].
As mentioned in the introduction, I call this account nativism (or cognitive
nativism) about arithmetical knowledge.

Both platonism and nativism would appear to be committed to the posi-
tion that mathematical — or at least arithmetical — knowledge is essentially
objective. On the nativist account, which takes arithmetical ability to be the
product of biological evolution, no existence of mathematical objects needs to
be assumed. If it is accepted that the evolutionarily developed arithmetical
ability constitutes knowledge and it is (at least partly) shared with infants
[Wynn, 1992] and newly hatched chicks [Rugani et al., 2009], there would seem
to be a strong case for its objectivity. Rather than being in some essential way
dependent on the content of our thoughts, languages, or conventions, arithmeti-
cal knowledge would be determined by evolutionary processes that have led to
biological characteristics we possess already as infants and share with a wide
range of non-human animals.

This way, platonism and nativism both have a straightforward explanation
for the apparent objectivity of mathematical knowledge. But given that in
nativism no mathematical objects are presumed to exist, with an Occam-type
parsimony principle, this appears to give the nativist position an edge over at
least the traditional ‘non-thin’ versions of platonism: it does not have to face
Benacerraf’s epistemological challenge, as it does not require the existence of

24For overviews of the development in recent years, both empirical and philosophical,
see e.g. [Cohen Kadosh and Dowker, 2015; Bangu, 2018; Pantsar and Dutilh Novaes, 2020].
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mind-independent abstract objects.25 Neither does nativism succumb to the
arbitrariness of mathematics that threatens conventionalist theories. The class
of sentences considered to be mathematical truths would not be arbitrary, since
it would be (at least partly) determined by biological characteristics due to
evolutionary processes.

However, as I have argued elsewhere in detail [Pantsar, 2014; 2015a; 2018a;
2019a; 2020], the problem with the above line of argumentation is that it
assumes that the infant and animal quantitative ability is indeed arithmeti-
cal. This is often explicitly claimed. For example, one of the most important
and influential researchers in the field, Dehaene, writes:

In the course of biological evolution, selection has shaped our brain rep-
resentations to ensure that they are adapted to the external world. I have
argued that arithmetic is such an adaptation. [2001, p. 31]

That arithmetic is such an evolutionarily determined adaptation is a very prob-
lematic assumption and unsupported by empirical evidence. To see this, let us
consider the famous infant experiment reported by Wynn [1992]. It had been
previously established that infants can distinguish between small numerosities
[Starkey and Cooper, 1980]. This ability, called subitizing, generally stops work-
ing after three or four objects, but until then it allows determining the number
of objects in our field of vision without counting. There are good empirical
reasons to believe that we already possess the subitizing ability as infants and
share it with many non-human animals (see, e.g., [Dehaene, 1997/2011; Spelke,
2000]). What Wynn argued was that, based on the subitizing ability, infants
can in fact carry out simple addition and subtraction operations. She observed
infants reacting with surprise (i.e., longer looking time) to the ‘unnatural arith-
metic’ of 1+1 = 1, instantiated by the infant seeing two dolls being put behind
a screen but only one being there after the screen was lifted (the other having
been removed clandestinely). From different configurations in the subitizing
range (from one to four), she concluded that infants are able to carry out
rudimentary arithmetical operations. But as I have argued before [2018a], this
conclusion is unwarranted. The infants’ behavior could be explained by their
having some kind of cognitive mechanism or procedure in place for keeping
track of one small quantity at a time. When the exposed quantity of objects
did not match their expectations, they were surprised. Under this explanation,
nothing like an arithmetical operation is presupposed to take place in the cogni-
tive process. What is presupposed is merely an ability to track small quantities,
which gets wide support from empirical data.

This distinction is crucial to make. We must not confuse developed arithmeti-
cal ability with primitive quantitative abilities, nor assume that the difference

25Of course the possibility of mind-independent mathematical objects is not denied
in evolutionary nativism. Platonism and nativism are not necessarily metaphysically
contradictory positions, even though they seem to clash in terms of epistemology.
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is only gradual. In my previous work, I have distinguished between proto-
arithmetical quantitative ability and actual arithmetical ability for exactly this
purpose [2014; 2018a; 2019a].26 It could be that the subitizing ability and
the object-tracking system that makes it possible form the cognitive founda-
tion for the development of arithmetical ability ([Carey, 2009; Beck, 2017]; see
also [Pantsar, 2021b]). At least a partial cognitive foundation for arithmetic
could also be found in another evolutionarily developed quantitative ability,
the estimation ability due to the approximate number system that we also pos-
sess as infants and share with non-human animals [Dehaene, 1997/2011].27

But even if this were the case, the proto-arithmetical ability, or abilities, need
to be treated as conceptually distinct from arithmetical ability. The proto-
arithmetical subitizing and estimation abilities may be related to arithmetical
knowledge, but to what extent and how is something that needs to be carefully
analyzed. What the infants are doing in Wynn’s experiment may be described
with the help of arithmetical language (such as 1 + 1 = 2). But this must
not be confused with the infants’ actually carrying out addition (or subtrac-
tion) operations, even in rudimentary forms. Therefore, I am ready to accept
the above quotation of Dehaene only after one crucial amendment. I agree
with the plausibility of the general principle that ‘In the course of biological
evolution, selection has shaped our brain representations to ensure that they
are adapted to the external world’. However, rather than arithmetic, it is the
proto-arithmetical ability (or abilities) that are such an adaptation.

With the focus moved to proto-mathematical abilities, the question becomes
whether the nativist account can still account for the apparent objectivity of
mathematical knowledge, as well as mathematical applications. There are argu-
ments both for and against the apparent objectivity. Support for the apparent
objectivity comes from history. Unlike many other crucial innovations, like
the alphabet, which is generally thought to have developed only once dur-
ing known human history (see, e.g., [Sampson, 1985]), arithmetic is known to
have developed several times independently [Ifrah, 1998]. The particular sys-
tems of arithmetic have had different characteristics but they have also shown
great similarity both in terms of counting and operations (addition and mul-
tiplication). This suggests that the development of arithmetic taps into the
proto-arithmetical abilities, which determine in an important way the content
of arithmetical theories. Indeed, most known languages have some kind of a
numeral system, and many of these systems show recursivity in some numeral
base [Ifrah, 1998]. If the proto-arithmetical abilities are the reason for this kind
of independent development of numeral systems and arithmetical knowledge in

26 I have also proposed [2018a] that the word ‘number’ should be reserved for arithmetic,
while it would be clearer to speak of ‘numerosities’ for the proto-arithmetical abilities. A
similar distinction is suggested by De Cruz et al. [2010], as well as Núñez [2017] who
proposes the term ‘quantical’ ability for what I call proto-arithmetical.

27Carey [2009] calls the two systems core cognitive to emphasise their independence
from other cognitive systems.
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different cultures, there is a strong case to be made that arithmetical knowl-
edge is objective in a relevant sense. At the very least, it would appear to be
objective.

However, there are also human cultures, such as the Amazonian tribes of
Pirahã and Munduruku, whose knowledge and skills with quantities are not
considerably above the primitive quantitative systems shared with many non-
human animals [Gordon, 2004; Pica et al., 2004]. The Pirahã numeral system,
for example, includes words roughly for ‘one’, ‘two’, and ‘many’, which are not
used in a consistent manner. Yet both the Pirahã and the Munduruku have
the same (or similar) proto-arithmetical subitizing and estimation abilities as
we do [Gordon, 2004; Pica et al., 2004; Dehaene et al., 2008]. This tells us
that having proto-arithmetical abilities is not sufficient for developing even
rudimentary numeral systems, let alone proper arithmetic. There appears to
be a connection between the proto-arithmetical abilities and arithmetic, but
clearly the former underdetermine the development of the latter.

The upshot of this is that we cannot directly establish proto-arithmetical
abilities as the foundation of arithmetic, which in turn implies that arithmeti-
cal knowledge could be in an important way dependent on human conventions.
This possibility would be highly problematic for the nativist position, since
it could be the case that arithmetical knowledge is in fact to a large extent
independent of the proto-arithmetical abilities. After all, with the distinction
between proto-arithmetical and arithmetical abilities in place, it becomes clear
that it is nativism over the proto-arithmetical abilities that the empirical evi-
dence supports. While the apparent objectivity of proto-arithmetical abilities
would not be in question, the apparent objectivity of arithmetical (and presum-
ably other mathematical) knowledge could not be exclusively, or even mainly,
due to the evolutionarily developed abilities that are the foundation of the
nativist position.

The role of mathematics in the sciences would suffer the same destiny in that
scenario: if mathematics is not fundamentally a product of the evolutionarily
developed proto-arithmetic, and possibly other proto-mathematical abilities,
the success of mathematical applications in science could be either a coincidence
or based on the conventionalist character of both mathematics and science. No
more substantial link between the two could be drawn.

However, I do not believe that to be the case. There is no reason to believe
that infants and non-human animals have arithmetical (or other mathematical)
abilities, but as I will argue in the next section, there are very good reasons
to think that the proto-arithmetical (and possible other proto-mathematical)
abilities form a partial cognitive foundation for arithmetic (and other areas
of mathematics). Arithmetic has developed in different cultures, e.g., the Chi-
nese, Mayans, and Greek, independently in ways that converge in terms of
counting and basic operations like addition and multiplication [Ifrah, 1998].
However, in terms of numeral systems, arithmetical practices and applications,
the different cultures show also a great deal of divergence [Ifrah, 1998; Pantsar,
2019a]. Thus I will argue in the next section that cultural factors play an
integral role in the development of arithmetic, making it underdetermined by

D
ow

nloaded from
 https://academ

ic.oup.com
/philm

at/advance-article/doi/10.1093/philm
at/nkab010/6291527 by Viikki Science Library user on 05 August 2021



Objectivity in Mathematics, Without Mathematical Objects • 21

the proto-arithmetical abilities. Hence the nativist position is not plausible in
the face of the best data and theoretical understanding we have about arith-
metical and proto-arithmetical cognition. But with a proper understanding of
the development of arithmetic from its proto-arithmetical origins, we can still
trace the cognitive foundations of mathematics at least partly to evolutionarily
developed abilities.

6. ENCULTURATED MATHEMATICS
In the previous section, I criticized Dehaene [2001] for not distinguishing
between proto-arithmetic and arithmetic, and consequently for claiming that
arithmetic is an evolutionarily developed adaptation. I believe that this equiv-
ocation is much more than a mere terminological issue, and both in empirical
research and philosophy there should be an aim to rid the literature of such
possible confusions. However, I do not want to claim that Dehaene (or others
making a similar equivocation) sees arithmetic as entirely a product of bio-
logical evolution. Indeed, Dehaene explicitly recognizes also another type of
evolution crucial for the development of mathematics:

Specific to the human species, however, is a second level of evolution at the
cultural level. As humans, we are born with multiple intuitions concerning
numbers, sets, continuous quantities, iteration, logic, or the geometry of
space. Through language and the development of new symbols systems,
we have the ability to build extensions of these foundational systems and
to draw various links between them. [Dehaene, 2001, p. 31]

Again, it is important to be careful with terminology like ‘multiple intuitions’.
I would not be prepared say, for example, that we have intuitions about num-
bers and sets. I do think we have proto-arithmetical abilities that can lead to
something that may feasibly be called ‘intuitions’ about numbers. I also believe
that it is possible that we have similar proto-geometrical, as well as possibly
proto-set-theoretical and proto-logical abilities. But it is important that these
be distinguished from any genuinely mathematical intuitions. When it comes to
the latter, however, Dehaene points out one crucial aspect. Language and sym-
bol systems allow extending and drawing links between intuitions, although,
as we will see, there are also other factors involved. Nevertheless, having made
these clarifications, I believe Dehaene is fundamentally correct about the most
important aspect. It is indeed the evolution on the cultural level that we need
to include in order to explain how the proto-arithmetical abilities can develop
into mathematical knowledge and skills.

The variation in quantitative abilities between different cultures is enor-
mous. From research on cultures like Pirahã and Munduruku that appear to
have no arithmetical skills and knowledge [Gordon, 2004; Pica et al., 2004]
to cultures like the Mayans, ancient Chinese and Greek, which independently
made great advances both in arithmetic and its applications, it becomes clear
that arithmetic is the product of a long line of development in specific cultural
circumstances [Ifrah, 1998]. In the Western tradition heavily developed by the
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ancient Greek, but following a longer tradition that can be traced at least to
Babylon and Egypt,28 we can see that arithmetic slowly developed into the sub-
ject we are currently familiar with. Some important advances have happened
quickly due to specific innovations, but in the bigger picture the development of
arithmetic has been a long gradual process from the introduction of numerals
to modern formal systems [Boyer, 1991]. This is consistent with the theory of
cumulative cultural evolution for explaining the development of human knowl-
edge and skills [Boyd and Richerson, 1985; 2005; Tomasello, 1999; Henrich,
2015; Heyes, 2018]. According to cumulative cultural evolution, technologies
and other cultural innovations are improved upon in small (trans-)generational
increments. As these improvements are used widely enough, knowledge and
skills based on them can reach a status where they are no longer tied to small
groups of individuals. New improvements are adopted widely within cultures
and passed on to subsequent generations, enabling a cumulative evolution of cul-
turally developed artifacts, knowledge, and skills. This passage of the knowledge
and skills can also extend across cultures through regular interactions.

Basic arithmetic became such a skill in many cultures and arithmetical
knowledge was spread increasingly widely. Large groups of children were start-
ing to be educated first in counting processes, then moving on to arithmetical
operations. Applications of arithmetic were invented, further strengthening the
place of arithmetic within educational and other cultural practices.29 Ulti-
mately this cultural development made arithmetical knowledge and skills widely
possessed, thus facilitating the refinement and development of them, as well as
that of the educational practices for distributing them [Pantsar, 2019a]. This
is the history (and pre-history) behind arithmetic as we currently know it: a
subject that the vast majority of children in the world acquire basic knowledge
and skills in.30

Conventionalists might at this point see an argument to support their posi-
tion. Few culturally developed practices are as widely shared in the modern
world as basic arithmetic. If we want to explain the apparent objectivity of
arithmetical knowledge, is this widely spread cultural background not enough?
If most of the world learns largely similar arithmetical content, is it any wonder

28D’Errico et al. [2018] argue that this development can in fact be tracked back at
least to roughly 70,000–62,000 BC, to artifacts such as a notched hyena femur bone found
at the Les Pradelles Mousterian site in France.

29Unfortunately, very little has remained to tell us how this process has taken place.
From ancient Greece, higher-level mathematical works by the likes of Archimedes and
Euclid have survived but although they were used for educational purposes, not much
is known about early mathematical education and what role it played [Morgan, 1999].
Mueller [1991] notes that arithmetic was apparently widely known in fifth century (BCE)
Athens but it is not clear that this knowledge was acquired in schools. See [Fried, 2012]
for more.

30While the arithmetical content is largely equivalent cross-culturally, there are many
differences in educational practices, including the kind of tools that are used (pen and
paper, abacus, calculators, etc.). See [Fabry and Pantsar, 2019] for more on the impact of
cognitive tools on mathematical problem-solving processes.
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that we start seeing arithmetical knowledge as objective? While I believe that
the question is well placed, it immediately prompts a further question: why
are there such large similarities in basic knowledge and skills when it comes
to arithmetic? Is this simply the result of the domination of certain cultures
in the modern world, or are there culture-independent factors that determine,
at least partly, the similarities in arithmetical knowledge and skills? In order
to answer such questions, we need to understand better how cultural learning
[Heyes, 2018] takes place, i.e., how cumulative cultural evolution is possible by
transmitting new knowledge and skills to subsequent generations.

In this paper, I apply Menary’s [2014; 2015] notion of enculturation in for-
mulating a theoretical framework for analyzing cultural learning in the field of
arithmetic (for more details, see [Pantsar, 2019a; b; 2020; 2021b]. Enculturation
refers to transformative processes in which interactions with the surround-
ing culture determine the way cognitive practices are acquired and developed
[Menary, 2015; Fabry, 2018]. The fundamental idea behind this framework
is that our genetically determined, evolutionarily developed, biological facul-
ties are transformed through the cultural transmission of cognitive practices.
The enculturation account is thus a potentially important improvement over
crude dichotomies like ‘nature versus nurture’, or as in the present context,
conventionalism versus nativism. Instead of focusing on biologically deter-
mined abilities or culturally developed abilities separately, the enculturation
framework can provide a link between the two. Indeed, in the enculturation
framework a strict dichotomy between biology and culture should no longer be
made.31 In the case of arithmetical cognition, researchers have recently seen
enculturation as a way to connect research on proto-arithmetical abilities with
research on arithmetic as a culturally developed phenomenon [Menary, 2015;
Pantsar, 2019a; Jones, 2020; Fabry, 2020].

Most researchers of numerical cognition agree that the evolutionarily devel-
oped core cognitive quantitative abilities form a cognitive basis for the develop-
ment of arithmetical abilities. However, as mentioned in the previous section,
there is disagreement over which cognitive core system is central in the devel-
opmental process. Dehaene [1997/2011] and Halberda and Feigenson [2008],
for example, argue that the approximate number system is the primary core
cognitive resource in the development of number concepts and therefore also
in the development of arithmetical ability. Many others see the object-tracking
system that allows subitizing as the prevalent system in that development (e.g.,
Carey [2009]; Izard et al. [2008]; Sarnecka and Carey [2008]; Carey et al. [2017];
Beck [2017]; Cheung and Le Corre [2018]). There are also researchers, Spelke
[2011], Pantsar [2014; 2015a; 2019a; 2021b], vanMarle et al. [2018], who argue
that both core cognitive systems play a crucial role in the process.

While there is still considerable disagreement over the roles that the different
cognitive core systems play in the development of arithmetical cognition, with

31This dichotomy can still be fruitful for explanatory purposes, however, which is why
I refer to it at times in the rest of the paper.
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the enculturation framework we can nevertheless propose an explanation of how
such development from proto-arithmetical core cognitive abilities to culturally
developed arithmetical abilities can take place. The well-established phenome-
non of plasticity of the brain is fundamental to the enculturation framework.
Through the mechanism Menary [2014] calls learning driven plasticity, the neu-
ral plasticity of the brain enables the acquisition of new cognitive capacities.
The neural plasticity of the brain allows for structural and functional vari-
ations based on the experiences of individuals in their ontogeny [Dehaene,
2009; Ansari, 2008; Anderson, 2015]. This enables the acquisition of new cog-
nitive abilities such as reading and writing by redeploying older, evolutionarily
developed neural circuits for new, culturally specific functions [Dehaene, 2009;
Menary, 2014].32 When it comes to arithmetical cognition, the hypothesis many
researchers accept is that the evolutionarily developed proto-arithmetical abil-
ity for processing numerosities in the intraparietal sulci, together with linguistic
abilities for number words and symbols, is deployed resulting in two differ-
ent (although partially overlapping) systems for processing numerosities in the
brain, thus explaining how adult subjects have both arithmetical and proto-
arithmetical abilities [Dehaene and Cohen, 2007; Nieder and Dehaene, 2009;
Dehaene, 1997/2011; Menary, 2015].

The enculturation framework can then provide the link between the proto-
arithmetical abilities, which are the product of biological evolution, and the
arithmetical ability that is the product of cumulative cultural evolution.33 By
redeploying proto-arithmetical neural circuits for arithmetical abilities, individ-
uals are able to acquire culturally developed cognitive practices. This, in turn,
enables them to develop further or modify cognitive practices, which can then
be adopted more widely in the culture. Therefore enculturation and cumula-
tive cultural evolution form a feedback loop which explains the acquisition and
development of cognitive practices.34 This is consistent with the arguments
of Fabry [2017], who employs Laland’s [2017] notion of cognitive innovation
to analyze the introduction and acquisition of new cognitive practices. Fabry
emphasizes the importance of the interplay between cognitive innovations,
enculturation, and cumulative cultural evolution in transforming our cogni-
tive capacities. I find the resulting theoretical framework fruitful for explaining
how proto-arithmetical abilities are employed in developing arithmetical knowl-
edge and skills, because it connects the phylogenetic and ontogenetic levels of

32This principle is called neuronal recycling. Anderson [2015] has proposed the more
general principle of neural reuse instead, which has been argued by Jones [2020] and Fabry
[2020] to be a better fit for understanding the development of arithmetical cognition.

33This should not be confused with the claim that cultural evolution is not funda-
mentally a biological phenomenon. The two terms are used here as different categories of
explanation without any metaphysical claims associated.

34This idea of a feedback loop is a generalization of the feedback loop that according to
Fabry [2018] connects enculturation and ‘epistemic engineering’ [Sterelny, 2014; Menary,
2014; 2015], which she sees as one constitutive process of cumulative cultural evolution.
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development. On the level of individual ontogenetic development, the proto-
arithmetical neural circuits are (partially) redeployed to acquire new numerical
cognitive practices. On the phylogenetic level, contributions by individuals
make group-level innovation possible, resulting in cumulative cultural evolu-
tion that gives rise to new practices, which are acquired by new generations of
individuals in ontogeny through the process of enculturation.35

Many details of this process are as yet unknown, but I contend that the
above account provides a feasible framework for explaining how arithmetical
knowledge has developed. It is of course possible that there has been at least
some genetic and cultural co-evolution in the development of numerical abilities,
and the order of development presented above is not fully accurate.36 However,
from what we know about the proto-arithmetical abilities, they are largely
universal and do not show significant cultural variation [Dehaene, 1997/2011].37

While there may have been some cultural co-evolution of numerical abilities
taking place also during the period of the genetic evolution of proto-arithmetical
abilities, this effect appears to have been minor.

Importantly, in contrast to the nativist account described in the previous
section, the present account does not take arithmetical knowledge to be essen-
tially a product of biological evolution. The cultural aspects of the development
of arithmetic play a crucial role in this enculturated epistemological theory of
arithmetic. In contrast to strict conventionalist accounts, however, the cultural
aspects do not entirely determine arithmetical content. Through the process
of re-deploying proto-arithmetical abilities in acquiring and innovating new
cognitive practices, arithmetical knowledge is partly determined by the core
cognitive, evolutionarily developed, quantitative systems. Not only do I con-
tend that this is the most feasible epistemological account of arithmetic, but
it can also provide the best explanation for the two reasons for believing that
arithmetical knowledge is objective. It can explain the apparent objectivity of
arithmetical and other mathematical knowledge, and it can explain arithmetical
and other mathematical applications in science.

On the present epistemological account, there can be two reasons for the
apparent objectivity of mathematical knowledge. First, it could be that math-
ematical knowledge appears to be objective simply because it is based on
deeply-entrenched conventions, as discussed in Section 3. However, unlike in
the conventionalist theories, on the present account there is also a second plau-
sible reason. Basic arithmetic, at least, appears to be objective to us because it
is based on evolutionarily developed proto-arithmetical abilities. These abilities
are universal to human beings, except for cases of developmental dysfunctions
or injuries. In [Pantsar, 2014], I have called arithmetical knowledge maximally
intersubjective because of this biological foundation. From data on different

35How individual contributions are introduced and accepted by mathematical commu-
nities, thus leading to mathematical innovation, is a highly interesting research question.
See, e.g., [Wagner, 2017] for discussion on how mathematical practices are established.

36 I thank an anonymous reviewer for pointing this out.
37 Indeed, they are shared (at least to a large degree) with many non-human animals.
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cultures, it appears that we share the proto-mathematical abilities as widely
as we share any cognitive or physical abilities [Dehaene, 1997/2011]. They
are not dependent on our languages or practices. If arithmetical knowledge
and skills are in an important way determined by proto-arithmetical abilities,
it is quite understandable that many would in fact consider such maximally
intersubjective knowledge to be objective.

I believe that also the wide applicability of mathematics in science can
be explained with the present enculturated account of arithmetical and other
mathematical knowledge. There are two potential explanations for this, the first
of which has been suggested by Bloom [2000] and Maddy [2014] in a slightly
different context. Maddy argues that the foundations of arithmetic are a com-
bination of set theory and logic. In particular, logic on her account is based
on our evolutionarily developed cognitive abilities. In contrast to the present
account, Maddy’s account of arithmetic is thus based on proto-logic rather than
proto-arithmetic. I cannot enter the debate between the two positions here (see
[Pantsar, 2016] for more), but for the question of applications, Maddy’s expla-
nation is also applicable to my account. She argues that the proto-logical ability
has evolutionarily developed to mirror how the world is structured:

Much as our primitive cognitive architecture, designed to detect [the
logical structure of the world], produces our firm conviction in simple
cases of rudimentary logic, our human language-learning device produces
a comparably unwavering confidence in this potentially infinite pattern.
[Maddy, 2014, p. 234]

In a similar manner, it could be argued that our primitive cognitive architec-
ture is ‘designed’ to detect the arithmetical structure of the world as discrete
objects.38 One argument of that type has been proposed by De Cruz [2016],
who argues that anti-realist accounts fail to explain how the proto-arithmetical
ability has evolved. In particular, she asks what the adaptive behavior cen-
tral to the development of proto-arithmetical ability is based on, if not some
type of realist ontology of mathematics. This would then provide a seemingly
straightforward explanation for the existence of arithmetical and other mathe-
matical applications in science. If arithmetic, and by extension other fields of
mathematics, are based on our evolutionarily developed ability to detect the
structure of the world, there is hardly any mystery to the fact that mathematics
has applications in explaining that world.

The second explanation for mathematical applications in the present account
puts a Kantian twist into the above views of Maddy and De Cruz. Rather than
presume that proto-logic or proto-arithmetic detect objective features of the
world an sich, it is possible to take the weaker position that they detect the

38 I add the scare-quotes to ‘designed’ in paraphrasing Maddy for a good reason: on the
present account, there is no justification for claiming that proto-mathematical abilities are
designed in any way. Indeed, I see the kind of teleological explanation that Maddy proposes
as quite problematic.
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structure our cognitive architecture imposes on our observations and thoughts.
Perhaps this also mirrors the structure of the world, but we may never be
able to establish that. If all our observations and thoughts are structured by
our cognitive architecture, we cannot hope to access the world beyond that
structure. This is another debate that I cannot enter here (see [Pantsar, 2014]
for more), but this latter ‘Kantian’ account would appear to provide an equally
good explanation for the existence of mathematical explanations as the realist
accounts of Maddy and De Cruz. To answer De Cruz’s question above, it could
be that the evolutionary endowments are simply vindicated by their adaptative
success. Observing the world in terms of countable macro-level entities (such
as objects and other animals) has clear advantages in acquiring food, avoiding
predators, raising offspring, and many other crucial behaviors. However, I do
not see why this would imply a realist ontology of numbers either as objects or
placeholders in a structure.

It is of course possible that through neural plasticity we develop numerical
or logical abilities that do not detect the structure of the world but neither do
they detect some inevitable conditions that our cognitive architecture imposes
on our observations and thoughts. However, it is at least a plausible hypothe-
sis that the proto-arithmetical abilities are evolutionarily developed in tandem
with observing the world in terms of discrete macro-level objects, being thus
tied to the general way we experience our surroundings. But it is not my pur-
pose here to argue that this is indeed the case. Instead, I have wanted to
establish that the resulting argument is similar both in the scenario in which
we assume that the proto-mathematical abilities detect the structure of the
world and the scenario in which we believe them to detect inevitable condi-
tions of our observations. If mathematics is in an important way determined
by proto-mathematical abilities, mathematics is connected to science through
a great variety of crucial applications because (at least part of) mathematics
deals with the very foundational structures that science is also based on. In the
spirit of Occam, we may want to restrain from making the realist assumption
of Maddy or De Cruz, and be content that the relevant foundational structures
concern our observational and cognitive capacities. But this does not make
mathematical applications in science more problematic in any way, since the
connection between mathematics and science is established in a similar manner.

Of course behind these considerations lies the question whether our proto-
mathematical abilities are evolved in a ‘truth-tracking’ manner so as to ensure
that our cognitive capacities provide us with accurate information about the
structure of world. There are ways in which such truth tracking seems plausi-
ble. Subitizing and estimating can give animals important information that can
help with survival and success in life. Being able to establish the numerosity of
prey animals or predators, for example, can be the difference between thriving
and perishing. Not being able to track the quantity of offspring can be disad-
vantageous to protecting them and thus prevent the offspring from reaching
maturity.

It should also be noted that in such cases processing quantities can
increase the complexity of the cognitive process, thus making it slower
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[Pantsar, 2019b; 2021a]. Experiments show that even in cases where other
cognitive processes would save time in making the right decision, the proto-
arithmetical abilities are triggered.39 This speaks for the general evolutionary
advantage of possessing proto-arithmetical abilities. After all, given that apply-
ing the proto-arithmetical abilities makes decisions slower, there is likely to be
some pay-off for the decrease in speed. Given the early evolutionary origins of
the object-tracking system and the approximate-number system, it is tempt-
ing to explain this advantage by the proto-arithmetical abilities’ helping to
detect the structure of the world in terms of macro-level objects. However, I
recognize that it is at least a feasible possibility that such truth tracking fails.
Ultimately, if all observations of our surroundings are filtered through cogni-
tive core systems, we may not be able to determine the structure of the world
entirely independently of those systems. Indeed, if my argument in this section
is along the right lines, this extends from everyday experience of our local
surroundings to modern scientific theories. By including mathematics in our
scientific explanations, we are always working in a context influenced by the
proto-mathematical abilities. In this context, it is to be expected that math-
ematics has scientific applications, and that mathematical knowledge appears
to us as objective.

7. CONCLUSION: IS MATHEMATICAL KNOWLEDGE OBJECTIVE?
The purpose of this paper has been to explain from an epistemologically feasible
basis why many mathematicians, philosophers, and laypeople believe in the
objectivity of mathematical knowledge. However, one crucial question remains:
is mathematical knowledge in fact objective? Conforming to Wright’s [1992]
analysis of objectivity, I believe there are good reasons to consider at least basic
arithmetical knowledge to be objective. The enculturated development of proto-
arithmetical abilities into arithmetic makes it possible that there are unknown
mathematical truths, thus fulfilling the criterion of epistemic constraint. This of
course depends on the specific cultural context. The arithmetical truth 2+3 = 5
appears to be such an unknown truth for cultures like the Pirahã.40 One could

39This has been confirmed in adult humans by tests in which the subjects where asked
whether two number symbols are the same. This requires no ability with quantities (it is
enough to recognize whether the shapes of the symbols are the same), but the data show
a clear ‘distance effect’ in the reaction times: for example, the pair 71 65 takes more time
than the pair 79 65 [Hinrichs et al., 1981; Pinel et al., 2001]. The best explanation for
this is that even though we know the task, we cannot help processing the number symbols
as quantities, which triggers the approximate-number system. Since there’s more distance
between 79 and 65 than 71 and 65, the characteristics of the approximate-number system
predict that the former case is processed faster. See [Pantsar, 2019b] for more.

40This is still debated. Overmann and Coolidge [2013], for example, have argued for
the possibility that number concepts could be independent of language, which would imply
that the Pirahã could possess number concepts even though their language does not contain
corresponding numerals. If that is indeed the case and the truth of 2 + 3 = 5 is thought
to be within the grasp of monolingual Pirahã, the sum in this example can be replaced by
one involving larger numbers. Overmann and Coolidge (ibid.) accept that learning exact
large numbers demands language.
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claim that since their language does not contain the necessary numerals to
express such truths, their cultural context is not relevant here. But this is a
problem only for the conventionalist position. If they did develop arithmetic
based on their proto-arithmetical ability, they would end up holding 2 + 3 = 5
as an arithmetical truth. For our culture, unsolved problems like the Goldbach
conjecture can be unknown truths.41

Also the criterion of cognitive command seems to be fulfilled, since there
are disagreements over arithmetical truths that are not blameless. If basic
arithmetical truths are determined by proto-arithmetical abilities, Dostoevsky’s
character believing in 2+2 = 5 would be mistaken and blameworthy: his belief
would not follow the proto-arithmetical foundation of arithmetic, namely, his
belief in 2+2 = 5 would conflict with his experiences in subitizing and/or esti-
mating groups of objects. Finally, the wider cosmological role is fulfilled since
arithmetic clearly has applications in science and everyday life. Whether these
applications are ultimately indispensable is not crucial, since their fruitfulness
in explanations is not tied to indispensability.

However, even if basic arithmetic can be considered to be objective, this is
not to say that all mathematical knowledge is objective in the same sense. Mem-
bers of a certain culture might not end up believing that, say, (−4)∗(−4) = 16,
which seems to be only partly determined by proto-arithmetical abilities. And
when we extend the account beyond arithmetic, the part played by conven-
tions can become increasingly prominent. To the extent that mathematics is
based on proto-mathematical cognition (and in addition to proto-arithmetic,
this can include feasibly at least proto-geometry, proto-set-theory, and proto-
logic), there would always seem to be a partly objective foundation for it.
But as the role of conventions becomes more important, can we still call such
knowledge objective in the same sense as we would call arithmetical know-
ledge objective? Such an analysis is beyond the scope of this paper, but I do
not see any fundamental difficulties in parts of mathematical knowledge being
considered more objective than others.

Finally, if it is accepted that some part of mathematical knowledge is objec-
tive, we should consider the ontological status of the mathematical objects
postulated in it. As I see it, the account proposed in this paper is consis-
tent with different forms of platonism, without requiring any of them. I have
argued that arithmetical truths are at least partly determined by our proto-
arithmetical abilities, but of course this does not rule out the possibility that
numbers or structures as arithmetical objects could exist independently of the
thoughts, languages, and practices of human subjects. What I have argued is
that no such assumption needs to be made to provide a feasible epistemology
of arithmetic.

How about the ontologically lighter versions of platonism, such as the
accounts of Rayo and Linnebo? I contend that my account is consistent also

41The Goldbach conjecture states that every even integer greater than two can be
expressed as the sum of two prime numbers.
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with mathematical objects existing in this ‘thin’ sense, because the existence
of abstract objects is not ruled out. My account does not require postulating
mathematical objects even in the thin sense, but it can explain why the dis-
course involving abstract mathematical objects makes sense. In particular, the
present account of mathematics as the product of the enculturated development
based on proto-mathematical abilities can feasibly complement the accounts of
both Rayo and Linnebo, since it can provide an explanation for why we end up
accepting some mathematical truths and adopting some abstraction principles.
Indeed, this seems to give a promising account of what the ‘thin’ existence of
objects could mean in a non-conventionalist framework.
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Lakoff, G., and R. Núñez [2000]: Where Mathematics Comes From. New York: Basic
Books.

Laland, K.N. [2017]: Darwin’s Unfinished Symphony: How Culture Made the Human
Mind. Princeton University Press.

Lange, M. [2013]: ‘What makes a scientific explanation distinctively mathematical?’,
British Journal of Philosophy of Science 64, 485–511.

[2017]: Because Without Cause: Non-causal Explanations in Science and
Mathematics. Oxford University Press.

Linnebo, Ø. [2017]: Philosophy of Mathematics. Princeton University Press.
[2018a]: Thin Objects. Oxford University Press.
[2018b]: ‘Platonism in the philosophy of mathematics’, E.N. Zalta, ed., The

Stanford Encyclopedia of Philosophy (Spring, 2020). https://plato.stanford.edu/
archives/spr2018/entries/platonism-mathematics. Accessed March 2021.

Maddy, P. [2014]: ‘A second philosophy of arithmetic’, The Review of Symbolic Logic
7, 222–249.

Menary, R. [2014]: ‘Neuronal recycling, neural plasticity and niche construction’, Mind
and Language 29, 286–303.

[2015]: Mathematical Cognition: A Case of Enculturation. Frankfurt am Main:
Open MIND, MIND Group.

Mill, J.S. [1843]: ‘A system of logic’, in J.M. Robson, ed., Collected Works of John
Stuart Mill, Vols 7 and 8. University of Toronto Press.

Morgan, T.J. [1999]: ‘Literate education in classical Athens’, The Classical Quarterly
49, 46–61.

Mueller, I. [1991]: ‘Mathematics and education: Some notes on the Platonic program’,
Apeiron 24, 85–104.

Müller-Hill, E. [2009]: ‘Formalizability and knowledge ascriptions in mathematical
practice’, Philosophia Scientiae 13, 21–43.

Nieder, A., and S. Dehaene [2009]: ‘Representation of number in the brain’, Annual
Review of Neuroscience 32, 185–208.
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